首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal(loid) accumulation and arbuscular mycorrhizal (AM) status of the dominant plant species, Cynodon dactylon, growing at four multi-metal(loid)s-contaminated sites and an uncontaminated site of China were investigated. Up to 94.7 As mg kg?1, 417 Pb mg kg?1, 498 Zn mg kg?1, 5.8 Cd mg kg?1 and 27.7 Cu mg kg?1 in shoots of C. dactylon were recorded. The plant was colonized consistently by AM fungi (33.0–65.5%) at both uncontaminated site and metal-contaminated sites. Based on morphological characteristics, fourteen species of AM fungi were identified in the rhizosphere of C. dactylon, with one belonging to the genus of Acaulospora and the other thirteen belonging to the genus of Glomus. Glomus etunicatum was the most common species associated with C. dactylon growing at metal-contaminated sites. Spore abundance in the rhizosphere of C. dactylon growing at the metal-contaminated soils (22–82 spores per 25 g soil) was significantly lower than that of the uncontaminated soils (371 spores per 25 g soil). However, AM fungal species diversity in the metal-contaminated soils was significantly higher than that in the uncontaminated soils. This is the first report of AM status in the rhizosphere of C. dactylon, the dominant plant survival in metal-contaminated soils. The investigation also suggests that phytorestoration of metal-contaminated sites might be facilitated using the appropriate plant with the aid of tolerant AM fungi.  相似文献   

2.
This study evaluated the interactive effect of arbuscular mycorrhizal fungi (AMF) inoculation and exogenous phosphorus supply on soil phosphotases, plant growth, and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong). We aimed to explore the ecophysiological function of AMF in mangrove wetland ecosystems, and to clarify the possible survival mechanism of mangrove species against nutrient deficiency. K. obovata seedlings with or without AMF inoculation (mixed mangrove AMF), were cultivated for six months in autoclaved sediment medium which was supplemented with KH2PO4 (0, 15, 30, 60, 120 mg kg−1). Then the plant growth, nitrogen and phosphorus content, root vitality, AMF colonization and soil phosphatase activity were analyzed. The inoculated AMF successfully infected K. obovata roots, developed intercellular hyphae, arbuscular (Arum-type), and vesicle structures. Arbuscular mycorrhizal fungi colonization ranged from 9.04 to 24.48%, with the highest value observed under 30 and 60 mg kg−1 P treatments. Soil P supply, in the form of KH2PO4, significantly promoted the height and biomass of K. obovata, enhanced root vitality and P uptake, while partially inhibiting soil acid (ACP) and alkaline phosphotase (ALP) activities. Without enhancing plant height, the biomass, root vitality and P uptake were further increased when inoculated with AMF, and the reduction on ACP and ALP activities were alleviated. Phosphorus supply resulted in the decrease of leaf N–P ratio in K. obovata, and AMF inoculation strengthened the reduction, thus alleviating P limitation in plant growth. Arbuscular mycorrhizal fungi inoculation and adequate P supply (30 mg kg−1 KH2PO4) enhanced root vitality, maintained soil ACP and ALP activities, increased plant N and P uptake, and resulted in greater biomass of K. obovata. Mutualistic symbiosis with AMF could explain the survival strategies of mangrove plants under a stressed environment (waterlogging and nutrient limitation) from a new perspective.  相似文献   

3.
Wheat production (Triticum aestivum L.) has increased across the world during last century with the intensification of agriculture. Phosphorus (P) fertilization is a common practice to improve wheat growth in Argentina. We investigate whether indigenous arbuscular mycorrhizal colonization (AMC) of hard red spring wheat is controlled by shoot P content (SPc) or by available soil P in an agricultural soil from the southeastern Argentine Pampas. In the field, AMC was monitored four times during two growing seasons of a conventional wheat crop. Treatments were: without P supply, annual supply of 11 and 22 kg P ha−1 during the last 5 years, and 164 kg P ha−1 applied once 5 years before the experiment. In the glasshouse, AMC was assessed three times in wheat growing in pots filled with the soil from unfertilized plots; treatments were: P (0 and 20 mg P pot−1), and nitrogen (N) fertilization (0 and 150 mg N pot−1). A range of soil P between 6 and 60 mg P kg−1 was obtained and the AMC ranged from 1% to 67% of root length colonized under both field and glasshouse conditions. P supplied annually increased growth and SPc but decreased AMC. N fertilization did not affect growth or AMC. Variations in SPc did not account for AMC. Variability in AMC was best accounted for local current soil available P content (r2 = 0.59). A linear-plateau relationship between soil P and indigenous AMC was established in wheat plants growing under contrasting environmental and experimental (field and glasshouse) conditions. Indigenous AMC was depressed by available soil P in the range 0–27 mg P kg−1 (a decrease of 2.8% mg P−1 kg−1). Above 27 mg P kg soil−1, AMC was stabilized at about 10%. Grain yield increased with fertilization and the highest relative shoot dry matter in field was obtained at 15.5 mg P kg soil−1. The soil P range that ensures high wheat production without deterring indigenous AMC is discussed.  相似文献   

4.
《Applied soil ecology》2007,35(1):163-173
Two pot experiments were conducted to investigate the effect of inoculation with the arbuscular mycorrhizal (AM) fungus Glomus intraradices on Pb uptake by two clones of Nicotiana tabacum plants. Non-transgenic tobacco plants, variety Wisconsin 38, were compared in terms of Pb uptake with transgenic plants of the same variety with inserted gene coding for polyhistidine anchor in fusion with yeast metallothionein. Bioavailability of Pb in experimentally contaminated soil was enhanced by the application of a biodegradable chelate ethylenediaminedissuccinate (EDDS).EDDS addition (2.5 and 5.0 mmol kg−1 substrate) increased Pb uptake from the substrate and enhanced Pb translocation from the roots to the shoots, with shoot Pb concentrations reaching up to 800 mg kg−1 at the higher chelate dose. Application of a single dose of 5 mmol kg−1 proved to be more efficient at increasing shoot Pb concentrations than two successive doses of 2.5 mmol kg−1, in spite of a marked negative effect on plant growth and phytotoxicity symptoms. Pb amendment (1.4 g kg−1 substrate) connected with either dose of EDDS decreased significantly plant biomass as well as reduced the development of AM fungi. AM inoculation promoted the growth of tobacco plants and partly alleviated the negative effect of Pb contamination, mainly in the case of root biomass.No consistent difference in Pb uptake was found between transgenic and non-transgenic tobacco plants. The effect of AM inoculation on Pb concentrations in plant biomass varied between experiments, with no effect observed in the first experiment and significantly higher root Pb concentrations and increased root–shoot ratio of Pb concentrations in the biomass of inoculated plants in the second experiment. Due to probable retention of Pb in fungal mycelium, the potential of AM for phytoremediation resides rather in Pb stabilisation than in phytoextraction.  相似文献   

5.
《Applied soil ecology》1999,11(2-3):261-269
Different fungal ecotypes were isolated from soils which had received long-term applications of metal-contaminated sewage sludge with the aim of studying the degree of tolerance and adaptation to heavy metals of arbuscular mycorrhizal (AM) fungi. The development and structural aspects of AM colonization produced by the different fungal isolates were studied using two host plants, Allium porrum and Sorghum bicolor, which were grown in either contaminated or non-contaminated soils. Four different AM fungi were successfully isolated from the experimental field plots: (i) Glomus claroideum, isolated from plots receiving only inorganic fertilizer; (ii) another apparently similar ecotype of Glomus claroideum, but isolated from plots with 300 m3 ha−1 year−1 of contaminated sludge added, (iii) an unidentified Glomus sp., present only in the less contaminated plots (100 m3 ha−1 year−1 of unamended sludge) and (iv) Glomus mosseae, isolated from plots receiving 100 or 300 m3 ha−1 year−1 of amended or unamended sludge (intermediate rates of contamination). There were consistent differences in behaviour among the four AM fungi tested with regard to the colonization levels they produced in non-contaminated and contaminated soils. Both total and arbuscular colonization were affected by heavy metal contamination. The main conclusions of this study are that Glomus sp. and G. mosseae isolates are strongly inhibited by heavy metals, which acted mainly by interfering with the growth of the external mycelium, and also by limiting the production of arbuscules. Our results suggest that G. claroideum isolates, particularly the ecotype which was isolated from the plots receiving the highest dose of metal-contaminated sludge, shows a potential adaptation to increased metal concentration in soil.  相似文献   

6.
Arbuscular mycorrhizal fungus (AMF) can enhance plant growth and resistance to toxicity produced by heavy metals (HMs), affect the bioavailability of HMs in soil and the uptake of HMs by plants, and thus has been emerged as the most prominent symbiotic fungus for contribution to phytoremediation. A greenhouse pot experiment was conducted to assess the effect of Glomus versiforme BGC GD01C (Gv) on the growth and Cd accumulation of Cd-hyperaccumulator Solanum nigrum in different Cd-added soils (0, 25, 50, 100 mg Cd kg−1 soil). Mycorrhizal colonization rates were generally high (from 71% to 82%) in Gv-inoculated treatments at all Cd levels. Gv colonization enhanced soil acid phosphatase activity, and hence elevated P acquisition and growth of S. nigrum at all Cd levels. Moreover, the presence of Gv significantly increased DTPA-extractable (phytoavailable) Cd concentrations in 25 and 50 mg Cd kg−1 soils, but did not affect phytoavailable Cd in 100 mg Cd kg−1 soil. Similarly, inoculation with Gv significantly increased Cd concentrations of S. nigrum in 25 and 50 mg Cd kg−1 soils, but decreased Cd concentrations of the plants in 100 mg Cd kg−1 soil. Overall, inoculation with Gv greatly improved the total Cd uptakes in all plant tissues at all Cd levels. The present results indicated that S. nigrum associated with Gv effectively improved the Cd uptake by plant and would be a new strategy in microbe-assisted phytoremediation for Cd-contaminated soils.  相似文献   

7.
Soil contamination with Cd is of primary concern and beneficial soil restoration strategies urge. The aim of this work is to evaluate the response of two different genotypes of Pinus pinaster (wild and selected) to Cd contamination and to assess how inoculation with ectomycorrhizal fungi, Suillus bovinus and Rhizopogon roseolus, influenced each genotype. Seedlings were exposed to soil contaminated at 15 and 30 mg Cd kg−1. Plant growth, mycorrhizal traits and Cd accumulation in different tissues of the plant were determined at harvest. The fungal community was assessed by denaturing gradient gel electrophoresis. At 15 mg Cd kg−1 S. bovinus increased aboveground development in both genotypes. At 30 mg Cd kg−1 non-inoculated wild genotype accumulated more Cd in the shoots (1.7-fold) than the selected genotype; inoculation with R. roseolus decreased Cd concentration in the roots of the selected genotype whereas the opposite occurred in the wild genotype. Cd concentration in the root system was the parameter most influenced by the interaction between the three studied variables. The fungal community established was affected by the Cd concentration in the soil. Results show that different genotypes of P. pinaster react differently to Cd exposure depending on the mycorrhizal association. The importance of considering the combination between plant genotype and its symbiotic partners when aiming at the forestation of degraded land is highlighted.  相似文献   

8.
The study assesses the effect of two phosphate (P) sources (soluble superphosphate (SP) and rock phosphate (RP)) on the arbuscular mycorrhizal potential (AMP), the root arbuscular mycorrhizal colonization (AMC) and the growth of tall fescue and wheatgrass of a grassland soil from Argentina. Mycorrhizal potential was assessed with soil samples collected from 2 years for tall fescue and wheatgrass swards before and after field plots were fertilized with 0 and 60 kg P ha−1 as SP or RP. Mycorrhizal potential both at unfertilized and at RP fertilized plots was high (12–14 AM propagules g−1), however fertilization with SP caused a decrease in AMP (0.70–0.95 AM propagules g−1). A range of soil P between 4 and 46 mg P kg−1 and a range of root AMC between 6% and 50% were obtained after fertilization with four rates of SP and RP (0, 15, 30, and 60 kg P ha−1) in plots where tall fescue and wheatgrass were grown during 2 years. Soil P and root mass were higher in the top 10-cm depth than in the 20-cm of the soil profile, but AMC did not change with depth. Shoot dry matter (SDM) production of both grasses did not differ after fertilization with SP or RP, particularly at second year. The AMP positively correlated with the indigenous AMC, and they were not different between tall fescue or wheatgrass. Lineal-plateau relationships between soil P, relative SDM and AMC were established. Highest relative SDM was attained at 6.5 mg P kg−1 in plots fertilized with RP, and at 15.2 mg P kg−1 with SP. Variability in colonization was well accounted by the soil P (at 0–10 cm depth) fertilized with SP (r2 = 0.48, P 0.01), but any relationship was found with RP. The AMC decreased with increasing available soil P from plots with SP until 18.3 mg kg−1 (a decrease of 2.2% per mg P kg), after that AMC was stabilized at about 6.9%. Our study clearly showed that fertilization with SP or RP produced similar available soil P content and grasses SDM production. Mycorrhiza root colonization and propagules decreased after fertilization with SP, but fertilization with RP did not decrease mycorrhizal propagules nor colonization. It can be concluded that RP fertilization instead SP could allow obtaining acceptable tall fescue and wheatgrass yield enhancing mycorrhizal potential of soils and indigenous colonization of plants and thus maximizing the use of fertilizer.  相似文献   

9.
Glyphosate is a systemic non-selective herbicide, the most widely used in the world. Alongside with its use in agricultural and forestry systems, this herbicide is used in grasslands in late summer with the aim of promoting winter species with the consequent increase in stocking rate. However, its effects on non-target organisms, such as arbuscular mycorrhizal fungi (AMF), are unclear. Arbuscular mycorrhizal fungi (AMF) colonize the root of more than 80% of terrestrial plants, improving their growth and survival, and therefore playing a key role in ecosystem structure and function. The aim of this work was to investigate the possible pathways through which glyphosate application affects AMF spores viability and root colonization in grassland communities. Our hypothesis is that glyphosate application can damage AMF directly (through contact with spores and external hyphae) or indirectly through the changes it generates on host plants. The experiment had a factorial array with three factors: (1) plant species, at two levels (Paspalum dilatatum and Lotus tenuis), (2) doses of glyphosate, at three levels (0 l ha−1, 0.8 l ha−1 and 3 l ha −1), and (3) application site, at two levels: soil (direct pathway) and plant foliage (indirect pathway). Spore viability was reduced even under the lowest glyphosate rate, but only when it was applied on the soil. Total root colonization for both species was similarly decreased when glyphosate was applied to plant foliage or on soil, with no difference between 0.8 and 3 l ha−1. The number of arbuscules was 20% lower when glyphosate was applied on plant foliage, than when it was applied on the soil. Our findings illustrate that glyphosate application negatively affects AMF functionality in grasslands, due to different causes depending on the herbicide application site. While, under field conditions, the occurrence of direct and/or indirect pathways will depend on the plant cover at the time of glyphosate application, the consequences of this practice on the plant community structure will vary with the mycorrhizal dependence of the species composition regardless of the pathway involved.  相似文献   

10.
The endogeic earthworm Pontoscolex corethrurus (Müller, 1857) was the most abundant species (75%) in soil contaminated with hydrocarbons, mostly benzo(a)pyrene (BaP), in the state of Tabasco (Mexico). The earthworm P. corethrurus was tested for its capacity to remove 100 mg BaP kg−1 from an Anthrosol soil (sterilized or not) and amended with legume Mucuna pruriens (L.) DC. var. utilis (Wall. ex Wight) Baker ex Burck (3%) or the grass Brachiaria humidicola (L.) DC (3%) (recently renamed as Urochloa humidicola (Rendle) Morrone & Zuloaga) in an aerobic incubation experiment. P. corethrurus removed 26.6 mg BaP kg−1 from the sterilized soil and application of B. humidicola as feed increased this to 35.7 mg BaP kg−1 and M. pruriens to 34.2 mg BaP kg−1 after 112 days. The autochthonous microorganisms removed 9.1 mg BaP kg−1 from the unsterilized soil and application of B. humidicola increased this to 18.0 mg BaP kg−1 and M. pruriens to 11.2 mg BaP kg−1. Adding P. corethrurus to the unsterilized soil accelerated the removal of BaP and 36.1 mg kg−1 was dissipated from soil. It was found that the autochthonous microorganisms removed BaP from soil, but addition of P. corethrurus increased the dissipation 4-fold. The endogeic earthworm P. corethrurus can thus be used to remediate hydrocarbon-contaminated soils in tropical regions.  相似文献   

11.
The potential terrestrial toxicity of three pesticides, azoxystrobin, chlorothalonil, and ethoprophos was evaluated using reproduction ecotoxicological tests with different non-target species: the collembolan Folsomia candida, the earthworm Eisenia andrei, and the enchytraeid Enchytraeus crypticus. All reproduction tests were performed with natural soil from a Mediterranean agricultural area (with no pesticide residues) in order to improve the relevance of laboratory data to field conditions. Controls were performed with natural and standard artificial soil (OECD 10% OM). The fungicide azoxystrobin showed the highest toxicity to earthworms (EC50 = 42.0 mg a.i. kg−1 dw soil). Collembolans were the most sensitive taxa in terms of sublethal effects of chlorothalonil with an EC50 of 31.1 mg a.i. kg−1 dw soil followed by the earthworms with an EC50 of 40.9 mg a.i. kg−1 dw soil. The insecticide ethoprophos was the most toxic to collembolans affecting their reproduction with an EC50 of 0.027 mg a.i. kg−1 dw soil. Enchytraeids were generally the least sensitive of the three species tested for long-term effects. Earthworms were not always the most sensitive species, emphasizing the need to increase the number of mandatory assays with key non-target organisms in the environmental risk assessment of pesticides.  相似文献   

12.
A growing body of evidence indicates that atmospheric nitrogen (N) deposition can alter the composition and function of arbuscular mycorrhizal fungi (AMF) associated with plant roots. We studied the community of AMF actively transcribing ribosomal genes in the forest floor of northern hardwood forests dominated by sugar maple (Acer saccharum Marsh.) that have been exposed to experimental N deposition since 1994 (30 kg NO3-N ha−1 year−1). Our objective was to evaluate whether previously observed declines in AM root infection and mycelial production resulted in a compositional shift in the AM fungi actively providing resources to plant symbionts under chronic N deposition. To accomplish this task, we cloned and sequenced the LSU of reverse-transcribed AM fungal rRNA extracted from the forest floor under ambient and experimental N deposition treatments. We found that experimental N deposition did not alter the active community of AMF or AMF diversity, but we did observe a significant decrease in rare taxa under chronic N deposition. Our results indicate that chronic N deposition, at levels expected by the end of this century, can exert a moderate influence on the composition and abundance of AMF associated with plant roots in a wide-spread forest ecosystem in the northeastern North America.  相似文献   

13.
《Applied soil ecology》2005,28(1):23-36
This study assessed the effect of mycorrhizal colonization by Glomus intraradices (Gi) and G. versiforme (Gv) on the bacterial community composition in the rhizosphere of canola, clover and two tomato genotypes (wild type (76R) and its mutant with reduced mycorrhizal colonization (rmc)). Additionally, the effect of light intensity on the rhizosphere bacterial community composition of the tomato genotypes was studied. The bacterial community composition was assessed by denaturing gradient gel electrophoresis (DGGE). In canola, which is considered to be a non-mycorrhizal species, inoculation with Gi increased the shoot dw compared to Gv and the non-mycorrhizal control plants and also induced changes in the bacterial community composition in the rhizosphere. These fungal effects were observed although less than 8% of the root length of canola was colonized. On the other hand, about 50% of the root length of clover was colonized and inoculation with Gv resulted in a higher shoot dw compared to Gi or the control plants but the rhizosphere bacterial community composition was not affected by inoculation. Plant growth, mycorrhizal colonization and bacterial community composition of the two tomato genotypes were affected by a complex interaction between tomato genotype, AM fungal species and light intensity. Low light intensity (photosynthetic photon flux 200–250 μmol m−2 s−1) increased the shoot–root ratio in both genotypes and reduced colonization in the wild type. The differences in bacterial community composition between the two genotypes were more pronounced at low than at high light intensity (550–650 μmol m−2 s−1).  相似文献   

14.
The purpose of this study was to investigate the effects of high cadmium and nickel soil concentrations on selected physiological parameters of Arundo donax L. A 2-year pot experiment was held in the field and the pots were irrigated with aqueous solutions of Cd and Ni in concentrations of 5, 50 and 100 ppm, against the control (tap water). At the end of the cultivation periods the pots soil was divided into three equal zones and total and NH4OAc extractable Cd and Ni concentrations were determined. The top zone exhibited the highest metal content. Cadmium and nickel total concentrations at the end of the experiment were up to 973.8 mg kg−1 and 2543.3 mg kg−1 respectively, while NH4OAc extractable Cd was up to 291.7 mg kg−1 and Ni up to 510.3 mg kg−1. Stomatal conductance ranged between 0.3 and 0.8 mol CO2 m−2 s−1, intercellular CO2 concentration ranged between 212.9 and 243.0 ppm CO2, stomatal resistance between 0.6 and 1.3 s cm−1, chlorophyll content (SPAD values) between 46.3 and 57.0 and chlorophyll fluorescence (Fv/Fm) ranged between 0.8 and 0.9. All studied physiological parameters did not show statistically significant differences among control and heavy metal treated plants for both years; therefore, high soil cadmium and nickel concentration did not inhibit stomatal opening and did not affect the function of the photosynthetic machine of A. donax plants.  相似文献   

15.
《Applied soil ecology》2006,32(3):228-238
Pseudomonas bacteria isolated during 52 days on Gould's S1 agar from soil spiked with 0, 3.5 and 15 mg Hg(II) kg soil−1 were characterised to reveal whether mercury affected them differently. Isolates from the treatments with 0 and 15 mg Hg kg−1 were characterised using FT-IR characterisation and subsequent 16S rDNA partial sequencing of representative isolates. To verify the selectivity of Gould's S1 agar and the FT-IR characterisation, all 450 isolates were subjected to the following tests: Gram-determination, catalase and oxidase activity, pigment production on PDA and growth at different temperatures. Furthermore, the isolates were tested for their ability to grow on agar amended with 10 mg Hg kg−1 as an indication of mercury resistance. We found that up to 80% of the isolates in soil amended with 15 mg Hg kg−1 were mercury-resistant, whereas only up to 20% were resistant in the treatments with 0 and 3.5 mg Hg kg−1. We found two groups of Pseudomonas, which probably represent non-described species since they did not group closely with any known species of Pseudomonas in the dendrogram. Hg-enhanced isolates were closely related to P. frederiksbergensis. Furthermore, Hg resistance was almost exclusively restricted to P. frederiksbergensis and P. migulae groups. We conclude that Hg caused a shift in the dominating species of culturable Pseudomonas.  相似文献   

16.
《Applied soil ecology》2007,35(2-3):93-102
A semi-arid soil treated with different concentrations of formulated atrazine in a laboratory experiment was studied over 45 days, by different biological and molecular parameters (bacterial enumeration (cfu), community level physiological profiles (CLPPs) measured by Biolog® and denaturing gradient gel electrophoresis (DGGE)), to study the bacterial community diversity.Formulated atrazine was almost totally degraded at different concentrations after this incubation time. The number of colony forming units (cfu) for soils with 100 and 1000 mg kg−1 atrazine was significantly (p  0.05) higher than for the control, 1 and 10 mg kg−1 treatments. DGGE banding patterns showed that regardless of time elapsed, concentrations of 10, 100 and 1000 mg kg−1 atrazine in soil, affected the bacterial community compared to control and 1 mg kg−1.The Shannon diversity index (H′) based on CLPP data showed a significant (p  0.05) decrease at atrazine concentrations of 100 and 1000 mg kg−1. The Shannon diversity indices for different guilds of source carbon and the parameters K and r (based on the kinetics of colour formation rather than on the degree of colour development) were related to guilds of carbon substrates and atrazine concentration at a sampling time. The parameter K was very sensitive to atrazine effects on microbial communities.These biological and molecular parameters can be used to monitor changes in soils treated with atrazine at different concentrations, even when the pesticide is degraded.  相似文献   

17.
《Applied soil ecology》2003,22(2):139-148
A glasshouse pot experiment investigated the uptake by arbuscular mycorrhizal (AM) fungi associated with red clover of three organic sources of P added to a sterilized calcareous soil of low P availability. Each pot was separated into a central compartment for plant growth and two outer compartments for external mycelium using 30-μm nylon mesh to restrict the roots but allow hyphal penetration. Plants in the central compartments were inoculated with the AM fungus Glomus versiforme and uninoculated controls were included. Plants were harvested on three occasions: 5, 7 and 10 weeks after sowing. Application of each of the three organic P sources (lecithin, RNA and sodium phytate) or inorganic P (KH2PO4) at 50 mg P kg−1 to the outer compartments of mycorrhizal and uninoculated pots increased the yield, P concentration and total P uptake of red clover compared with pots to which no P was applied, with no differences among P sources in non-mycorrhizal plants but differences observed in mycorrhizal plants both 7 and 10 weeks after sowing suggesting differences in availability of the four P sources to AM mycelium. The contribution of external mycelium to plant uptake of applied P increased with time. The three organic P sources made smaller contributions to plant P nutrition than KH2PO4 at the first and second harvests. At the third harvest, the contribution from KH2PO4 was 23%, while those from lecithin, RNA and sodium phytate were 23, 17 and 31%, respectively. This suggests that with the mediation of AM fungi, soil organic P sources can make a contribution to host plant P nutrition comparable to that of soluble orthophosphate.  相似文献   

18.
《Pedobiologia》2014,57(4-6):223-233
Mycorrhizal fungi and earthworms can individually or interactively influence plant growth and heavy metal uptake. The influence of earthworms and arbuscular mycorrhizal (AM) fungi either alone or in combination on maize (Zea mays L.) growth and cadmium (Cd) uptake was investigated in a calcareous soil artificially spiked with Cd. Soils were contaminated with Cd (10 and 20 mg Cd kg−1), inoculated or un-inoculated with the epigeic earthworm Lumbricus rubellus and two AM fungal species (Rhizophagus irregularis and Funneliformis mosseae) for two months of growth under greenhouse conditions. Generally, earthworms alone increased both shoot P uptake and biomass but decreased shoot Cd concentration and root Cd uptake. AM fungi individually often increased total maize P uptake, declined shoot Cd concentration, and consequently produced higher total biomass. However, R. irregularis enhanced shoot Cd uptake at low Cd level and root Cd uptake at high Cd level. In plants inoculated with F. mosseae species, earthworms increased shoot biomass and Cd uptake, decreased root biomass and Cd uptake at all Cd levels, and increased shoot Cd concentration at low Cd level. In plants colonized by R. irregularis species, however, earthworm addition decreased maize biomass only at high Cd level and root Cd concentration and total maize Cd uptake at both Cd levels. Earthworm activity decreased Cd transfer from the soil to maize roots at low Cd level, but this was counterbalanced in the presence of F. mosseae. Mycorrhizal symbiosis significantly reduced the transfer of Cd from roots to shoots, independence of earthworm effect. Overall, it is concluded that L. rubellus and AM fungi, in particular F. mosseae isolate, improved maize tolerance to Cd toxicity both individually and interactively by increasing plant growth and P nutrition, and restricting Cd transfer to the aboveground biomass. Consequently, the single and interactive effects of the two soil organisms might potentially be important not only in protecting maize plants against Cd toxicity, but also in Cd phytostabilization in soils polluted by this highly toxic metal.  相似文献   

19.
The indiscriminate and excessive use of pesticides poses serious risks to humans and the environment, including soil biota. Ecotoxicological tests are useful to indicate the extent to which these chemicals are harmful and how and where their effects occur. Some of these tests were standardized by ISO (International Organization for Standartization) using the earthworm species Eisenia fetida and Eisenia andrei, both native to temperate climates. However, these species may be of lower relevance for soil ecotoxicological studies since they live in the litter and feed on fresh organic matter. The species Pontoscolex corethrurus, native to tropical regions, may be an alternative for more relevant ecotoxicological tests as it is an endogeic geophagous species. However, little is known of its sensitivity to pesticides. Therefore, avoidance and mortality tests were performed using E. andrei and P. corethrurus and three pesticides commonly used in Brazilian agriculture: carbendazim, carbofuran and glyphosate. The tests were conducted in tropical artificial soil (TAS). For carbendazim, the median avoidance concentration (AC50) was 76.1 and 65.8 mg a.i. kg−1 and the median lethal concentration (LC50) 19.7 and 15.3 mg a.i. kg−1 for E. andrei and P. corethrurus, respectively. For carbofuran, the AC50 was 9.7 and 7.3 mg a.i. kg−1 and LC50 13.5 and 9.3 mg a.i. kg−1 for E. andrei and P. corethrurus, respectively. Concentrations applied in the field of these two pesticides have toxic effects on both species. Glyphosate showed no toxic effects for either species even at the highest concentration tested (47 mg a.i. kg−1), although they displayed avoidance behavior at this concentration. The sensitivity of P. corethrurus appears to be similar to the standard species for the pesticides evaluated reinforcing the notion that E. andrei is a good test species. Nevertheless, further studies should be undertaken using other contaminants to confirm the similar sensitivity of both species and the relevance of E. andrei in ecotoxicological tests.  相似文献   

20.
《Applied soil ecology》2003,22(3):241-253
Root distribution and mycorrhizal associations were compared in primary, secondary and limestone forests in Xishuangbanna, southwest China. Soil cores to a depth of 20 cm were collected at random points from four 50 m2 quadrats in each forest type. Arbuscular mycorrhizal (AM) associations were the only form of mycorrhiza found in all forest types. The primary forest was characterized by high root mass, root lengths and AM colonization levels higher than other forest types. In contrast, secondary forests had greater AM fungal spore numbers and specific root length, indicating that plant species in secondary forests achieved a greater degree of soil exploration with less biomass allocation to roots. Root density, AM colonization and AM fungal spore numbers decreased with soil depth in all forest types. Although the correlation between AM colonization levels and spore numbers was insignificant when all forest types were considered together, significant relationships emerged when each forest type was considered individually. AM colonization and spore numbers were correlated with several root variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号