首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizomania is one of the most devastating biotic stresses affecting sugar beet (Beta vulgaris L.). It is caused by Beet necrotic yellow vein virus (BNYVV) vectored by the plasmodiophorid Polymyxa betae K. The only means available to control the disease is the use of genetically resistant varieties. “Rizor” or “Holly” (Rz1) and WB42 (Rz2) have been the most widely used resistance sources in the commercial varieties. Recently, naturally occurring resistance-breaking (RB) rhizomania strains have been identified causing major concerns. The aim of this study was to identify SNP mutations that show associations with resistance to rhizomania in sugar beet plants grown under resistance-breaking (RB)-BNYVV soils. Rhizomania virus content was evaluated by indirect triple-antibody sandwich-ELISA within two F 2 segregating populations respectively grown on an AYPR and IV-BNYVV strain infected soils. Bulked segregant analysis (BSA) was performed. The resistant and susceptible plants were genotyped with a 384-SNPs panel. Of the 384 SNPs, SNP249 was found to associate with the resistance both to the AYPR strain (R 2 = 0.37; P = 0.0004) and to the IV-BNYVV (R 2 = 0.09; P = 0.0074). Our results suggested that the SNP249 could be readily applicable for marker-assisted breeding of resistance to AYPR strain of rhizomania.  相似文献   

2.
To better understand the underlying mechanisms of agronomic traits related to drought resistance and discover candidate genes or chromosome segments for drought-tolerant rice breeding, a fundamental introgression population, BC3, derived from the backcross of local upland rice cv. Haogelao (donor parent) and super yield lowland rice cv. Shennong265 (recurrent parent) had been constructed before 2006. Previous quantitative trait locus (QTL) mapping results using 180 and 94 BC3F6,7 rice introgression lines (ILs) with 187 and 130 simple sequence repeat (SSR) markers for agronomy and physiology traits under drought in the field have been reported in 2009 and 2012, respectively. In this report, we conducted further QTL mapping for grain yield component traits under water-stressed (WS) and well-watered (WW) field conditions during 3 years (2012, 2013 and 2014). We used 62 SSR markers, 41 of which were newly screened, and 492 BC4F2,4 core lines derived from the fourth backcross between D123, an elite drought-tolerant IL (BC3F7), and Shennong265. Under WS conditions, a total of 19 QTLs were detected, all of which were associated with the new SSRs. Each QTL was only identified in 1 year and one site except for qPL-12-1 and qPL-5, which additively increased panicle length under drought stress. qPL-12-1 was detected in 2013 between new marker RM1337 and old marker RM3455 (34.39 cM) and was a major QTL with high reliability and 15.36% phenotypic variance. qPL-5 was a minor QTL detected in 2013 and 2014 between new marker RM5693 and old marker RM3476. Two QTLs for plant height (qPHL-3-1 and qPHP-12) were detected under both WS and WW conditions in 1 year and one site. qPHL-3-1, a major QTL from Shennong265 for decreasing plant height of leaf located on chromosome 3 between two new markers, explained 22.57% of phenotypic variation with high reliability under WS conditions. On the contrary, qPHP-12 was a minor QTL for increasing plant height of panicle from Haogelao on chromosome 12. Except for these two QTLs, all other 17 QTLs mapped under WS conditions were not mapped under WW conditions; thus, they were all related to drought tolerance. Thirteen QTLs mapped from Haogelao under WS conditions showed improved drought tolerance. However, a major QTL for delayed heading date from Shennong265, qDHD-12, enhanced drought tolerance, was located on chromosome 12 between new marker RM1337 and old marker RM3455 (11.11 cM), explained 21.84% of phenotypic variance and showed a negative additive effect (shortening delay days under WS compared with WW). Importantly, chromosome 12 was enriched with seven QTLs, five of which, including major qDHD-12, congregated near new marker RM1337. In addition, four of the seven QTLs improved drought resistance and were located between RM1337 and RM3455, including three minor QTLs from Haogelao for thousand kernel weight, tiller number and panicle length, respectively, and the major QTL qDHD-12 from Shennong265. These results strongly suggested that the newly screened RM1337 marker may be used for marker-assisted selection (MAS) in drought-tolerant rice breeding and that there is a pleiotropic gene or cluster of genes linked to drought tolerance. Another major QTL (qTKW-1-2) for increasing thousand kernel weight from Haogelao was also identified under WW conditions. These results are helpful for MAS in rice breeding and drought-resistant gene cloning.  相似文献   

3.
Two recombinant inbred line F10 rice populations (IAPAR-9/Akihikari and IAPAR-9/Liaoyan241) were used to identify quantitative trait loci (QTLs) for ten drought tolerance traits at the budding and early seedling stage under polyethylene glycol-induced drought stress, and two traits of leaf rolling index (LRI) and leaf withering degree (LWD) under field drought stress. The results showed that the drought-tolerance capacity of IAPAR-9 was stronger than that of Akihikari and Liaoyan241. Thirty-four QTLs for 12 drought tolerance traits were detected, and among them, in the IAPAR-9/Akihikari population, qLRI9-1 and qLRI10-1 for LRI were repeatedly detected in RM3600-RM553 on chromosome 9 and in RM6100-RM3773 on chromosome 10, respectively, at two times points of July 31 and August 13 in 2014. The two QTLs are stable against the environmental impact, and qLRI9-1 and qLRI10-1 explained 6.77–13.66% and 5.01–8.32% of the phenotypic variance, respectively, at the two times points. qLWD9-2 for LWD in the IAPAR-9/Liaoyan241 population contributed 8.73% of variation was detected in the same marker interval with the qLRI9-1, and qLRI1-1 for LRI and qLWD1-1 for LWD were located in the same marker interval RM11054-RM5646 on chromosome 1, which contributed 18.82 and 5.78% of phenotype variation respectively. qGV3 for germination vigor and qRGV3 for relative germination vigor at the budding stage were detected in the same marker interval RM426-RM570 on chromosome 3, which explained 14.98 and 16.30% of the observed phenotypic variation respectively, representing major QTLs. The above-mentioned stable or major QTLs regions could be useful for molecular marker assisted selection breeding, fine mapping, and cloning.  相似文献   

4.
Broadening the genetic base of the C genome of Brassica napus canola by use of B. oleracea is important. In this study, the prospect of developing B. napus canola lines from B. napus?×?B. oleracea var. alboglabra, botrytis, italica and capitata crosses and the effect of backcrossing the F1’s to B. napus were investigated. The efficiency of the production of the F1’s varied depending on the B. oleracea variant used in the cross. Fertility of the F1 plants was low—produced, on average, about 0.7 F2 seeds per self-pollination and similar number of BC1 seeds on backcrossing to B. napus. The F3 population showed greater fertility than the BC1F2; however, this difference diminished with the advancement of generation. The advanced generation populations, whether derived from F2 or BC1, showed similar fertility and produced similar size silique with similar number of seeds per silique. Progeny of all F1’s and BC1’s stabilized into B. napus, although B. oleracea plant was expected, especially in the progeny of F1 (ACC) owing to elimination of the A chromosomes during meiosis. Segregation distortion for erucic acid alleles occurred in both F2 and BC1 resulting significantly fewer zero-erucic plants than expected; however, plants with?≤?15% erucic acid frequently yielded zero-erucic progeny. No consistent correlation between parent and progeny generation was found for seed glucosinolate content; however, selection for this trait was effective and B. napus canola lines were obtained from all crosses. Silique length showed positive correlation with seed set; the advanced generation populations, whether derived from F2 or BC1, were similar for these traits. SSR marker analysis showed that genetically diverse canola lines can be developed by using different variants of B. oleracea in B. napus?×?B. oleracea interspecific crosses.  相似文献   

5.
Kernel size and weight are important agronomic traits, as well as crucial traits that influence grain yield in maize. In the present study, 150 F7 recombinant inbred lines derived from a cross 178×K12 were evaluated for kernel length (KL), kernel width (KW), kernel thickness (KT), and 100-kernel weight (HKW) across seven environments. Natural variations in KL, KW, KT, and HKW were observed in the population. A set of quantitative trait loci (QTLs) for the kernel-related traits were identified by inclusive composite interval mapping method. For the four kernel traits from seven environments and the best linear unbiased prediction data, a total of 52 QTLs were detected, which distributed on all chromosomes except chromosome 6. The LOD values ranged from 2.52 to 8.91, the additive effect from ??2.22 to 1.37, and the range of individually explaining phenotypic variation was from 5.8 to 23.49%. Amongst these QTLs, most were detected only in one or two environments. Three stable QTLs, qKL4-1 at bin 4.07/4.08, qKW4-2 at bin 4.06 and qKT2-1 at bin 2.02/2.03, were identified across at least three environments. Besides, several overlapping QTLs associated with multiple traits were identified. For example, qKW3-1 for KW and qHKW3-1 for HKW were located in the same marker interval at Bin 3.01/3.02. These stable QTLs and overlapping QTLs found in this study will contribute to the understanding of genetic components of grain yield and provide the foundation for molecular marker-assisted breeding in maize.  相似文献   

6.
Three genes for resistance to Erysiphe pisi, named er1, er2 and Er3 have been described in pea so far. er1 gene is located in pea linkage group VI, while er2 gene has been mapped in LGIII. SCAR and RAPD markers tightly linked to Er3 gene have been identified, but the position of these markers in the pea genetic map was unknown. The objective of this study was to localize Er3 gene in the pea genetic map. Towards this aim, the susceptible pea cv. Messire (er3er3) and a resistant near isogenic line of Messire (cv. Eritreo, Er3Er3) were surveyed with SSRs with known position in the pea map. Three SSRs were polymorphic between “Messire” and “Eritreo” and further surveyed in two contrasting bulks formed by homozygous Er3Er3/er3er3 individuals obtained from a F2 population derived from the cross C2 (Er3Er3)?×?Messire (er3er3). A single marker, AA349, was polymorphic between the bulks. Subsequently, other ten markers located in the surrounding of AA349 were selected and analysed in Er3Er3 and er3er3 plants. As a results, another SSR, AD61, was found to be polymorphic between Er3Er3 and er3er3 plants. Further linkage analysis confirmed that SSRs AA349 and AD61 were linked to Er3 and to the RAPD and SCAR markers previously reported to be linked to this gene. Er3 gene was located in pea LGIV at 0.39 cM downstream of marker AD61. The location of Er3 gene in the pea map is a first step toward the identification of this gene.  相似文献   

7.
Flag leaf angle (FLA) in rice (Oryza sativa L.) is one of the important traits affecting F1 seed production by mechanization. To elucidate the genetic mechanism of FLA and mine favorable marker alleles for F1 seed production in rice, we performed a genome-wide association study using phenotypic data over 2 years and genotypic data of 262 pairs of simple sequence repeat (SSR) markers collected from 441 rice accessions. We detected seven SSR marker loci associated with FLA and four loci were novel. The four newly found loci were RM6266 on chromosome 3, RM348 on chromosome 4, RM258 on chromosome 10 and RM7303 on chromosome 11. We found a total of 27 favorable alleles, of which four, i.e., RM348-130 bp, RM7303-90 bp, RM258-180 bp, and RM4835-230 bp, had phenotypic effects larger than 10°. Nine combinations, which increased FLA by 45.7°–94.7° through pyramiding the favorable alleles contained in seven typical accessions, were predicted.  相似文献   

8.
Production of transgenic pigeonpea is becoming increasingly important, but the methods currently employed in production and subsequent screening still requires improvement. Here, we describe Agrobacterium-mediated genetic transformation of pigeonpea with reporter uidA (gus) gene and selectable marker, neomycin phospho-transferase (nptII) gene. Histochemical assay demonstrate localization of gus activity in cells and transformed plants. Overall, a transformation frequency of 0.33% was achieved using the protocol. Grafting of in vitro-regenerated healthy shoots indicates higher survival percent (72.6%), when stock and scion are of the same variety. Seeds harvested from primary transgenic plants can be screened based on lateral root inhibition strategy. Approximately 87% of the screened T1 plants were found to be PCR positive. In conclusion, in vitro grafting of transgenic pigeonpea shoots leads to better plant establishment and screening based on lateral root inhibition leads to quick identification of positive segregants.  相似文献   

9.
Both low-temperature germinability (LTG) and cold tolerance at the seedling stage (CTS) are important traits for rice. In this study, a rice population of recombinant inbred lines (RILs), derived from the backcross population of a cross between Dongnong422 and Kongyu131, was developed to detect quantitative trait loci (QTL) affecting LTG and CTS by using seed of different storage times. Correlation analysis indicated that there was no significant relationship between LTG and CTS, suggesting that cold tolerance might be genetic differences for LTG and CTS. In total, Twelve and twenty-three major QTLs were detected for LTG and CTS, respectively, which could explain greater than 10% of the phenotypical variation. Eight (qCG12-1, qGI12-1, qGV9-1, qMLIT12-1, qPV6-1, qMDG12-1, qLDWcold10-1, qLFWcold10-1) significant QTLs were mapped for different storage time, it concluded that such QTLs were not affected by environment (storage time) and were closely related QTLs to cold tolerance. One or more QTLs were identified for each trait with some of these QTLs co-locating, qMLIT7-1, qCG7-1, and qGI7-1 for LTG, qLFWcold10-1, and qLDWcold10-1 for CTS with contributions over 15% were mapped common marker interval, respectively, co-location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. Two lines, RIL128 and RIL73, might be valuable to improve the LTG and CTS through a combination of crosses. The identified QTLs might be applicable to improve the rice cold tolerance by the marker-assisted selection approach.  相似文献   

10.
Drought regularly affects rainfed lowland and upland rice ecosystems in Malaysia. Three drought yield QTLs, viz qDTY 2.2 , qDTY 3.1 and qDTY 12.1 successfully pyramided into MRQ74 to increase its yield under reproductive stage drought stress (RS). Forty-eight genotypes comprising 39 pyramided lines (PLs) with different qDTYs combinations, four parents including MRQ74 (recipient) and five checks were evaluated for morpho-physiological traits under RS and non-stress (NS). This study aims to determine which traits influenced by individual qDTY and qDTY combinations and to gain better understanding of QTL interactions in enhancing grain yield (GY) under RS. Results showed plant height, number of panicles, root length, root weight, relative water content and 100-grain weight increased while chlorophyll content and GY decreased under RS compared to NS. No significant difference was observed in days to flowering, leaf rolling and grain length between selected PLs and MRQ74 under RS. Six PLs with yield advantage (YA) of 208.17–1751.63 kg ha?1 compared to MRQ74 in RS but yielded similar to MRQ74 under NS were further selected. Under RS, qDTY class analysis showed qDTY 12.1 individually and combination qDTY 12.1  + ?qDTY 2.2 produced the highest yield of 1521.77 and 1092.30 kg ha?1 respectively. qDTY 12.1 as single or combination with other qDTY is the best qDTY in stabilizing GY under RS. PL-77 with qDTY 12.1 is the best PL with YA of more than 1100 kg ha?1 compared to MRQ74 in both RS and NS conditions can be recommended for cultivation in normal and drought-prone areas.  相似文献   

11.
The individual segregations of 14 seed protein loci named, SpA to SpM and Pha (phaseolin), were analyzed in a RIL population developed from the cross Xana × Cornell 49242. These seed protein loci were included in a genetic map previously developed in the same population. Protein loci, SpA, SpB, SpE, SpI, SpJ, and Pha, are organized in two different clusters, both located in linkage group (LG) 7; SpF, SpG, SpK, SpL, and SpM, form a single cluster in LG 4; SpC, is located in LG 3; and SpD, in LG 1. A close linkage was identified between the SpD seed protein locus, and the fin gene, controlling determinate growth habit. The usefulness of the SpD locus as a marker for the indirect selection of determinate growth habit and photoperiod insensitivity was checked in a F2 population derived from the cross G12587 (an indeterminate and photoperiod sensitive nuña bean) × Sanilac (determinate and photoperiod insensitive) and in a set of Mesoamerican and Andean genotypes. Results indicate that SpD protein locus was useful to detect individuals having determinate growth habit and photoperiod insensitivity in the cross G12587 × Salinac although some recombinants were found. However, the linkage between the SpD locus and the genes controlling growth habit and photoperiod sensitivity should be checked before using the SpD locus for the indirect selection of these traits in different backgrounds.  相似文献   

12.
In this article the results are presented of quantitative investigations on progressive necrosis. Three to four generations of several wheat crosses were investigated. Progressive necrosis is brought about by the interaction of 2 (or 3) complementary factors which are indicated as A and B (and C). The necrotic F1's studied varied from lethal to fairly normal dependent on which parent varieties were used. This wide variation appeared to be discontinuous which allowed both the AAbb- and the aaBB-varieties to be divided into 3 distinct groups on the basis of the degree of necrosis they exhibit in the F1's with given complementary varieties. Within each group smaller but heritable differences occurred. The major (inter-group) differences are attributed to triplicate genes (A 1, A 2, A 3 and B 1, B 2, B 3) which might be localized on homoeologous chromosomes. It is also possible to explain the major differences with the aid of multiple allelism of the necrosis genes. The minor (intra-group) differences may be due to different genetic backgrounds and (or) to multiple allelism of the necrosis genes. The following observations demonstrated the effect of gene dosage on the degree of necrosis:
  1. 1.
    The mean degree of necrosis of the F2's was always significantly stronger than that of the F1's, possibly in consequence of the concentration of dominant necrosis alleles in the necrotic F2-plants. Furthermore it became apparent that the F1-plants, both phenotypically and genotypically, agreed with those necrotic F2-plants that showed the slightest necrosis symptoms.  相似文献   

13.
D. R. Sampson 《Euphytica》1967,16(1):29-32
The fourth linkage group of B. oleracea L. has two genes: Hr-1, (hairy first leaf), a dominant seedling marker from “Dwarf Green” curly kale, and pg-2, (pale green seedling), a recessive chlorophyll mutant from green sprouting broccoli. Recombination between Hr-1 and pg-2 ranged from 7.4 to 20.1% in the six progenies studied, with a mean of 13.15±0.68%. Hr-1 segregated independently of the three other linkage groups (two genes of each were tested) and of two unlocated genes for male sterility.  相似文献   

14.
Low erucic acid (LEA) rapeseed, which has accumulated mutant fatty acid elongase genes at the BnFAE1.1 and BnFAE1.2 loci of the A- and C-genome, respectively, is an important oilseed crop. Short growing turnip rape (B. rapa) is also important as a catch crop in the continuous cropping of rice in Asia but there is no LEA B. rapa cultivar for cultivation in South Asia. In order to develop LEA turnip rape cultivars, high erucic acid turnip rape cultivars were interspecifically crossed as recurrent parents to a canola quality rapeseed. In the meantime, we monitored incorporation of the mutant bnfae1.1 (e1) gene into A-genome of turnip rape, using a dCAPS primer pair, which can amplify PCR fragment only for the mutant e1 gene from A-genome. The early backcross progenies showed poor seed set, but which was improved in advanced progenies. Finally, homozygous e1e1 genotypes were established in the selfed progenies of BC2–BC3, and their LEA content was confirmed by gas-chromatography analysis. Our results and promising lines will contribute to LEA-trait selection in turnip rape and rapeseed breeding.  相似文献   

15.
Fusarium wilt, caused by Fusarium oxysporum f. sp. melonis is a common vascular wilt fungal disease in melon across the world. The resistance gene to race 1 of this causal agent, Fom-2, has been previously cloned and its sequence is available. The objective of this research was the introgression of Fom-2 from one resistant (Isabelle) genotype into two susceptible cultivars (Garmak and Tile-torogh) via marker assisted backcrossing. First, the leucine-rich repeats (LRR) domain of Fom-2 from resistant and susceptible genotypes was sequenced to develop functional markers. A length of 1274 bp of the 3′ end of this gene was isolated, cloned and sequenced. The difference between resistant and susceptible genotypes in this region was 28 nucleotide substitutions. Two allele specific primer pairs, Fom2-R409 and Fom2-S253, were designed based on nucleotide substitutions to amplify resistant and susceptible alleles, respectively. For introgression of the gene, donor (Isabelle) and recurrent (Garmak and Tile-torogh) parents were crossed. Resistant plants in BC1F1 and BC2F1 generations were first detected using artificial pathogen inoculation and later the plants were genotyped by functional markers to validate their resistance. The resistant plants were also selected phenotypically in each generation for background genome recovery, which conduced to high similarity of BC3 generation with the recurrent parents. It was proved the developed markers are more precise and efficient than inoculation trial and could be used as confident tools for screening of resistant melon genotypes to Fusarium wilt.  相似文献   

16.
Fruit spine size is one of the importantly external quality traits effected the economic value of cucumber fruit. Morphological–cytological observation of the fruit spine size phenotype indicated that large spine formation arises from an increasing of spiny pedestal cell number caused by cell division, and best periods to accurately score fruit spine size trait was 4th day before flowering to 7th day after flowering according the continuous observation. Genetic analysis showed that a single dominant gene determined the fruit spine size trait in cucumber. BC1 population (189 individuals) of two inbred lines (large spine PI197088 and small spine SA0422) was used for primary mapping of the SS/ss locus with 7 markers covering an interval of 37.1 cM. An F2 segregating population of 1032 individuals constructed from the same two parents (PI197088 and SA0422) was used to fine mapping of the SS/ss locus. Six new markers linked to the gene were successfully screened for construction of a fine linkage map, in which the SS/ss locus was located in the region flanked by marker SE1 (3 recombinants) and SSR43 (2 recombinants) with a 189 kb physical distance. Markers from this study will be valuable for candidate gene cloning and marker-assisted selection for cucumber breeding.  相似文献   

17.
The ongoing rise in temperatures caused by global climate change is a critical climatic risk factor for rice production, and enhancing rice heat tolerance is an area of particular research interest. A recombinant inbred line (RIL) mapping population was developed from heat sensitive, rice cultivar IAPAR-9 crossed with heat tolerant, Liaoyan241. RIL and parental lines were exposed to high temperature at the heating and flowering stage in experiments in 2014 and 2015. As indicators of heat tolerance, the seed setting rate under natural (NS) and heat stress (HTS) conditions were measured, and the reduction rate of seed set (RRS) was calculated. Quantitative trait loci (QTL) analysis revealed eleven heat tolerance QTLs located on chromosomes 1, 3, 4, 5, and 6. Single QTL contribution rates were 4.75–13.81% and effect values were ? 5.98 to 5.00. Four major QTLs (qNS1, qNS4, qNS6, and qRRS1) were stable detected in different environments in both years. Thirteen QTLs with epistatic interactions and nine QTLs with environmental interactions were also detected. Major QTLs were all involved in epistatic and environmental interactions. Three QTLs from the SSR marker interval RM471 to RM177 region of chromosome 4 (qNS4, qHTS4, and qRRS4) were all involved in epistatic and environmental interactions and contributed to phenotypic variation, indicating that this region constituted a major QTL hotspot. The major QTL for heat tolerance identified in this study will aid in breeding tolerant cultivars and facilitating investigation of the molecular underpinnings of heat tolerance in rice.  相似文献   

18.
Tiller number per plant (TN) and plant height (PH) are important agronomic traits related to grain yield (GY) in rice (Oryza sativa L.). A total of 30 additive quantitative trait loci (A-QTL) and 9 significant additive × environment interaction QTLs (AE-QTL) were detected, while the phenotypic and QTL correlations confirmed the intrinsic relationship of the three traits. These QTLs were integrated with 986 QTLs from previous studies by metaanalysis. Consensus maps contained 7156 markers for a total map length of 1112.71 cM, onto which 863 QTLs were projected; 78 meta-QTLs (MQTLs) covering 11 of the 30 QTLs were detected from the cross between Dongnong422 and Kongyu131 in this study. A total of 705 predicted genes were distributed over the 21 MQTL intervals with physical length <0.3 Mb; 13 of the 21 MQTLs, and 34 candidate genes related to grain yield and plant development, were screened. Five major QTLs, viz. qGY6-2, qPH7-2, qPH6-3, qTN6-1, and qTN7-1, were not detected in the MQTL intervals and could be used as newly discovered QTLs. Candidate genes within these QTL intervals will play a meaningful role in molecular marker-assisted selection and map-based cloning of rice TN, PH, and GY.  相似文献   

19.
The LKF locus, which regulates grain size in the rice cultivar ‘Fusayoshi’ showing large grain, has been mapped to the proximal part of the long arm of chromosome 3. An incomplete dominant allele, Lkf, caused large grain size of Fusayoshi. The structure and function of this locus, however, have not yet been determined. In a similar position to LKF on chromosome 3, two loci, Os03g0407400 (GS3) and LOC_Os03g44500, have been already reported as loci also regulating rice grain size. The objective of the present study was to determine the nucleotide sequences of both Os03g0407400 and LOC_Os03g44500 for different alleles at the LKF locus. Results showed that only one known single nucleotide polymorphism (SNP) in exon 10 of LOC_Os03g44500 was detected between a large-grain allele (Lkf) and a small-grain allele at the LKF locus, whereas no polymorphisms in Os03g0407400. This SNP, visualized using a dCAPS marker, clearly demonstrated nearly complete co-segregation with grain length in an F2 population segregating the Lkf at LKF. Other large-grain mutant lines with large-grain alleles at the LKF locus, which originated from another cultivar ‘Gimbozu’, also showed the same SNP in exon 10 of LOC_Os03g44500. It was concluded from these results that LKF is identical to LOC_Os03g44500, and the detected SNP in exon 10, at least, which is included in Kelch-like repeat motif, could be essential for expression of the large-grain phenotype.  相似文献   

20.
Upland cotton is an important economic crop that produces high-quality fiber for the textile industry. With the development of next-generation sequencing technology and improvements in human living standards, it has become possible to improve the fiber quality and yield of cotton with high-throughput molecular markers. Upland cotton 901-001 is an excellent, high-quality, non-transgenic cultivar, while the sGK156 strain shows high resistance to verticillium wilt. The phenotype of F1 plants, certified in 2008 as national variety CCRI70, shows positive transgressive characteristics such as high quality, high yield, and resistance to verticillium wilt. We developed a population of 250 recombination inbred lines from a cross between 901-001 and sGK156. The fiber strength trait of plants from nine environments was collected, and a genetic linkage map of Chr24 comprising 168 SNP marker loci covering a genetic distance of 107.46 cM and with an average distance of 0.64 cM was generated. QTLs were identified across the nine environments using the composite interval mapping method. A total of eight QTLs for FS were identified on Chr24, three of which were stably expressed in at least five environments. Some candidate genes located in qFS-c24-2 and qFS-c24-4 were functionally annotated as potentially playing important roles in fiber development, with homologous genes reported in Arabidopsis thaliana. These results suggest that QTLs identified in the present study could contribute to improving FS and may be applicable for marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号