首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty-eight Duroc-cross gilts (40 kg initial BW) were fed a control or a linseed diet containing 60 g of whole crushed linseed/kg. Both diets were supplemented with 150 mg of vitamin E/kg. Eight pigs from each dietary treatment were slaughtered at 20, 60, or 100 d after the start of the experiment. There was no effect (P > 0.05) of diet on growth, carcass characteristics, or foreloin tissue composition. Feeding the linseed diet increased (P < 0.05) the content of n-3 PUFA in plasma, muscle, and adipose tissue, but docosahexaenoic acid was not (P > 0.05) altered by diet. The proportions of n-3 PUFA were highest (P < 0.01) in pigs fed the linseed-diet for 60 d, regardless of tissue (plasma, muscle, or adipose tissue) or lipid (neutral lipids and phospholipids) class. The linseed diet produced a PUFA:saturated fatty acid ratio > or = 0.4 in all groups and tissues, which is close to the recommended value for the entire diet of humans, as well as a robust decrease in the n-6:n-3 ratio. The decrease (P < 0.01) in the percentage of oleic acid in adipose tissue of pigs fed the linseed diet for 60 d could be attributed to a 40% decrease (P < 0.001) in stearoyl-CoA-desaturase activity. Diet did not (P > 0.05) affect the activities of acetyl-CoA-carboxylase, malic enzyme, or glucose-6-phosphate-dehydrogenase in any tissues. Muscle vitamin E content was decreased (P < 0.001) 30% in pigs fed crushed linseed for 60 d, whereas lower (P < 0.001) concentrations of skatole in pork fat were observed in linseed-fed pigs at all slaughter times. Inclusion of linseed (flaxseed) in swine diets is a valid method of improving the nutritional value of pork without deleteriously affecting organoleptic characteristics, oxidation, or color stability.  相似文献   

2.
Fifty-four Holstein bulls were blocked by initial BW (301 +/- 7.4 kg) and randomly assigned to 6 treatments following a 3 x 2 factorial arrangement, with 3 concentrate lipid levels (5, 8, and 11% of DM) and 2 lipid sources (whole canola seed and whole linseed), with the objective of evaluating the possibility of increasing the content of n-3 fatty acids in meat. Concentrates (mostly corn meal) were isonitrogenous and isocaloric. Concentrate and straw were both fed ad libitum. Animal BW was recorded every 2 wk, and feed consumption was recorded weekly. Ruminal pH and VFA concentrations were determined monthly. Bulls were transported to the slaughterhouse when they achieved the target slaughter weight of 443 kg (after 105 +/- 4 d of fattening). After slaughter, a sample of LM from the sixth to the eighth ribs was dissected and analyzed for intramuscular fat content and fatty acid profile. Dietary lipid source did not affect overall animal performance, rumen fermentation, or carcass quality. Rumen pH was >6.0 despite consumption by the bulls of large amounts of concentrate. In bulls fed linseed, the percentage of n-3 fatty acids in LM increased linearly with lipid level, whereas in bulls fed canola seed it remained constant. The ratio of n-6:n-3 fatty acids was lower (P < 0.01) in the LM of bulls fed linseed (10.0) than in those fed canola seed (26.0). The content of cis-9, trans-11-CLA in the LM tended (P = 0.06) to be greater in the bulls fed linseed than in those fed canola seed (62.9 vs. 49.2 mg/kg of LM, respectively). Concentration of n-3 fatty acids in meat of bulls fed high-concentrate diets can be enhanced by whole linseed supplementation without affecting animal performance, ruminal fermentation, or carcass quality.  相似文献   

3.
An experiment was conducted to determine growth performance, carcass characteristics, and fat quality of growing-finishing pigs fed diets based on short-season corn hybrids. Twenty-four individually housed, Cotswold, growing pigs with an initial BW of 41.4 (SD = 1.4) kg were blocked by BW and sex and randomly allotted from within block to 1 of 3 diets to give 8 replicate pigs per diet. Experimental diets consisted of a control based on barley and 2 diets based on corn as the main energy sources. A 3-phase feeding program for 20 to 50 kg (phase I), 50 to 80 kg (phase II), and 80 to 110 kg (phase III) of BW was used. Diets for each phase contained approximately 3.5 Mcal/kg of DE, with total lysine of 0.95, 0.75, and 0.64% in phase I, II, and III diets, respectively. Average daily gain, ADFI, and G:F were monitored weekly during each phase. Pigs were slaughtered after reaching a minimum BW of 100 kg to determine carcass characteristics. There were no effects of diet on ADG, ADFI, and G:F (0.45 +/- 0.02, 0.34 +/- 0.02, and 0.31 +/- 0.02 for phase I, II, and III, respectively). Carcass length, dressing percent, LM area, loin depth, backfat thickness, belly firmness, and L*, b*, and a* fat color were not different across dietary treatments. Pigs fed one corn variety had no differences in fatty acid profile with barley-fed pigs, whereas those fed the other variety of corn had a greater (P < 0.05) concentration of PUFA in their backfat. The results indicate that growth performance, carcass characteristics, and fat quality of pigs fed diets based on short-season corn hybrids and those fed the barley-based diet were not different.  相似文献   

4.
A total of 54 finishing barrows (initial BW = 99.8 ± 5.1 kg; PIC C22 × 337) reared in individual pens were allotted to 1 of 6 dietary treatments in a 2 × 3 factorial arrangement of treatments with 2 levels of ractopamine (0 and 7.4 mg/kg) and 3 levels of dietary energy (high, 3,537; medium, 3,369; and low, 3,317 kcal of ME/kg) to determine the effects of dietary ractopamine and various energy levels on growth performance, carcass characteristics, and meat quality of finishing pigs. High-energy diets were corn-soybean-meal-based with 4% added fat; medium-energy diets were corn-soybean meal based with 0.5% added fat; and low-energy diets were corn-soybean meal based with 0.5% added fat and 15% wheat middlings. Diets within each ractopamine level were formulated to contain the same standardized ileal digestible Lys:ME (0 mg/kg, 1.82; and 7.4 mg/kg, 2.65 g/Mcal of ME). Individual pig BW and feed disappearance were recorded at the beginning and conclusion (d 21) of the study. On d 21, pigs were slaughtered for determination of carcass characteristics and meat quality. No ractopamine × energy level interactions (P > 0.10) were observed for any response criteria. Final BW (125.2 vs. 121.1 kg), ADG (1.2 vs. 1.0 kg/d), and G:F (0.31 vs. 0.40) were improved (P < 0.001) with feeding of ractopamine diets. Feeding of the low-energy diet reduced (P = 0.001) final BW and ADG compared with the high- and medium-energy diets. Gain:feed was reduced (P = 0.005) when the medium-energy diets were fed compared with the high-energy diets. Additionally, G:F was reduced (P = 0.002) when the low-energy diets were compared with the high- and medium-energy diets. Feeding ractopamine diets increased (P < 0.05) HCW (93.6 vs. 89.9 kg) and LM area (51.2 vs. 44.2 cm(2)). The LM pH decline was reduced (P ≤ 0.05) by feeding ractopamine diets. The feeding of low-energy diets reduced (P = 0.001) HCW when compared with the high- and medium-energy diets and reduced (P = 0.024) 10th-rib backfat when compared with the high- and medium-energy diet. These data indicate that feeding ractopamine diets improved growth performance and carcass characteristics, while having little or no detrimental effect on meat quality. Reductions in energy content of the diet by adding 15% wheat middlings resulted in impaired ADG, G:F, and 10th-rib backfat. There were no ractopamine × energy level interactions in this trial, which indicates that the improvements resulting from feeding ractopamine were present regardless of the dietary energy levels.  相似文献   

5.
The effects of dietary crude glycerin on growth performance, carcass characteristics, meat quality indices, and tissue histology in growing pigs were determined in a 138-d feeding trial. Crude glycerin utilized in the trial contained 84.51% glycerin, 11.95% water, 2.91% sodium chloride, and 0.32% methanol. Eight days postweaning, 96 pigs (48 barrows and 48 gilts, average BW of 7.9 +/- 0.4 kg) were allotted to 24 pens (4 pigs/pen), with sex and BW balanced at the start of the experiment. Dietary treatments were 0, 5, and 10% crude glycerin inclusion in corn-soybean meal-based diets and were randomly assigned to pens. Diets were offered ad libitum in meal form and formulated to be equal in ME, sodium, chloride, and Lys, with other AA balanced on an ideal AA basis. Pigs and feeders were weighed every other week to determine ADG, ADFI, and G:F. At the end of the trial, all pigs were scanned using real-time ultrasound and subsequently slaughtered at a commercial abattoir. Blood samples were collected pretransport and at the time of slaughter for plasma metabolite analysis. In addition, kidney, liver, and eye tissues were collected for subsequent examination for lesions characteristic of methanol toxicity. After an overnight chilling of the carcass, loins were removed for meat quality, sensory evaluation, and fatty acid profile analysis. Pig growth, feed intake, and G:F were not affected by dietary treatment. Dietary treatment did not affect 10th-rib backfat, LM area, percent fat free lean, meat quality, or sensory evaluation. Loin ultimate pH was increased (P = 0.06) in pigs fed the 5 and 10% crude glycerin compared with pigs fed no crude glycerin (5.65 and 5.65 versus 5.57, respectively). Fatty acid profile of the LM was slightly changed by diet with the LM from pigs fed 10% crude glycerin having less linoleic acid (P < 0.01) and more eicosapentaenoic acid (P = 0.02) than pigs fed the 0 or 5% crude glycerin diets. Dietary treatment did not affect blood metabolites or frequency of lesions in the examined tissues. This experiment demonstrated that pigs can be fed up to 10% crude glycerin with no effect on pig performance, carcass composition, meat quality, or lesion scores.  相似文献   

6.
This study investigated the effect of modifying the n-6:n-3 fatty acid ratio (FAR) of diets using linseed, soybean, and cottonseed oils on apparent digestibility, ruminal fermentation characteristics, growth performance, key circulating hormones, and the fatty acid profile of ruminal digesta, liver, and fore-shank muscle of growing lambs fed a high concentrate diet. Forty individually housed Katadhin Dorper lambs (average of 20.0 kg of BW) were fed Bermudagrass hay in ad libitum amounts and concentrates at 3.7% of BW daily. The concentrate contained 68.9% corn, 23.8% soybean meal, 3.3% limestone, and 4.0% oil supplements (DM basis). The treatments consisted of dietary n-6:n-3 FAR of 2.3:1, 8.8:1, 12.8:1, and 15.6:1. After feeding for 35 d in metabolism crates, lambs were slaughtered 15 h after feeding, and samples of ruminal digesta, blood, liver, and foreshank tissue were collected. Increasing dietary n-6:n-3 FAR did not affect the intake of DM nor the apparent digestibility of DM, ether extract, NDF, or ADF, but did increase apparent digestibility of CP (linear, P < 0.05). Concentrations of ruminal butyrate increased linearly (P < 0.05) with increasing dietary n-6:n-3 FAR, whereas the valerate concentration decreased linearly (P < 0.001). Concentrations of plasma insulin and IGF-I were not affected by dietary n-6:n-3 FAR. Concentrations of C18:3n-3 increased linearly (P < 0.001), whereas that of C18:2n-6 decreased linearly (P < 0.001) in ruminal digesta with decreasing dietary n-6:n-3 FAR. Concentrations of transisomers of fatty acids in ruminal digesta did not change. Proportions of C18:0 in liver and foreshank muscle were unchanged by diet. The proportion of trans11 C18:1 and cis-9 trans11 CLA decreased (P < 0.05) in liver but increased (P < 0.05) in foreshank muscle as dietary n-6:n-3 FAR decreased. Proportions of all measured n-3 fatty acids were greater in liver when diets contained more C18:3n-3 from linseed oil. By decreasing the dietary n-6:n-3 FAR, the proportions of n-6 fatty acids in foreshank muscle decreased dramatically; specifically, C18:2n-6 decreased linearly (P < 0.001) from 28.0 to 16.5% and C20:4n-6 decreased linearly (P < 0.001) from 14.7 to 8.6%. Although feeding a diet that contained more n-3 fatty acids increased the n-3 fatty acid concentration of muscle, the ratio of PUFA to SFA was decreased.  相似文献   

7.
A total of 144 barrows and gilts (initial BW = 44 kg) were used in an 82-d experiment to evaluate the effects of dietary fat source and duration of feeding fat on growth performance, carcass characteristics, and carcass fat quality. Dietary treatments were a corn-soybean meal control diet with no added fat and a 2 × 4 factorial arrangement of treatments with 5% choice white grease (CWG) or soybean oil (SBO) fed from d 0 to 26, 54, 68, or 82. At the conclusion of the study (d 82), pigs were slaughtered, carcass characteristics were measured, and backfat and jowl fat samples were collected. Fatty acid analysis was performed, and iodine value (IV) was calculated for all backfat and jowl fat samples. Pigs fed SBO tended to have increased (P = 0.07) ADG compared with pigs fed CWG. For pigs fed SBO, increasing feeding duration increased (quadratic, P < 0.01) ADG and G:F. For pigs fed CWG, increasing feeding duration improved (quadratic, P < 0.01) G:F. For pigs fed SBO or CWG, increasing feeding duration increased carcass yield (quadratic, P < 0.04) and HCW (quadratic, P < 0.02). Dietary fat source and feeding duration did not affect backfat depth, loin depth, or lean percentage. As expected, barrows had greater ADG and ADFI (P < 0.01) and poorer G:F (P = 0.03) than gilts. Barrows also had greater last-rib (P = 0.04) and 10th-rib backfat (P < 0.01) and reduced loin depth and lean percentage (P < 0.01) compared with gilts. Increasing feeding duration of CWG or SBO increased (P < 0.10) C18:2n-6, PUFA, PUFA:SFA ratio, and IV in jowl fat and backfat. Pigs fed SBO had greater (P < 0.01) C18:2n-6, PUFA, PUFA:SFA ratio, and IV but decreased (P < 0.01) C18:1 cis-9, C16:0, SFA, and MUFA concentrations compared with pigs fed CWG in jowl fat and backfat. Barrows had decreased (P = 0.03) IV in jowl fat and backfat compared with gilts. In summary, adding SBO or CWG increased the amount of unsaturated fat deposited. Increasing feeding duration of dietary fat increases the amount of unsaturated fatty acids, which leads to softer carcass fat.  相似文献   

8.
The study was designed to investigate the effect of Rhodobacter capsulatus on serum and meat cholesterol, fatty acid composition in meat, as well as meat quality of finishing pigs. A total of 16 120-day-old Landrace female pigs of about 60 kg initial body weight were randomly assigned into two groups. The pigs were fed a supplemented diet with 0.04% dietary R. capsulatus or a control diet for 60 days. Total cholesterol and low density lipoprotein-cholesterol concentration in serum was significantly lowered ( P  < 0.05) in the pigs fed the R. capsulatus supplemented diet compared to the control diet. Carcass weight, carcass length, shoulder fat, back fat and loin fat thickness, longissimus muscle (LM) area, and color score did not differ significantly between the pigs fed the R. capsulatus supplemented diet and control diet. Among the nutrient composition of LM meat, neutral fat and triglyceride concentration were significantly ( P  < 0.05) reduced in the finishing pigs by dietary supplementation of R. capsulatus . The proportions of n-6 PUFA were higher ( P  < 0.05) in the pigs fed the R. capsulatus supplemented diet than in the pigs fed the control diet. The supplementation of dietary R. capsulatus to finishing pig diet played important roles in reducing serum cholesterol and meat triglycerides, as well as in increasing polyunsaturated fatty acid content in LM meat.  相似文献   

9.
1. Concentrations of beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) in poultry meat can be improved by increasing the concentration of n-3 PUFA in poultry diets.

2. A decrease in flavour quality is, however, usually associated with the dietary supplementation with n-3 PUFA, which is due to the susceptibility of PUFA to oxidation.

3. This experiment was conducted to study the effects of introducing two different n-3 fatty acid sources (extruded linseed and DHA Gold?, a proprietary algal product rich in docosahexaenoic acid), either separately or together, on broiler productive performance, and meat quality, oxidative stability, sensory traits and LC-PUFA profile.

4. Birds given the algal product displayed better productive performances than animals from other groups.

5. The data revealed an improvement in the fatty acid nutritional value of meat from birds receiving the algal product and an inefficient conversion of α-linolenic acid (LNA) into LC-PUFA.

6. Metabolisation of LNA in vivo is not sufficient to improve meat quality in n-3 LC-PUFA and direct supplementation of the diet with n-3 LC-PUFA is a better alternative to modulate an increase in beneficial fatty acids of broiler meat.

7. The overall acceptability of meat was negatively affected by the dietary supplementation with 7.4% of DHA, in contrast to the supplementation with 3.7% of DHA, which showed to be efficient in improving LC-PUFA meat content without affecting its sensory properties.  相似文献   

10.
The aim of this study was to compare the influence of a high α-linolenic acid (ALA) diet (linseed diet) and a high linoleic acid (LA) diet (sunflower diet) on performances of pigs, on the dietetical quality of their tissues (adipose tissues and muscles), and on the lipogenic potential of these tissues. Growth and carcass performances, and the lipid content of the tissues were not affected by the diet. Feeding the linseed diet increased the content of n-3 PUFA and decreased the LA/ALA ratios in all the tissues, while the sunflower diet led to an increase in the n-6 PUFA contents. Neither the stearoyl-CoA-desaturase and glucose-6-phosphate-dehydrogenase activities nor the β-hydroxyacyl-CoA-dehydrogenase activity were affected by the diet. Acetyl-CoA-carboxylase and fatty acid synthase activities were enhanced with the linseed diet in respectively subcutaneous adipose tissue and intermuscular adipose tissue, while malic enzyme activity was decreased in liver and subcutaneous adipose tissue of pigs fed the linseed diet.  相似文献   

11.
A total of 120 barrows (initial BW = 47.9 ± 3.6 kg; PIC 1050) were used in an 83-d study to determine the effects of dietary iodine value (IV) product (IVP) on growth performance and fat quality. Pigs were blocked by BW and randomly allotted to 1 of 6 treatments with 2 pigs per pen and 10 pens per treatment. Dietary treatments were fed in 3 phases and formulated to 3 IVP concentrations (low, medium, and high) in each phase. Treatments were 1) corn-soybean meal control diet with no added fat (low IVP), 2) corn-extruded expelled soybean meal (EESM) diet with no added fat (medium IVP), 3) corn-soybean meal diet with 15% distillers dried grains with solubles and choice white grease (DDGS + CWG; medium IVP), 4) corn-soybean meal diet with low CWG (medium IVP), 5) corn-EESM diet with 15% DDGS (high IVP), and 6) corn-soybean meal diet with high CWG (high IVP). On d 83, pigs were slaughtered and backfat and jowl fat samples were collected and analyzed. The calculated and analyzed dietary IVP values were highly correlated (r(2) = 0.86, P < 0.01). Pigs fed the control diet, EESM, or high CWG had greater (P < 0.05) ADG than pigs fed EESM + DDGS. Pigs fed the control diet had greater (P < 0.05) ADFI than pigs fed all other diets. Pigs fed EESM + DDGS and high CWG had improved (P < 0.05) G:F compared with pigs fed the control diet or DDGS + CWG. Pigs fed diets with DDGS had greater (P < 0.05) backfat and jowl fat IV, C18:2n-6, and PUFA and less SFA than pigs fed all other treatments. Pigs fed EESM had greater (P < 0.05) backfat and jowl fat IV, C18:2n-6, and PUFA than pigs fed the control diet, low CWG, or high CWG. Pigs fed low CWG or high CWG had greater (P < 0.05) jowl fat IV than control pigs. Feeding ingredients high in unsaturated fatty acids, such as DDGS and EESM, had a greater impact on fat IV than CWG, even when diet IVP was similar. Therefore, IVP was a poor predictor of carcass fat IV in pigs fed diets with different fat sources and amounts of unsaturated fats formulated with similar IVP. Dietary C18:2n-6 content was a better predictor of carcass fat IV than diet IVP.  相似文献   

12.
Effects of different finishing regimes with and without conventional or linseed-supplemented concentrate on growth performance and carcass composition of grass-fed steers as well as meat quality and lipid composition of the beef were investigated. Limousin × Brown Swiss and Limousin × Holstein–Friesian crossbred steers were fed on a grass-based forage-only diet up to an average live weight of 470 kg and an age of 18 months. During the following finishing period, two groups received 3 kg/day of concentrate additional to fresh grass and hay. One concentrate was a conventional cereal-based type (CC) the other contained extruded linseed (LS). Steers of these two groups were fattened to 560 kg of live weight. Two other groups further on received only grass and hay and were slaughtered either at the same average weight (G1) or at the same age (G2) as CC steers. The concentrate supplementation in the finishing period did not significantly increase average daily gains of the steers. The killing-out percentage was improved by CC, which was reflected in heavier hot carcasses. No other carcass quality trait was significantly affected by the different feeding regimes. The direct comparison of G2 with CC showed a significantly higher shear force and compression energy in m. longissimus dorsi (LD) of G2, suggesting a less tender LD, but not m. biceps femoris (BF), of the grass-fed steers. In the groups compared at the same slaughter weight, no significant differences were observed in meat colour and texture. Lower proportions of C18:3n-3 (omega-3) in total lipids and in phospholipids of LD and BF were found for CC steers compared to grass-fed steers. This effect was partly compensated for by the supplementation of linseed to the concentrate which also exerted a trend towards higher levels of conjugated linoleic acid. However, since the n-6/n-3 ratio in the beef of the CC steers was still favourably low, it remains a matter of economic calculations and marketing considerations to determine whether linseed supplementation might be a cost-efficient measure in pasture beef programs to produce meat with claimed dietetic advantages in terms of fatty acid composition.  相似文献   

13.
Crossbred pigs (n = 240) from Pietrain x Large White sires mated to Landrace x Large White dams, with an average age of 100 d (60.5 +/- 2.3 kg of BW), were used to investigate the effects of sex and slaughter weight (SW) on growth performance and on carcass and meat quality characteristics. There were 6 treatments arranged factorially, with 3 classes (intact females, IF; castrated females, CF; and castrated males, CM) and 2 slaughter weights (114 and 122 kg of BW). Each of the 6 combinations of treatments was replicated 4 times, and the experimental unit was a pen with 10 pigs. Castrated males and CF ate more feed, grew faster, and had more carcass backfat depth and fat thickness at the gluteus medius muscle but lower loin yield than IF (P < 0.05). In addition, CF and CM had more intramuscular fat (P < 0.05) and less linoleic acid content in the subcutaneous fat (P < 0.01) than IF. Pigs slaughtered at 122 kg of BW had lower ADG (P < 0.05), decreased G:F (P < 0.05), and more gluteus medius fat than pigs slaughtered at 114 kg of BW (P < 0.05). It was concluded that CF and CM had similar productive performance and meat quality characteristics when slaughtered at the same age, and that castration of females improved ADG and increased weight and fat content of primal cuts with respect to IF. Therefore, castration of females is recommended in pigs destined for the dry-cured industry because of the beneficial effects on quality of the primal cuts.  相似文献   

14.
Two genetic lines with different lean gains were evaluated for various body measurements and indices of lean tissue in barrows and gilts from 20 to 125 kg of BW. One genetic line was identified as the low-lean line [280 g of fat-free lean (FFL)/d], and the second line was the high-lean line (375 FFL gained/d). The experiment was conducted as a completely randomized design using a 2 x 2 x 5 factorial arrangement of treatments in 6 replicates (n = 120 pigs). The 2 genetic lines and sexes were provided ad libitum access to cornsoybean mixtures that met or exceeded their required amino acid requirements for their respective lean gain potentials. Six pigs of each sex and genetic line were slaughtered initially and at 25-kg of BW intervals to 125 kg of BW. Pigs slaughtered were measured for height, width, and length using metal calipers. Backfat and LM area were measured using real-time ultrasound, with backfat depth also measured using A-mode ultrasound technology. Longissimus muscle area and back-fat thickness at the 10th rib were measured on the chilled carcass. Data was analyzed using the MIXED procedure of SAS, with the animal as the experimental unit. Shoulders (P < 0.05) and lumbars (P < 0.05) were wider in the low-lean genetic line and in barrows. Gilts and the high-lean genetic line had less backfat and greater LM areas than the low-lean genetic line. As BW increased, there was a greater increase in FFL tissue and lower backfat depths in the high-lean vs. the low-lean genetic line. This resulted in a greater divergence of measurement values as BW increased. Femur weight, length, and cortical wall thickness were greater in the high-lean genetic line, but the differences were not significant. The high-lean genetic line had a greater (P < 0.01) organic matrix content in the femur and less ash, resulting in a lower percentage of bone ash (P < 0.01). The results indicate that differences occurred phenotypically between pigs having more muscle (wider hams) or more fat (wider shoulder and lumbar). As BW increased, the high-lean pigs had an increase in lean tissue, particularly after 75 kg of BW, and less backfat and less bone mineralization, whereas the low-lean line pigs had increased backfat and greater bone mineralization. Real-time ultrasound measurements using various formulas to estimate lean tissue produced values close to those determined from carcass measurements at 100 and 125 kg of BW.  相似文献   

15.
To assess the effects of flax addition and flax processing on feedlot performance and carcass characteristics, 128 yearling beef heifers (360 +/- 14 kg of initial BW) were blocked by weight and assigned randomly to feedlot diets that included no flax (control), whole flax (WHL), rolled flax (RLD; 1,300 microm), or ground flax (GRD; 700 microm). Heifers were fed a growth diet (31% corn, 30% corn silage, 18% barley malt pellets, 14% alfalfa, 4% linseed meal, and 3% supplement; DM basis) for 56 d, after which they were adapted to a finishing diet (79% corn, 7% corn silage, 7% alfalfa, 4.75% linseed meal, and 2.25% supplement; DM basis). In WHL, RLD, and GRD, flax replaced all linseed meal and partially replaced corn at 8% of diet DM. All diets provided 0.5 mg of melengestrol acetate, 2,000 IU of vitamin E, and 232 mg of monensin per heifer daily. Cattle were slaughtered by block after 96, 97, and 124 (2 blocks) d on feed. At 24 h postmortem, carcass data were collected, and a portion of the loin was removed, vacuum-packaged, and aged for 14 d. After aging, 2 steaks were removed from each loin for Warner-Bratzler shear force measurement, sensory panel evaluation, and fatty acid analysis (approximately 100 g of muscle was collected). Flax inclusion (WHL, RLD, and GRD vs. control) did not affect DMI (P = 0.79), fat thickness over the 12th rib (P = 0.32), or LM area (P = 0.23). Flax inclusion increased ADG (P = 0.006), G:F (P = 0.006), and USDA yield grade (P = 0.01). Flax processing (RLD and GRD vs. WHL) increased ADG (P = 0.05), G:F (P = 0.08), and apparent dietary NEm and NEg (P = 0.003). Muscle from heifers fed flax had greater phospholipid 18:3n-3 (P < 0.001), 20:5n-3 (P < 0.001), 22:5n-3 (P < 0.001), and 22:6n-3 (P = 0.02) fractions, and greater neutral lipid 18:3n-3 (P < 0.001). Feeding 8% flax to feedlot heifers increased gain and efficiency, and processing flax increased available energy and resulted in increased efficiency of gain. Feeding 8% flax also increased levels of n-3 fatty acids in fresh beef.  相似文献   

16.
The effect of dietary n-3 fatty acids on the fatty acid composition and lipid peroxidation of different tissues in pigs were studied. 20 castrated male pigs were included in this investigation, one half was fed daily a diet containing 1.3 g n-3 fatty acids/kg diet (control) and 10 pigs were fed a diet containing 14 g n-3 fatty acids/kg diet (n-3 diet) at the growing-finishing period. The intake of dietary n-3 fatty acids increased the concentration of these fatty acids in backfat, and the neutral and polar fractions of skeletal muscle and heart homogenates. The polar fraction showed an increased relative concentration of n-3 fatty acids in comparison to control, while the n-6 fatty acid content was reduced. In heart homogenates there was an enlargement of n-3 fatty acids both in polar lipids and in neutral lipids whilst n-6 fatty acids were decreased. Feeding n-3 fatty acid enriched diet had no influence on meat quality parameters drip loss, meat colour or pH value. The lipid peroxidation (measured as malondialdehyde equivalents) was in the order liver > heart > skeletal muscle with higher values in the n-3 group. However, by stimulation of oxidation by Fe2+/ascorbate for 3 hours the order of oxidative products in the n-3 group was muscle > liver > heart, whereas in the control group the order was liver > heart = muscle. Summarized, feeding a highly n-3 fatty acid enriched diet caused an incorporation of these fatty acids and increased the susceptibility to peroxidation in all investigated tissues.  相似文献   

17.
Crossbred pigs (n = 216) were used to test the interactive effect, if any, of ractopamine (RAC) and dietary fat source on the performance of finishing pigs, pork carcass characteristics, and quality of LM chops during 5 d of simulated retail display (2.6 degrees C and 1,600 lx warm-white fluorescent lighting). Pigs were blocked by BW and allotted randomly to pens (6 pigs/pen), and, after receiving a common diet devoid of RAC for 2 wk, pens within blocks were assigned randomly to 1 of 4 diets in a 2 x 2 factorial arrangement, with 5% fat [beef tallow (BT) vs. soybean oil (SBO)] and RAC (0 vs. 10 mg/kg). Diets were formulated to contain 3.1 g of lysine/Mcal of ME and 3.48 Mcal/kg of ME. Across the entire 35-d trial, pigs fed RAC had greater (P < 0.01) ADG and G:F, but RAC did not affect (P = 0.09) ADFI; however, performance was not affected (P >or= 0.07) by dietary fat source. Carcass weight, LM depth, and lean muscle yield were increased (P < 0.01), whereas fat depth was decreased (P = 0.01), in carcasses from RAC-fed pigs; however, carcass composition measures were similar (P >or= 0.27) between fat sources. Feeding 10 mg/kg of RAC reduced (P 相似文献   

18.
为研究日粮消化能水平和赖氨酸与消化能比值对荣昌猪胴体品质的影响,试验选用96头荣昌阉公猪(20±2)kg,当试验猪平均体重达到90kg时进行屠宰。结果表明:日粮消化能水平提高,荣昌猪的饲料转化率显著(P<0.05)提高;肩、腰、荐三点均膘厚显著(P<0.05)增加,失水率显著提高(P<0.05),24h时的pH值也有增加的趋势(P>0.05);随着赖氨酸与消化能比的增加,1h和24h的pH值均显著增加(P<0.05),肌内脂肪含量显著降低(P<0.05),眼肌面积有增加的趋势(P>0.05),并且消化能水平和赖氨酸与消化能比值存在交互作用。  相似文献   

19.
The experiment was organized in a 3 x 2 factorial arrangement with three dietary fat blends and a basal (20 mg kg(-1) diet) or supplemented (220 mg kg(-1)) level of alpha-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle alpha-tocopherol concentration (alpha-tocopherol [log microg g(-1)] = 0.18 (+/- 0.105) + 0.0034 (+/- 0.0003) x dietary alpha-tocopherol [mg kg(-1) diet] (P < 0.0001) + 0.39 (+/- 0.122) x dietary MUFA/PUFA (P < 0.0036)). An interaction between dietary alpha-tocopherol and dietary MUFA/PUFA exists for microsome alpha-tocopherol concentration (alpha-tocopherol [log microg g(-1)] = 1.14 ( +/- 0.169) (P < 0.0001) + 0.0056 ( +/- 0.00099) x dietary alpha-tocopherol [mg kg(-1) diet] (P <0.0001) + 0.54 (+/- 0.206) x dietary MUFA/PUFA (P < 0.0131) - 0.0033 (+/- 0.0011) x dietary alpha-tocopherol [mg kg(-1))] x dietary MUFA/PUFA (P < 0.0067)), and hexanal concentration in meat (hexanal [ng x g(-1)] = 14807.9 (+/- 1489.8)- 28.8 (+/- 10.6) dietary alpha-tocopherol [mg x kg(-1)] (P < 0.01) - 8436.6 (+/- 1701.6) x dietary MUFA/PUFA (P < 0.001) + 24.0 (+/- 11.22) x dietary alpha-tocopherol-dietary MUFA/ PUFA (P < 0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of alpha-tocopherol in muscle and microsome extracts. An interaction between dietary alpha-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/ PUFA ratio leads to a reduction in the concentration of alpha-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   

20.
A restriction/realimentation feeding strategy was applied to pigs to increase the age at market weight and final ADG, modify protein and lipid deposition rates at carcass and muscle levels, and thereby improve eating quality of the pork. A total of 126 Duroc x (Large White x Landrace) pigs (females and castrated males) were used. At the average BW of 30 kg, within litter and sex, pairs of littermates (blocked by BW) were randomly assigned to ad libitum (AL) feeding during growing (30 to 70 kg of BW) and finishing (70 to 110 kg of BW) periods (AL, n = 56), or restricted feeding at 65% of the ADFI of the AL pigs, on a BW basis, during the growing period and AL feeding during finishing (compensatory growth, CG; n = 56). In each feeding regimen, 15 pigs were slaughtered at 70 kg of BW, and 41 pigs were slaughtered at 110 kg of BW. Additionally, 14 pigs were slaughtered at 30 kg of BW to calculate tissue deposition rates. The CG pigs showed decreased ADG (-35%, P = 0.001) during growing but increased ADG (+13%, P = 0.001) during finishing (i.e., compensatory growth) due to greater (P = 0.001) ADFI and G:F. Hence, CG pigs were 19 d older at 110 kg of BW than AL pigs. The CG pigs were leaner at 70 kg of BW than AL (e.g., 11.7 vs. 13.5 mm of average backfat thickness for CG and AL pigs, respectively, P = 0.023), whereas the differences were reduced at 110 kg of BW (20.6 vs. 21.0 mm of average backfat thickness for CG and AL pigs, respectively, P = 0.536). At 70 kg of BW, intramuscular fat (IMF) content of LM did not differ between CG and AL pigs (1.25 vs. 1.49%, respectively, P = 0.118), whereas CG pigs had less IMF in LM at 110 kg of BW (2.19 vs. 2.53% for CG and AL pigs, respectively, P = 0.034). Feeding regimen influenced the composition of weight gain. From 30 to 70 kg of BW, feed restriction reduced (P = 0.001) lean and adipose tissue deposition at the carcass level and protein and lipid deposition at the muscle level. From 70 to 110 kg of BW, the CG feeding strategy increased (P = 0.016) deposition of adipose but not of lean tissue at the carcass level. However, lipid and protein deposition at the muscle level were not affected. Thus, realimentation promoted deposition of subcutaneous fat over IMF. Feeding regimen hardly affected technological meat quality at 110 kg of BW. The CG feeding strategy decreased (P = 0.014) the meat juiciness score in relation to the decreased IMF but did not influence other sensory traits. Elevated IMF content and improved pork quality might be achieved by modifying the onset or duration of the restriction and realimentation periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号