首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Changes in chemical and mineralogical characteristics associated with different particle size fractions in soil after 40 years of continuous production of corn by the conventional tillage method (CC) as compared with those of an adjacent native grassland site (NG) are investigated. Results indicate that corn cropping in a soil previously supporting native vegetation produces a decline in total and humified organic matter, phenolic compounds, enzymatic activities, cation exchange capacity (CEC), and hydrosoluble ions, both in the whole soil and in its particle‐size separates. The’ largest losses in organic carbon (C) and nitrogen (N) contents of the cultivated soil were observed in the sandy fractions, the lowest in the silt+clay separates. The humification index (HI) indicates a higher degree of humification of the organic matter in NG than in CC samples. For both NG and CC sites the finest fraction (silt+clay) resulted to be enriched in organic C, total N, humus, phenolic compounds, enzyme activity, CEC, and hydrosoluble ions with the only exception of mineral N forms and sulphates (SO4). Slight differences were observed in the mineralogical composition of NG and CC soils. The sandy fractions of NG showed greater amounts of phyllosilicates while a lower content was found in the silt+clay fraction of CC as a consequence of a crumbling of parent rock into small pieces induced by repeated tillage practices.  相似文献   

2.
To evaluate the effects of thirty years of manure and chemical fertilizer applications on metal accumulations in soil and soil aggregates, fresh soils were separated by wet sieving into four aggregate fractions and heavy-metal concentrations in soil and aggregates were determined. The soil organic carbon (SOC) concentration in microaggregates ranged from 20.2 to 39.6 g carbon (C) kg?1, which was significantly greater than those in the other fractions. The proportion of heavy metals in small macroaggregates and the silt + clay fraction accounted for 45.5 ± 10.6% and 35.8 ± 14.1% of the total amount in soil, respectively, which might be due primarily to their greater mass percentages in soil. Both chemical fertilizer and manure significantly stimulated iron (Fe) and zinc (Zn) accumulation; horse manure also increased copper (Cu), lead (Pb), and chromium (Cr) concentration in bulk soils as compared with the control. The results also indicated that heavy-metal distribution in aggregates was not controlled by SOC but possibly by soil clay.  相似文献   

3.
影响城市土壤重金属污染因子的关联度分析   总被引:67,自引:2,他引:67  
吴新民  潘根兴 《土壤学报》2003,40(6):921-928
城市土壤深受人为活动的影响 ,具有明显的重金属人为富积的特点 ,认识这些土壤重金属丰度、形态与土壤理化性质及周围环境因子的关系 ,有助于更好地保护和修复城市土壤生态系统。本文对南京城市土壤中Pb、Zn、Cu、Cd四种重金属元素的含量和形态特征进行了研究 ,并用灰色系统理论方法对南京城市土壤重金属污染的影响因子进行了灰色关联度分析 ,认为最主要影响因子是距工业区远近 ,其次是土壤粘粒含量、pH值 ,而交通车流量、生产生活废弃物在土壤中堆埋的比例和土壤有机质对城市土壤重金属污染的影响相对较小  相似文献   

4.
Background and aimsSince few studies have existed in the literature about the effect of zinc (Zn) on cadmium (Cd) chemical forms in soils. Therefore, this study has been performed to determine the impact of Zn on cadmium Cd chemical forms in two soil textural classes in Fars province-Iran at two soil water content (SWC) (flooded soil water content (FSWC) and field capacity soil water content (FCSWC)) and study the kinetic modeling of Cd.Methods and materialsVariables were three levels of Cd (0, 30 and 60 mg kg-1 of soil as CdSO4·8H2O), three levels of Zn (0, 5 and 10 mg kg-1 of soil as Zn-EDTA) three level Incubation times (2, 4 and eight weeks), two soil textural classes (clay and sandy clay loam) and two SWC. The randomized completed block design (RCBD) was used for this experiment. The Tessier sequential extraction method was used to determine the Cd concentration in (WsEx), (Fe-MnOx), (Car), (Om) and (Res) chemical forms.ResultsIn the FSWC, Zn reduced the Cd concentration in Fe-MnOx, Car and Om forms and increased the WsEx but had no significant effect on the Res form. Changes in the Cd chemical forms under the influence of Zn in both soils followed a similar trend. In the FCSWC, Zn reduced the Cd concentration Car and Om forms and increased the Cd concentration in the Fe-MnOx and WsEx forms while had no significant effect on Res form in the sandy clay loam soil. In the clay soil adding Zn reduced the Cd concentration in Car and Om fractions and increased the Fe-MnOx and Res forms while has no significant effect on WsEx form. The competitive transport and adsorption Interactions between these two ions caused the changing in the Cd concentration in its chemical forms. Zn reduces the Cd concentration in the forms which are easily released into the soil solution from where they can be absorbed by plants. The power function kinetic mode is the best fitted model which can describe the Cd adsorption in our soil samples. The clay and organic compounds control the Cd adsorption in soils. The higher rate of Cd adsorption in almost all shaking times shows that Cd has more ability to occupy the adsorption sites in soils.  相似文献   

5.
The dynamics of incorporation of fresh organic residues into the various fractions of soil organic matter have yet to be clarified in terms of chemical structures and mechanisms involved. We studied by 13C‐dilution analysis and CPMAS‐13C‐NMR spectroscopy the distribution of organic carbon from mixed or mulched maize residues into specific defined fractions such as carbohydrates and humic fractions isolated by selective extractants in a year‐long incubation of three European soils. The contents of carbohydrates in soil particle size fractions and relative δ13C values showed no retention of carbohydrates from maize but rather decomposition of those from native organic matter in the soil. By contrast, CPMAS‐13C‐NMR spectra of humic (HA) and fulvic acids (FA) extracted by alkaline solution generally indicated the transfer of maize C (mostly carbohydrates and peptides) into humic materials, whereas spectra of organic matter extracted with an acetone solution (HE) indicated solubilization of an aliphatic‐rich, hydrophobic fraction that seemed not to contain any C from maize. The abundance of 13C showed that all humic fractions behaved as a sink for C from maize residues but the FA fraction was related to the turnover of fresh organic matter more than the HA. Removal of hydrophobic components from incubated soils by acetone solution allowed a subsequent extraction of HA and, especially, FA still containing much C from maize. The combination of isotopic measurements and NMR spectra indicated that while hydrophilic compounds from maize were retained in HA and FA, hydrophobic components in the HE fraction had chemical features similar to those of humin. Our results show that the organic compounds released in soils by mineralization of fresh plant residues are stored mainly in the hydrophilic fraction of humic substances which are, in turn, stabilized against microbial degradation by the most hydrophobic humic matter. Our findings suggest that native soil humic substances contribute to the accumulation of new organic matter in soils.  相似文献   

6.
The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to quantify and characterise the labile and stable forms of SOM. Our objective in this study was to evaluate SOM under widely contrasting management regimes to determine whether the variation in chemical composition and resistance to pyrolysis observed for various constituent C fractions could be related to their resistance to decomposition. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were physically fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: <5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. Thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser, and chemical composition was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the C and N K-edges. Relative to the pasture soil, SOM in the arable and fallow soils declined by 30% and 40%, respectively. The mineralization bioassay showed that SOM in whole soil and soil fractions under fallow was less susceptible to biodegradation than that in other management practices. The SOM in the sand fraction was significantly more biodegradable than that in the silt or clay fractions. Analysis by XANES showed a proportional increase in carboxylates and a reduction in amides (protein) and aromatics in the fallow whole soil compared to the pasture and arable soils. Moreover, protein depletion was greatest in the sand fraction of the fallow soil. Sand fractions in fallow and arable soils were, however, relatively enriched in plant-derived phenols, aromatics, and carboxylates compared to the sand fraction of pasture soils. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the whole soil and their size fractions; it also showed that the loss of SOM generally involved preferential degradation of H-rich compounds. The temperature at which half of the C was pyrolyzed was strongly correlated with mineralizable C, providing good evidence for a link between the biological and thermal stability of SOM.  相似文献   

7.
It is considered that the study of the complex formation of soil colloids with urea and its derivatives is important not only to reveal the adsorption mechanisms of those compounds, but also to give valuable suggestions for the synthesis of organic fertilizers. Montmorine, on the other hand, is one of major clay constituents of soil colloids from arable soil in Japan, and that gives greater influence to the physical and chemical properties of the soils than other clay minerals do. The complex formation of montmorine with organic substances have been intensively studied by soil scientists, mineralogists and colloid scientists. From the data reported up to now, it is presumed that there are four different mechanisms in the complex formation of montmorine with organic substances. The first is a Van der Waals adsorption, the second the ion exchange reaction of adsorbed cations with organic molecules, the third the polar bonding of exchangeabe cations with polaar organic molecules, and the last the covalent bond of clays and organic substances. In the complex formation of montmorine with urea and its derivatives, two or more mechanisms are expected at a time, in accordance with their structural characters.  相似文献   

8.
《Geoderma》2001,99(1-2):27-49
In the global carbon cycle, soil organic matter (SOM) is a major source/sink of atmospheric carbon. Clay minerals stabilize part of the SOM through mineral–organic matter binding. Stabilization of organic matter is essential for tropical soils. Since the climatic conditions of the tropics favor decomposition of organic matter, tropical soils would be very poor in organic matter without this stabilization process. This research aims at determining the effect of clay mineralogy on the amount and composition of organic matter that is bound to the mineral surface. We focused on organic matter that is associated with kaolinite and smectite. We characterized kaolinite- and smectite-associated SOM in soils from seven countries, employing 13C NMR spectroscopy and Py-GC/MS. The content of carbon in the total clay-size fraction showed no significant difference between kaolinitic and smectitic soils. This suggests that the total amount of organic carbon in the clay-size fraction is independent of the clay mineralogy. We first extracted the clay fraction with NaOH and thereafter with Na4P2O7. About half of the kaolinite-associated SOM was extractable by NaOH. In the smectitic soils, pyrophosphate extracted more organic carbon than did NaOH. The Py-GC/MS and NMR results indicate that kaolinite-associated SOM is enriched in polysaccharide products, while smectite-associated organic matter contains many aromatic compounds. We suggest that different clay minerals use different binding mechanisms to complex SOM. As a result, the composition of clay-associated organic matter would be influenced by the type of clay that is dominantly present in the soil.  相似文献   

9.
姜岩  窦森 《土壤学报》1987,24(2):98-104
通过在粉壤质黑钙土和粘壤质轻度盐化草甸土上进行田间、盆栽及培养试验,研究了施用各种有机物料后两年来重组有机质的变化状况.施用有机物料可以提高土壤有机质和重组有机质的含量,可以提高有机无机复合量,降低原土复合度.各种有机物料的效果并不一样,追加复合量和追加复合度均随玉米秸秆施用量的增加而提高,但复合系数却因用量的增加而降低.施用有机物料后重组有机质中各种结合形态的腐殖质在绝对含量上都明显提高,但以松结合态的增加较多,松/稳、松/紧比值提高.这种作用主要表现在施用的第一年.  相似文献   

10.
To determine whether there is a relationship between the composition of soil organic matter and the activity of the soil microbial biomass, the composition of the organic matter in 12 typical arable soils in Northwest Germany was investigated by wet chemical analysis and CPMAS cross polarization magic angle spinning 13C-NMR spectroscopy. The data were correlated with the microbial biomass as estimated by substrate-induced respiration. A strong correlation between the microbial biomass and alkylic C compounds was observed (r=-0.960***). Recalcitrant substances were enriched in this fraction, which were classified as humic acids according to the wet chemical procedure. The microbial decomposition of these humic acids is probably retarded, due to their chemical structure and/or physical bonding, when the soil microbial biomass activity is limited.  相似文献   

11.
Abstract

The amounts and forms of zinc in twenty surface soils from Canterbury and Southland, New Zealand were determined using a sequential fractionation scheme. Total soil zinc concentrations ranged from 38.1 mg#lbkg‐1 to 113.8 mg#lbkg‐1. Although the proportions of zinc found in individual fractions varied between soils, on average approximately 3% occurred as exchangeable zinc, 5% as organic‐bound zinc, 9%, 18%, 24% was associated with manganese, amorphous iron and crystalline iron oxides, respectively, and 40% was in the residual fraction. In a group of soils formed in greywacke alluvium or loess, exchangeable zinc was inversely related to soil pH. Within the same group of soils, those of similar age with greater concentrations of total and organic‐bound zinc were present in imperfectly‐ and poorly‐drained soils compared with well‐drained soils. Zinc extracted from the soils with a range of reagents used to assess ‘plant available’ zinc was correlated strongly with the concentrations of zinc present in the exchangeable and organic‐bound zinc fractions.  相似文献   

12.
土壤不同粒径有机无机复合体对丁草胺的吸附特性   总被引:1,自引:0,他引:1  
为了解土壤不同粒径组分对农药吸附-解吸行为的影响和吸附贡献率,以及不同粒径组分中有机无机组分的结合方式和复合程度如何影响有机质对农药的吸附,选取我国6个省区的7种理化性质差别较大的土壤,并采用物理方法提取该7种土壤的三个粒径有机无机复合体(黏粒:0.002mm;粉粒:0.02~0.002 mm;砂粒:0.05~0.02 mm)为研究材料,采用批量平衡法研究丁草胺在不同土壤和不同粒径有机无机复合体固/液界面的分配规律。同时,定量计算土壤各粒径组分对丁草胺的吸附贡献率,并从有机无机复合体角度探讨不同粒径组分中总有机碳(TOC)对丁草胺的吸附特性。结果表明:土壤黏粒组分对丁草胺具有最大的吸附量和较小的解吸率,而砂粒组分对丁草胺则具有较小的吸附量和最大的解吸率。土壤黏粒、粉粒和砂粒组分对丁草胺的吸附贡献率分别为36.7%~72.4%、21.7%~50.5%和10%。TOC是影响各粒径组分对丁草胺吸附的主要原因,但其影响程度受各粒径组分中TOC的理化性质以及其与无机矿物的复合程度控制。  相似文献   

13.
Volcanic ash soils contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute potential sources or sinks for the greenhouse gas carbon dioxide. Whether soils become a net carbon source or sink with climate and/or land‐use change depends on the stability of SOM against decomposition, which is influenced by stabilization mechanisms in the soil. To quantify organic carbon stocks and to clarify the importance of chemical and physical soil characteristics for carbon stabilization in volcanic ash soils, we applied selective extraction techniques, performed X‐ray diffraction analysis of the clay fraction and estimated pore‐size distribution of soils under natural upper montane forest and grassland (páramo) in the Ecuadorian Andes. Our results show that organic carbon stocks under both vegetation types are roughly twice as large as previously reported global averages for volcanic ash soils. SOM stabilization is suggested to be dominantly influenced by the following chemical and physical soil characteristics: (i) direct stabilization of SOM in organo‐metallic (Al‐humus) complexes, explaining at most 40% of carbon accumulation, (ii) indirect protection of SOM (notably aliphatic compounds) through low soil pH and toxic levels of Al, and probably also (iii) physical protection of SOM caused by a very large micro‐porosity. Moreover, in the case of the forest soils, inherent recalcitrance of OM itself was responsible for substantial accumulation in ectorganic horizons. Both vegetation types contributed to soil acidification, thus increasing SOM accumulation.  相似文献   

14.
Abstract

Recently agricultural activity in the mountainous area of northern Thailand has increased and problems relating to soil fertility have arisen. In order to gain basic information about the soil properties associated with shifting cultivation, physicochemical properties of the surface soils (0–10 cm) and subsoils (30–40 cm) were investigated in selected villages in the area. The physicochemical properties of the soils studied are summarized as follows: 1) The soils were rich in organic matter, content of which ranged from 11.4 to 63.3 g C kg?1 in the surface soil. 2) The pH(H2O) of the soils mostly ranged from 5 to 7 and soil acidity was more pronounced in the deeper horizons. In the surface soils, exchangeable Ca and Mg were generally dominant, whereas exchangeable Al was often predominant in the subsoils. 3) Most of the soils showed a medium to fine texture with more than 30% clay. The clay mineral composition was characterized by various degrees of mixture of kaolin minerals and clay mica with, in some cases, a certain amount of 2:1-2:1:1 intergrades. 4) According to the ion adsorption curves, most of the B horizon soils were characterized by the predominance of permanent negative charges. On the other hand, organic matter contributed to the increase of variable negative charges in the surface soils. The content of organic matter and the percentage of the clay fraction were essential for determining the CEC of the soils of the surface 10 and 30–40 cm depths, respectively. Under the field conditions, the composition of exchangeable cations largely reflected the soil acidity. In addition, the content of organic matter also showed a significant correlation with that of available N in the surface soils. Thus, soil acidity both in the surface soils and subsoils, organic matter content in the surface soils, and clay content in the subsoils were considered to be the main factors that affected soil chemical fertility in the area.  相似文献   

15.
14C-labelled cellulose and 15N-labelled (NH4)2SO4 were added to four soils with clay contents of 4, 11, 18 and 34%, respectively. Labelled cellulose was added to each soil in amounts corresponding to 1, 2 and 4 mg C g?1 soil, respectively, and labelled NH4+ at the rate of 1 mg N per 25 mg labelled C.After the first month of incubation at temperatures of 10, 20 and 30°C, respectively, from 38 to 65% of the labelled C added in cellulose had disappeared from the soils as CO2, and from 60 to nearly 100% of the labelled N added as NH4+ were incorporated into organic forms. The ratio of labelled C remaining in the soils to labelled N in organic forms was close to 25 after 10 days of incubation, decreasing to about 15 after 1 month and about 10 after 4 yr.The retention of total labelled C was largest in the soil with the highest content of clay where after 4 yr it was 25% of that added, compared to 12 in the soil with the lowest content of clay. The incorporation of labelled N in organic forms and its retention in these forms was not directly related to the content of clay in the soils, presumably because the two soils with the high content of clay had a relatively high content of available unlabelled soil-N which was used for synthesis of metabolic material.The proportionate retention of labelled C for a given soil was largely independent of the size of the amendments, whereas the proportionate amount of labelled N incorporated into organic forms increased in the clay-rich soils with increasing size of amendments. Presumably this is because the dilution with unlabelled soil-N was less with the large amendments.From 50 to 70% of the total labelled C remaining in the soils after the first month of incubation was acid hydrolyzable, as compared to 80–100% of the total remaining labelled organic N. This relationship held throughout the incubation and was independent of the size of the amendment and of the temperature of incubation.During the second, third and fourth year of incubation the half-life of labelled amino acid-N in the soils was longer than the half-life of labelled amino acid-C, presumably due to immobilization reactions. Some of the labelled organic N when mineralized was re-incorporated into organic compounds containing increasing proportions of native soil-C. whereas labelled C when mineralized as CO2 disappeared from the soils.In general, native C and native organic N were less acid hydrolyzable and were accounted for less in amino acid form than labelled C and N.The amount of labelled amino acid-C, formed during decomposition of the labelled cellulose, and retained in the soil, was proportional to the clay content. This amount was about three times as large in the soil with the highest content of clay as in the soil with the lowest content. This difference between the soils was established during the first 10 days of incubation when biological activity was most intense, and it held throughout the 4 yr of incubation; proportionally it was independent of the amount of cellulose added and the temperature.In contrast, the labelled amino acid-N content was not directly related to the amount of clay in the soil, presumably because more unlabelled soil-N was available for synthesis of metabolic material in the two clay-rich soils than in those soils with less clay. The wider ratio between labelled amino acid-C and labelled amino acid-N in the two clay-rich soils as compared with those obtained with the soils with less clay indicates this.The effect of clay in increasing the content of organic matter in soil is possibly caused by newly synthesized matter, extracellular metabolites, as well as cellular material, forming biostable complexes and aggregates with clay. The higher the concentration of clay the more readily the interactions take place. The presence of clay may also increase the efficiency of using substrate for synthesis.  相似文献   

16.
The application of the synchrotron technique of the third generation in soil science has permitted researchers to perform a quantitative mineralogical microanalysis in undisturbed samples and to reveal the relationship between the microelements and the solid phase of soils. Three principal methods are used in this technique: microfluorescence (μXRF), microdiffraction (μXRD), and the expanded analysis of the fine structure of the adsorption spectra. By the data of EXAFS spectroscopy, secondary arsenic was found to occur in three forms in soils, i.e., As adsorbed on iron hydroxides, scorodite (FeAsO4 · 2H2O, and As5+ containing jarosite. Despite the high share of carboxyl groups in the organic substance of soils, lead is more readily chelated by the functional groups of aromatic rings to form bidentant complexes. Lead phosphates are the most stable form of Pb in soils. One of the phosphates, i.e., pyromorphite Pb5(PO4)3Cl has been found in ore tailings, lawn soils, soils near some chemical plants, and in soils within geochemical anomalies. The secondary Zn compounds are represented by Zn-containing silicate (kerolith) Si4Zn3O10(OH)2 and, to a lesser extent, by zinc fixed by manganese oxides (birnessite) and iron hydroxides (feroxyhyte).  相似文献   

17.
Abstract

Three different chemical extractants were evaluated as to their extraction efficiency for copper (Cu), zinc (Zn), lead (Pb), aluminium (Al), iron (Fe), chromium (Cr), manganese (Mn), potassium (K), magnesium (Mg), and calcium (Ca) on forest soil profiles from the Romanian Carpathians. The extractants were hot 14 M nitric acid (HNO3), 0.05 M hydrochloric acid (HCl), and 0.1 M sodium pyrophosphate. By comparing amounts extracted by 0.05 M HCl and 0.1 M sodium pyrophosphate relative to that dissolved by hot 14 M HNO3, some conclusions were drawn concerning the chemical forms of the metals in the extractable pool. The amount released by 0.05 M HCl was generally less than 10% of the HNO3‐extractable fraction but showed considerable variation among the elements studied. The relative amount extracted by pyrophosphate increased with organic‐matter content of the soils for Cu, Zn, Pb, Al, Fe, and Cr; stayed more or less constant for Mn, K, and Mg; and decreased for Ca. These findings are discussed with respect to the different binding forms of the metals in the soil and the processes affecting their mobility. From the present results, the metals were ranked as follows with respect to their ability to form organic complexes in natural soils: Cu>Cr, Pb>Ca>Al>Fe, Zn, Mn, K>Mg. However, the use of cold dilute HCl as a fractionation step may be questionable in cases of soils with a high content of substances possessing large neutralization capacity for protons.  相似文献   

18.
土壤中锌的形态分布及其影响因素   总被引:32,自引:1,他引:32       下载免费PDF全文
  相似文献   

19.
Solubility and retention of heavy metals in soils Model experiments were carried out under oxidizing conditions with soil samples from surface and subsurface horizons of different composition in order to investigate the solubility and retention of Cu, Zn, Cd, and Pb in soils. The solubility of heavy metals is mainly determined by ad- and desorption processes and complexation reactions of organic and inorganic ligands. Precipitation and dissolution of definite heavy metal compounds do not seem to govern the solution concentration in soils. An exception may probably be the formation of lead phosphate and zinc silicate under specific reaction conditions. The main factors which determine solubility and retention of heavy metals are total amount (except the proportion incorporated in the silicate structure) of the different metals, soil reaction, content of mobilizing and immobilizing organic substances, content of pedogenic oxides and clay minerals, and kind and concentration of salts and inorganic ligands. The results of the model experiments are used together with the results of other authors and general physico-chemical data to give an interpretation of the solubility behaviour of heavy metals in soils. The relations between heavy metal solubility, availability and mobility and possible procedures for melioration of soils contaminated with heavy metals are discussed.  相似文献   

20.
Twenty five soil samples located nearby highways and streets of Caracas, Venezuela were collected and chemical, physical and mineralogical analysis were done to characterize them. The soils have light textures, neutral or slightly alkaline pH, medium to high organic matter content, and all of them have carbonate. Kaolinite and mica were the dominant clay minerals in all soil samples. Lead and Zn were extracted with 1N-3 to investigate the levels of these polluting heavy metals in these roadside soils. A very high level of Pb was found in the soils (average enrichment factor of 151.4), while Zn levels were much lower (average enrichment factor of 5.25), but still higher than normal soils' levels. These results are indication of strong metal pollution (especially by Pb) of Caracas' roadside soils, due to heavy transit of motor vehicles as well as to the exclusive use of highly leaded gasoline in Venezuela. Nevertheless both metals accumulate only on the surface layers of those soils located within 5 m from the roadside. These facts were taken as evidence of the low vertical and horizontal mobility of the metals, which was mainly attributed to the high pH of the studied soils (between 7.5 and 7.8). Three surface soil samples having high Pb and Zn levels were selected for chemical fractionation by McLaren and Crawford's (1973) methodology. It was found that less than 1% Pb and below 5.5% Zn were in exchangeable form in these soils. Therefore, Pb and Zn are predominantly present in non-exchangeable forms in the studied soils. These non-exchangeable metals tend to become associated with different soils materials. Lead is mainly associated with the organic fraction, as well as to the inorganic and residual fractions, and Zn is mainly associated to the inorganic and residual fractions, and also the iron oxides, being practically absent in the organic fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号