首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
褐土区农田土壤氮磷淋溶特征及其管理措施   总被引:1,自引:1,他引:0  
自20世纪90年代以来,持续过量氮磷化肥投入导致农业面源污染日益严重,了解农田土壤氮磷淋溶特征是降低地下水污染的基础。基于田间调查、长期定位肥料试验和田间试验,分析褐土区氮磷的盈余状况,阐明该区农田土壤氮磷的盈余变化、淋溶特征;评价田间管理措施对农田土壤氮磷淋溶的影响。结果表明,典型褐土区关中平原过量施氮的土壤达到83%以上,大量土壤硝态氮已经迁移到100cm土层以下,15%的水井地下水的硝态氮含量超过10 mg·L~(-1)(WHO饮用水标准);80%耕层土壤有效磷(Olsen-P)含量已超过20mg·kg-1,富磷土壤已出现可溶性磷素向耕层以下迁移的现象。氮肥和磷肥的投入量、氮磷吸收量和土壤氮磷残留量之间存在着3个发展阶段:环境友好-资源高效阶段、环境低风险-资源低效阶段和环境有害-资源无效阶段。与当地常规水肥投入量相比,在保证产量的前提下,化肥减量、降低灌溉量、施用生物炭或秸秆还田都可以降低氮磷淋失量;其中化肥减量、降低灌溉可显著降低氮磷的淋失,其次是施用生物炭和秸秆。施用秸秆条件下,阻控硝态氮淋失与微生物生物量碳氮的提高、土壤硝化势降低或反硝化势升高有关。此外,需要关注褐土区粮果复合系统中土壤氮磷淋溶的环境效应、地下水硝酸盐污染的溯源等问题。  相似文献   

2.
The effects of different integrated farming systems on microbial biomass was studied 20 years after their adoption at Meghalaya, India. The soil fertility was relatively greater in agricultural and agri‐horti‐silvi‐pastoral systems as a result of accumulation of leaf litter/crop residues and addition of inorganic and organic manures. Microbial biomass carbon was greatest in agricultural (378 mg kg?1) followed by the agri‐horti‐silvi‐pastoral systems (291 mg kg?1). The most microbial biomass nitrogen (N) and phosphorus (P) (32.4 and 17.07 mg kg?1, respectively) were recorded in agricultural followed by agri‐horti‐silvi‐pastoral systems. Microbial biomass carbon (C) had a significant relationship with organic C, microbial biomass N, and biomass P, indicating that the living part of soil organic matter is involved in the transformation of nutrients into the labile pool and governs their availability to the plants. Application of inorganic fertilizers and organics along with lime has contributed more microbial biomass that led to more biological activity attributed in nutrient transformations and also maintained the soil fertility.  相似文献   

3.
Purple soils (Eutric Regosols) are widely distributed in humid subtropical Southwest China. They are characterized by high nitrification activities, with risks of severe NO3? leaching. Incorporation of crop residues is considered an effective method to reduce NO3? loss. In the present study, we compared the effects of alfalfa, rice straw, and sugarcane bagasse on gross N transformation turnover in a purple soil (purple soil, pH 7.62) compared with those in an acid soil (acid soil, pH 5.26), at 12 h, 3 months, and 6 months after residue incorporation. The gross N transformation rates were determined by 15N tracing. All tested crop residues stimulated the gross N mineralization rates, but reduced the net mineralization rates in both soils at 12 h after residue incorporation; however, the extent of the effect varied with the crop residue qualities, with rice straw having the strongest effects. Crop residues reduced net nitrification rates by depressing gross autotrophic nitrification rates and stimulating NO3? immobilization rates in the purple soil, particularly after rice straw incorporation (net nitrification rate decreased from 16.72 mg N kg?1 d?1 in the control to ??29.42 mg N kg?1 d?1 at 12 h of residue incorporation); however, crop residues did not affect the gross autotrophic nitrification rates in the acid soil. Crop residue effects subsided almost completely within 6 months, with sugarcane bagasse showing the longest lasting effects. The results indicated that crop residues affected the N transformation rates in a temporal manner, dependent on soil properties and residue qualities.  相似文献   

4.
Central Brazil is the region with the most dynamic agriculture expansion worldwide, where tropical forests and Cerrado (Brazilian savanna) are converted to pastures and crop fields. Following deforestation, agricultural practices, such as fertilization, tillage and crop rotations, alter soil parameters and affect microbial abundances and the C and N cycles. The objective of this study was to compare changes in soil fertility, stocks of soil C and N, microbial biomass, and abundance of bacteria, fungi and archaea in Cerrado soils following land use change to crops (soybean/corn/cotton) and pasture (the perennial forage grass Brachiaria brizantha A. Rich.). Agriculture increased soil fertility and conserved soil C and N since their absolute concentration values were highest in agriculture soils and the C and N stocks adjusted by soil density were similar to the native vegetation soils. At the same time, agriculture changed the microbial abundances (decrease of microbial biomass C and N, increase of archaea, and reduction of bacteria and fungi at the crop sites), and N dynamics (increase of soil ammonium and nitrate concentrations). Even if these changes can be beneficial for food and agricultural commodities production, all these soil alterations should be further investigated due to their possible unknown effects on biosphere–hydrosphere–atmosphere exchange processes such as greenhouse gases emissions and nitrate leaching.  相似文献   

5.
作物残体去向与利用及对土壤氮素转化的影响   总被引:4,自引:0,他引:4  
近年来,作物残体还田受到了很大的关注,一方面它可以改进土壤氮素的动态变化,减少硝态氮淋失;另一方面可作为提高耕地土壤作为潜在氮储库的一种手段。作物残体是碳、氮的重要源和库,因此还田后会影响土壤中的氮素循环。本文综述了作物残体还田后对土壤氮素转化的影响及残体氮素的利用与去向问题。具体阐述了以下几个方面内容:作物残体的降解过程及影响因素,残体氮素的利用率及去向问题,以及作物残体对土壤无机氮库、有机氮库、微生物特征的影响。  相似文献   

6.
One way to increase the amount of carbon sequestered in agricultural land is to convert conventional tillage into no‐tillage systems. This greatly affects the location of crop residues in soil. To investigate the impact of the location of residues on soil physical and biological properties and how the interactions between those properties influence the fate of carbon and nitrogen in soil, we did a laboratory experiment with repacked soil in columns. Doubly labelled 13C15N oilseed rape residues were incorporated in the 0–10 cm layer or left on the soil surface. The columns were incubated for 9 weeks at 20°C and were submitted to three cycles of drying and wetting, each of them induced by a rain simulator. The location of the residues affected the water dynamics and the distribution of C and N in the soil, which in turn influenced microbial activity and the decomposition rate of the added residues. After 9 weeks of’incubation, 18.4 ± 1.5% of the surface applied residue‐C and 54.7 ± 1.3% of the incorporated residue‐C was mineralized. We observed a nitrate accumulation of 10.7 mg N kg?1 with residues at the soil surface, 3.6 mg N kg?1 with incorporated residues and 6.3 mg N kg?1 without addition of fresh organic matter, which entailed net N mineralization in soil under mulch and immobilization of N with residue incorporation compared with the control soil. We concluded that application of oilseed rape residues at the soil surface increased the storage of fresh organic C in soil in the short term, compared with the incorporation treatment, but increased the risk of nitrate leaching.  相似文献   

7.
The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g–1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.  相似文献   

8.
The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g?1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.  相似文献   

9.

Purpose

The nitrification inhibitor dicyandiamide (DCD) has been shown to be highly effective in reducing nitrate (NO3 ?) leaching and nitrous oxide (N2O) emissions when used to treat grazed pasture soils. However, there have been few studies on the possible effects of long-term DCD use on other soil enzyme activities or the abundance of the general soil microbial communities. The objective of this study was to determine possible effects of long-term DCD use on key soil enzyme activities involved in the nitrogen (N) cycle and the abundance of bacteria and archaea in grazed pasture soils.

Materials and methods

Three field sites used for this study had been treated with DCD for 7 years in field plot experiments. The three pasture soils from three different regions across New Zealand were Pukemutu silt loam in Southland in the southern South Island, Horotiu silt loam in the Waikato in the central North Island and Templeton silt loam in Canterbury in the central South Island. Control and DCD-treated plots were sampled to analyse soil pH, microbial biomass C and N, protease and deaminase activity, and the abundance of bacteria and archaea.

Results and discussion

The three soils varied significantly in the microbial biomass C (858 to 542 μg C g?1 soil) and biomass N (63 to 28 μg N g?1), protease (361 to 694 μg tyrosine g?1 soil h?1) and deaminase (4.3 to 5.6 μg NH4 + g?1 soil h?1) activity, and bacteria (bacterial 16S rRNA gene copy number: 1.64?×?109 to 2.77?×?109 g?1 soil) and archaea (archaeal 16S rRNA gene copy number: 2.67?×?107 to 3.01?×?108 g?1 soil) abundance. However, 7 years of DCD use did not significantly affect these microbial population abundance and enzymatic activities. Soil pH values were also not significantly affected by the long-term DCD use.

Conclusions

These results support the hypothesis that DCD is a specific enzyme inhibitor for ammonia oxidation and does not affect other non-target microbial and enzyme activities. The DCD nitrification inhibitor technology, therefore, appears to be an effective mitigation technology for nitrate leaching and nitrous oxide emissions in grazed pasture soils with no adverse impacts on the abundance of bacteria and archaea and key enzyme activities.  相似文献   

10.
The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy soil. Our previous study (phase I) evaluated soil health microbial indicators (microbial biomass, community composition and enzyme activities) during 5 years (2003-2007) when more plant residue was returned to the soil by rotating cotton (primary cash crop) with grain sorghum (secondary cash crop) with and without a rye winter cover crop (Ctn-Rye-Sg and Sg-Ctn) or with a system that involved no cash crop and returned maximum biomass to the soil (3 times residue vs Cont. Ctn) with a sorghum x sudangrass hybrid with winter rye cover (SSd-Rye). The current study (phase II) addressed what happens to the microbial component (same microbial indicators) once the management is changed to more cotton production the following 3 years (i.e., cotton was planted 2 out of 3 years in SSd-Rye and was grown for 3 years in Ctn-Rye-Sg). During the first year of phase II (2008), all plots were planted in cotton, and higher cotton yields in SSd-Rye (108–150%) corresponded to microbial trends found in the original rotations (SSd-Rye > Sg-Ctn = Ctn-Rye-Sg). In regard to microbial indicators, the most significant trends with reintroduction of cotton and increase in tillage were a reduction in fungal FAME (fatty acid methyl esters) indicators with a lower ratio of fungi to bacteria and much lower AMF (15.1 to 3.98% of arbuscular mycorrhizal fungi), and less biogeochemical cycling potential of soil according to several enzyme activities (by as much as 50%). At the end of phase II (2010), Ctn-Rye-Sg and SSd-Rye were still found to have higher microbial biomass and enzyme activities (1.5 times both measurements except for phosphodiesterase) compared to continuous cotton. This study demonstrates the vulnerability of microbial communities in sandy soils, which requires agroecosystems that will support biomass incorporation (e.g., sorghum and cover crops) when possible in order to sustain essential functions and overall soil health.  相似文献   

11.
Effects of goat manure application combined with charcoal and tannins, added as feed additives or mixed directly, on microbial biomass, microbial residues and soil organic matter were tested in a 2-year field trial on a sandy soil under Omani irrigated subtropical conditions. Soil microbial biomass C revealed the fastest response to manure application, followed by microbial residue C, estimated on the basis of fungal glucosamine and bacterial muramic acid, and finally soil organic C (SOC), showing the slowest, but still significant response. At the end of the trial, microbial biomass C reached 220 μg g?1 soil, i.e. contents similar to sandy soils in temperate humid climate, and showed a relatively high contribution of saprotrophic fungi, as indicated by an average ergosterol to microbial biomass C ratio of 0.35 % in the manure treatments. The mean fungal C to bacterial C ratio was 0.55, indicating bacterial dominance of microbial residues. This fraction contributed relatively low concentrations of between 20 and 35 % to SOC. Charcoal added to manure increased the SOC content and the soil C/N ratio, but did not affect any of the soil microbial properties analysed. Tannins added to manure reduce the 0.5 M K2SO4-extractable N to N total ratio compared to manure control. These effects occurred regardless of whether charcoal or tannins were supplied as feed additive or directly mixed to the manure.  相似文献   

12.
Soil in short-term crop rotation systems (STCR) is still in the initial development stage of farmland soil, whereas after long-term crop rotation treatment (LTCR), soil properties are significantly different. This study compares STCR (4 years) and LTCR (30 years) rice-rice-fallow, rice-rice-rape rotation practices under the same soil type background and management system. To reveal ecosystem mechanisms within soils and their effects on rice yield following LTCR, we analyzed the physical, chemical, and microbiological properties of soils with different rotations and rotation times. Relative to STCR, LTCR significantly reduced soil water-stable aggregate (WSA) content in the <?0.053-mm range, while >?2 mm WSA content significantly increased. Soil organic matter increased in fields under LTCR, mainly in >?2 mm, 2–0.25 mm, and <?0.053 mm soil WSA in 0–10 cm soil layer. LTCR was associated with significantly increased total soil organic matter, at the same time being associated with increasing the amount of active organic matter in the 0–20 cm soil layer. The two crop rotation regimes significantly differed in soil aggregate composition as well as in soil N and P, microbial biomass, and community composition. Relative to STCR, LTCR field soils had significantly higher soil organic matter, active organic matter content, soil enzyme activities, and overall microbial biomass, while soil WSA and microbial community composition was significantly different. Our results demonstrate that LTCR could significantly improve soil quality and rice yield and suggest that length of rotation time and rice-rice-rape rotation are critical factors for the development of green agriculture.  相似文献   

13.
Extreme flood events are predicted to have a negative impact on soil quality. Currently, there is a lack of information about the effect of agricultural practices on soil functioning and microbial processes under these events. We hypothesized that the impact of flooding on soil quality will be exacerbated when crop residues are present in the soil as they will induce more extreme anaerobicity. A spring extreme flood event (10 °C, 9 weeks) was simulated in mesocosms containing an arable sandy-loam soil low in nutrients. The main treatments were (1) with and without flooding and (2) with and without maize residue addition (8 Mg ha?1). We monitored changes in soil chemical quality indicators (e.g. pH, salinity, Fe3+, P, C, NH4 +, NO3 ? and organic N), greenhouse gas (GHG) emissions (CO2, CH4, N2O) and soil microbial community composition (PLFAs) during a prolonged flood period (9 weeks) and an 8-week “recovery” period after flooding. In comparison to the other treatments, flooding in the presence of crop residues resulted in a dramatic drop in soil redox potential. This was associated with the enhanced release of Fe and C into solution and an increase in CH4 emissions. In contrast, maize residues reduced potential nitrate losses and N2O emissions, possibly due to complete denitrification and microbial N immobilization. Both flooding and maize residues stimulated microbial growth and promoted a shift in microbial community composition. Following floodwater removal, most of the soil quality indicators returned to the levels of the control treatment within 5 weeks. After this short recovery phase, no major impact of flooding could be observed on plant growth (maize pot-grown). Overall, we conclude that both extreme flooding and management regime negatively impact upon a range of soil quality indicators (e.g. redox, GHG emissions); however, the soil showed high resilience and recovered quickly after floodwater removal. Further work is required to investigate the impact of repeated extreme flood events on soil quality and function over longer timescales.  相似文献   

14.
GIS‐based modeling of soil‐crop interactions and hydrological processes is a valuable instrument to assess land‐use effects on N pollution of water resources from the agricultural sector. A case study is presented using spatial information on soils, climatic zones, land use, and distribution of agri‐environmental measures within the federal State of Brandenburg (Germany) to assess the reduction effect of EU‐funded measures on N pollution of water resources. In a first step, the area was classified concerning the risk for groundwater and surface‐water pollution. For this, spatially distributed model calculations of the soil‐solution exchange frequency were intersected to a vulnerability map for groundwater derived from geological data and zones of different transit times from the root zone into surface waters. In a second step, model calculations of water and N dynamics in the soil‐crop system for different crop and management systems were performed to calculate nitrate leaching from the root zone and to estimate the effect of present agri‐environmental measures to reduce N pollution on groundwater and surface waters. The results indicated that 75% of the agri‐environmental measures were placed in areas with low impact on groundwater and surface waters. Therefore, the effectiveness of the agri‐environmental measures concerning water‐protection aims was moderate.  相似文献   

15.
The potential of Nostoc 9v for improving the nitrogen (N)2–fixing capacity and nutrient status of semi‐arid soils from Tanzania, Zimbabwe, and South Africa was studied in a laboratory experiment. Nostoc 9v was inoculated on nonsterilized and sterilized soils. Inoculum rates were 2.5 mg dry biomass g?1 soil and 5 mg dry biomass g?1 soil. The soils were incubated for 3 months at 27 °C under 22 W m2 illumination with a photoperiod of 16 h light and 8 h dark. The moisture was maintained at 60% of field capacity. In all soils, Nostoc 9v proliferated and colonized the soil surfaces very quickly and was tolerant to acidity and low nutrient availability. Cyanobacteria promoted soil N2 fixation and had a pronounced effect on total soil organic carbon (SOC), which increased by 30–100%. Total N also increased, but the enrichment was, in most soils, comparatively lower than for carbon (C). Nitrate and ammonium concentrations, in contrast, decreased in all the soils studied. Increases in the concentration of available macronutrients were produced in most soils and treatments, ranging from 3 to 20 mg phosphorus (P) kg?1 soil, from 5 to 58 mg potassium (K) kg?1 soil, from 4 to 285 mg calcium (Ca) kg?1, and from 12 to 90 mg magnesium (Mg) kg?1 soil. Positive effects on the levels of available manganese (Mn) and zinc (Zn) were also observed.  相似文献   

16.
Predicting nitrogen (N) and sulfur (S) mineralization of crop residues from the preceding crop might be a useful tool for forecasting soil N and S availability. Two soils from eastern North Dakota and three crop residues – corn, spring wheat, and soybean were used in an 8-week incubation study to estimate N and S mineralization from crop residues. The cumulative N and S mineralized were fit to a first-order kinetic model. Cumulative N mineralized ranged between 0.34 and 2.15 mg kg?1 and 0.45 to 3.41 mg kg?1 for the Glyndon and Fargo soils, respectively. Un-amended soils showed higher N mineralization than residue treated soils. For S, the highest mineralization occurred in un-amended Glyndon soil and in spring wheat-amended Fargo soil. This study indicates that crop residue additions can have a negative impact on plant available nutrients due to immobilization of N and S during the time when crops need the nutrients most.  相似文献   

17.
An incubation experiment was carried out to investigate the impacts of residue particle size and N application on the decomposition of post-harvest residues of fast-growing poplar tree plantations as well as on the microbial biomass. Crown and root residues, differing in their C/N ratios (crown 285, root 94), were ground to two particle sizes and incubated with and without application of inorganic nitrogen (N) for 42 days in a tilled soil layer from a poplar plantation after 1 year of re-conversion to arable land. Carbon and N mineralization of the residues, microbial biomass C and N, ergosterol contents, and recovery of unused substrate as particulate organic matter (POM) were determined. Carbon mineralization of the residues accounted for 26 to 29 % of added C and caused a strong N immobilization, which further increased after N addition. N immobilization in the control soil showed that even 1 year after re-conversion, fine harvest residues still remaining in the soil were a sink for mineral N. Irrespective of the particle size, C mineralization increased only for crown residues after application of N. Nevertheless, the overall decrease in amounts of POM-C and a concurrent decrease of the C/N ratio in the POM demonstrate the mineralization of easily available components of woody residues. Microbial biomass significantly decreased during incubation, but higher cumulative CO2 respiration after N application suggests an increased microbial turnover. Higher ergosterol to microbial biomass C ratios after residue incorporation points to a higher contribution of saprotrophic fungi in the microbial community, but fungal biomass was lower after N addition.  相似文献   

18.
The potential to manipulate the N release from vegetable crop residues (cauliflower, leek) by using organic wastes was tested under field conditions on three soil textures during 2 years (silt loam, sandy loam and loamy sand). During the first year, incorporation of green waste compost and sawdust did not significantly increase microbial biomass N and did not lead to a significant N immobilization of crop residue‐N. During the second year, straw did increase microbial biomass N and showed a good N immobilization potential in all textures. The largest increase in microbial biomass N and the greatest N immobilization occurred in the loamy sand soil. The texture effect was probably because of better incorporation of the crop residues and immobilizer wastes in the loamy sand soil compared with the other textures. During spring, there was no consistent remineralization of immobilized N after the addition of malting sludge or vinasses in either year. This could be a result of the limited amount of N immobilized and available for remineralization in the first year or an unsuitable composition of the remineralizer wastes.  相似文献   

19.

Purpose

Lead (Pb) pollution is appearing as an alarming threat nowadays in both developed and developing countries. Excessive Pb concentrations in agricultural soils result in minimizing the microbiological activities which leads to the decrease in crop production. A pot experiment was conducted with the purpose to examine the deleterious effect of Pb on microbiological index under spinach cultivation.

Materials and methods

Pb was added to 5 kg soil in each pot (with 6 seeds/pot) using Pb(NO3)2 at the rate of 0, 150, 300, 450, and 600 mg kg?1 with three replications in completely randomized design. All soil microbial, enzymatic, and chemical properties and plant growth parameters and nutrient uptake were measured by standard methods.

Results and discussion

Both soil and plant measured parameters decreased after the addition of Pb (150, 300, 450, and 600 mg Pb kg?1 soil) treatments with the passage of time (from 15 to 60 days) compared with control (CK). However, high Pb levels had more suppressive effect, therefore, highest Pb level (600 mg Pb kg?1 soil) significantly (P?<?0.05) decreased the microbial biomass carbon (5.59-fold); microbial biomass nitrogen (N; 11.71-fold); microbial biomass phosphorus (P; 25.1-fold); dehydrogenase (4.02-fold); phosphatase (9.40-fold); urease (9.26-fold); pH (1.40-fold); spinach shoot (2.17-fold) and root (2.54-fold) length; shoot (2.36-fold) and root (2.69-fold) fresh weight; shoot (3.90-fold) and root (3.50-fold) dry weight; chlorophyll content (5.60-fold); carotenoid content (4.29-fold); plant macronutrients uptake, i.e., N (4.38- and 2.97-fold), P (3.88- and 6.58-fold), K (3.88- and 4.6-fold), Ca (6.60- and 6.70-fold), and Mg (5.57- and 4.45-fold); and plant micronutrient uptake, i.e., Zn (2.39- and 3.05-fold), Cu (3.70- and 2.62-fold), Fe (4.13- and 3.23-fold), and Mn (4.17- and 4.09-fold) in spinach shoot and root, respectively. Conversely, highest Pb level, i.e., 600 mg Pb kg?1 soil significantly (P?<?0.05) increased the biomass carbon (C)/nitrogen (N) (4.69-fold) and C/P (6.01-fold) ratios, soil extractable Pb (5.87-fold), and Pb uptake in spinach shoot (3.58-fold) and root (4.38-fold), respectively, at the end of the experiment, i.e., day 60.

Conclusions

Pb contamination significantly decreased the soil microbial and enzymatic activities, pH, spinach plant growth, and nutrients uptake in all the samples spiked with Pb. The degree of the influence increased with the increased Pb concentrations and incubation time, showing that Pb threshold is strongly associated with the extent of Pb concentration and time to accumulate. The soil microbial biomass, enzymatic activities, pH, and spinach physiological indices, could be used as a sensitive indicators to reflect environmental stress in soil ecosystems.  相似文献   

20.
Hyperaccumulating plants are increasingly investigated in combination with EDTA addition to soil for phytoremediation of heavy metal contaminated soils. A 60-day incubation experiment was carried out to investigate the effects of heavy metal release during the decomposition of Zn-rich (15.7 mg g?1 dry weight) Arabidopsis halleri litter on C mineralization, microbial biomass C, biomass N, ATP, and adenylate energy charge (AEC). These effects were investigated in two soils with different Zn, Cu, and Pb levels, with and without EDTA addition to soil. The sole addition of Zn-rich A. halleri litter to the two soils did not increase the contents of NH4NO3 extractable Zn, only with the combined additions of EDTA and litter was there a considerable increase, being equivalent to three times the added amount in the low metal soil and to 50% in the high metal soil. Litter amendment increased the CO2 evolved; being equivalent to 44% of the added C in the two soils, but EDTA addition had no significant effect on CO2 evolution. Litter amendment resulted also in an 18% increase in microbial biomass C, 27% increase in ATP and 6% increase in AEC in the two soils, but EDTA had again no effect on these indices at both metal levels. In contrast, the sole addition of litter had no effect on microbial biomass N, but EDTA addition increased microbial biomass N on average by 49%. The application of EDTA for chelate-assisted phytoextraction should in the future consider the risk of groundwater pollution, which is intensified by resistance of EDTA to microbial decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号