首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An in‐pond confinement system to separate channel catfish, Ictalurus punctatus, by size within a single pond provides an opportunity for improved growth of understocked fish in ponds with larger market‐sized fish. A barrier of polyvinyl chloride–coated galvanized wire mesh was constructed in five 0.10‐ha earthen ponds to partition the pond into one‐third and two‐third sections, while five other 0.10‐ha ponds were left as traditional open ponds for a control. To evaluate catfish performance in this confinement system, fingerlings (25 g) were stocked at 14,820/ha into the smaller one‐third section of the barrier and carryover fish (408 g) at 2580 kg/ha into the larger two‐third section of the barrier. The control ponds were stocked with the same sizes and numbers of fish in a traditional earthen pond without a barrier. Yield, survival, feed conversion ratio (FCR), growth, and economics were compared between treatments. Fingerling yields were greater in the barrier system that allowed fingerlings to be separated physically from larger carryover fish. There were no differences in yield of carryover fish, survival, FCR, or growth between the control and the barrier ponds. Partial budget analysis revealed a positive net change of $367/ha or $38,125 for a 104‐ha catfish farm (at a market price of $1.54/kg of additional stockers produced). The value of the greater weight of understocked fish produced in the barrier system was greater than the annualized cost of installing the barrier, for farmers raising fish in multiple batch. Thus, on an experimental basis, the confinement system was economically profitable; however, trials on commercial farms are needed to evaluate performance on a larger scale.  相似文献   

2.
Abstract.— This study was conducted to evaluate the effects of satiate or restricted feeding on the growth and production of golden shiners Notemigonus crysoleucas . Golden shiners (1.2 g) stocked at 560 kg/ha in 12,0.04-ha earthen ponds for 79 d grew to average weights of 5.6, 4.6 and 3.8 g for fish fed to satiation, or 75% or 50% of that amount, respectively. Gross yield ranged from 811 to 1,277 kg/ha; net yield did not differ significantly among treatments.  相似文献   

3.
To address the preference of mud crab farmers for larger size Scylla serrata juveniles (5.0–10 g body weight or BW; 3.0–5.0 cm internal carapace width or ICW), a study was conducted to compare the growth and survival of crab juveniles (2.0–5.0 g BW; 1.0–3.0 cm ICW) produced a month after stocking of megalopae in net cages when reared further in net cages installed in earthen ponds or when stocked directly in earthen ponds. In a 3 × 2 factorial experiment, three stocking densities (1, 3 and 5 ind m−2), two types of rearing units (net cages or earthen pond) were used. Megalopae were grown to juvenile stage for 30 days in net cages set inside a 4000 m2 brackishwater pond and fed brown mussel (Modiolus metcalfei). Crab juveniles were then transferred to either net cages (mesh size of 1.0 mm) or earthen ponds at three stocking densities. After 1 month, no interaction between stocking density and rearing unit was detected so data were pooled for each stocking density and rearing unit. There were no significant differences in the growth or survival rate of crab juveniles across stocking density treatments. Regardless of stocking density, survival in net cages was higher (77.11±6.62%) than in ponds (40.41±3.59%). Growth, however, was significantly higher for crab juveniles reared in earthen ponds. The range of mean BW of 10.5–16.0 g and an ICW of 3.78–4.33 cm obtained are within the size range preferred by mud crab operators for stocking grow‐out ponds.  相似文献   

4.
A supplementary feed containing 30% coffee pulp was evaluated for use in the culture of Tilapia aurea in El Salvador, Central America. A comparison of the coffee pulp feed with a feed containing all of the same ingredients except coffee pulp was made with T. aurea raised in 1.0-m3 cages suspended in a fertilized earthen pond. Survival was high in all treatments and there was no significant difference in average weight gain between groups of fish receiving the two experimental feeds. Production trials were conducted in 100-m2 fish pens and in 0.05-ha earthen ponds. Pen-raised fish receiving coffee pulp feed grew faster throughout the experiment, and total production was approximately twice that in control treatments. Highest production in pens was 1.25 kg/m2 per year. Results of production pond trials using T. aurea at 9 000/ha and stocked with the piscivorous Cichlasoma managuense yielded an estimated 3 392 kg/ha per year in fed treatments and 2 049 kg/ha per year in controls. Low feed conversion (1.92) and low feed cost resulted in an increase in net annual earnings of $251.00/ha.  相似文献   

5.
To quantitatively define relationships among stocking densities, feeding rates, water quality, and production costs for channel catfish, Ictalurus punctatus, grown in multiple‐batch systems, twelve 0.1‐ha earthen ponds were stocked at 8,600, 17,300, 26,000, or 34,600 fingerlings/ha along with 2,268 kg/ha of carryover fish. Fish in all ponds were fed daily to apparent satiation using 32% protein floating feed. Temperature and dissolved oxygen in each pond were monitored twice daily; pH weekly; nitrite‐N, total ammonia nitrogen, and Secchi disk visibility every 2 wk; nitrate‐N, chlorophyll a, total nitrogen, total phosphorus, and chemical oxygen demand monthly; and chloride every other month. The costs of producing channel catfish at different stocking densities were estimated. There were no significant differences (P > 0.05) as a result of stocking density among treatment means of (1) gross or net yields, (2) mean weights at harvest, and (3) growth or survival of fingerlings (24–36%) and carryover fish (77–94%). Mean and maximum daily feeding rates ranged from 40 to 53 kg/ha/d and 123 to 188 kg/ha/d, respectively, and feed conversion ratios averaged 1.75. There were no differences in any feed‐related parameter as a result of density. Water quality variables showed few differences among densities at samplings and no differences when averaged across the production season. Yield of fingerlings increased as stocking density increased with significant differences between the two highest and the two lowest stocking densities. Breakeven prices were lower at the higher stocking densities as a result of the higher yield of understocked fish and similar mean individual fish weights produced at these higher stocking densities. Overall, varying stocking densities of fingerlings in multiple‐batch systems had little effect on production efficiency and water quality. Additional research on managing the population structure of carryover fish in commercial catfish ponds may be warranted.  相似文献   

6.
This study evaluated three different pond‐based production systems for raising largemouth bass, Micropterus salmoides, for the food fish market, using nine 0.04‐ha ponds. Treatments included traditional ponds (TP), intensively aerated ponds (IAP), and split‐pond systems (SPS). TP and SPS ponds were aerated at 9.3 kW/ha, while IAP was aerated at 18.6 kW/ha. TP was stocked at 7,500 fish per ha (three replicates per treatment), and the other two production systems (SPS, IAP) were stocked with 12,500 fish per ha. Feed‐habituated advanced fingerlings (128 ± 47.6 g mean individual weight) were cultured for 157 days. Fish were fed a formulated diet (42% protein, 16% lipid) four times a day, feeding with a maximum allowance of 3% of total body weight and readjusted to the initial body weight biweekly. Fish raised in the SPS displayed a significantly lower specific growth rate, lower individual final weight, and lower weight gain, but the biomass gained was significantly higher than TP but not IAP. Final biomass gained was 50% higher in the SPS and IAP than in the TP. Survival rate and feed conversion ratio were not significantly different among treatments and ranged from 71 to 79% and 1.64 to 2.14, respectively.  相似文献   

7.
Five pond management strategies for Nile tilapia Oreochromis niloticus L. production were evaluated in 0.1‐ha earthen ponds in Egypt during a 145‐day production cycle. Pond management strategies developed by the Pond Dynamics/Aquaculture Collaborative Research Support Programme (PD/A CRSP) were compared with a traditional and a modified Egyptian pond management strategy. Young‐of‐year Nile (mixed‐sex or sex‐reversed) tilapia were stocked into ponds at 20 000 fish ha?1. Sex‐reversed tilapia were stocked into chemical fertilization, organic fertilization plus formulated feed and feed only treatment ponds, whereas mixed‐sex tilapia were stocked into organic fertilization plus formulated feed and chemical plus organic fertilization plus formulated feed treatment ponds. Nile tilapia yields ranged from 1274 to 2929 kg ha?1. Nile tilapia yields in organic fertilization plus formulated feed treatments were significantly greater than the yield from chemical fertilization ponds. PD/A CRSP pond management strategies did not produce significantly greater Nile tilapia yields than the traditional Egyptian system, but a larger percentage of harvested tilapia in the organic fertilization plus feed treatments were classified in the first and second class size categories compared with the traditional Egyptian system. Organic fertilization plus formulated feed pond management strategies had the highest net returns, average rate of return on capital and the highest margin between average price and break‐even prices to cover total variable costs or total costs.  相似文献   

8.
A study was conducted to examine the efficacy of crystalline lysine in alternative diets for pond‐raised hybrid catfish, ♀ Ictalurus punctatus × ♂ Ictalurus furcatus. Two 28% protein alternative diets supplemented with l ‐lysine HCl at the required level based on 62% (previously published value) or 100% lysine availability were compared with a traditional 28% protein control diet. Hybrid catfish fingerlings (mean initial weight = 43 g/fish) were stocked into 15 earthen ponds (0.04 ha) at a density of 14,826 fish/ha with five ponds per treatment. Fish were fed once daily to apparent satiation for a 173‐d growing season. There were no significant differences in total diet fed, net yield, weight gain, and survival among dietary treatments. There were also no significant differences in carcass yield, fillet yield, and fillet proximate composition and fillet lysine concentration among treatments. Fish fed the traditional control diet had slightly, but significantly, lower feed conversion ratio than fish fed alternative diets, which is likely related to higher dietary fiber levels in the alternative diets. Results from this study show that crystalline lysine can be considered 100% available when used to supplement lysine‐deficient diets for pond‐raised hybrid catfish.  相似文献   

9.
Fingerling channel catfish Ictaturus punctarus were stocked into eight 0.04-ha ponds at 12,500 fishlha (treatment 1) and 50,000 fish/ha (treatment 2) with four ponds per treatment. At the end of of phase I (59 d) 50% of the fish were removed from each of the ponds in treatment 2 and divided equally into two ponds, forming treatment 3 (eight ponds at a density of 12,500 fish/ha). The remaining fish in treatment 2 (25,000 fish/ha) were maintained in the original ponds until the end of phase II (36 d). At this time, the fish were removed and equally divided at a density of 12,500 fish/ha into separate ponds. These ponds were continued to be denoted as treatment 2. All fish were grown for a total of 188 d. Production characteristics between treatments were compared at phases and at the end of the 188 d. There was no significant difference in feed conversion ratios due to treatment. The individual weights of the fish were higher in treatment I, but the difference occurred only in phase I. Size variabilities in treatments 2 and 3 were also higher than in treatment 1, which may cause a decrease in the percentage of marketable fish. Although there were some adverse effects due to the initial high stocking densities, overall pond production was higher in treatments 2 and 3. Treatment 2 had a daily net production of 49.9 ± 3.43 kg/ha and treatment 3 had 44.6 ± 3.81 kg/ha per d, compared to treatment 1 with only 32.4 ± 1.06 kg/ha per d (mean ± SD).  相似文献   

10.
Sunshine bass from Phase I or pond production were graded into two weight classes, 3 and 5 g, and stocked into experimental earthen ponds at a density of either 8,649/ha or 11,120/ ha in a 2 × 2 factorial design. After stocking, the fish were fed a commercially manufactured feed (43.0-45.5% crude protein) twice daily to satiation for 17 mo. At harvest, mean survival ranged from 67.4 to 84.8% but was highest for the fish stocked at 5g. Average production Tor ponds stocked at 8,649/ha and 11,120/ha, regardless of stocking weight, was 4,506 kg/ha and 5350 kg/ha, respectively. Production and percentages of assigned weight classes were not significantly different among treatments as a result of wide variation among replicates. Using size-dependent market prices assigned to the different harvest size groups, an economic analysis revealed gross receipts, variable costs, and total costs for the 11,120/ha 5-g treatment. Net returns were not significantly different among the four treatments due to large variation among replicates per treatment. These results confirm that the traditional phase II of pond production can be eliminated in favor of a direct stocking of phase I fish into a single production phase and economically competes very well with traditional three-phase growout management. The potential reduction in turnover time of production units achieved through the direct stock practice is an efficiency trait that should translate into significantly higher returns and a greater profit over the long term. Further reduction of stocking density combined with a stocking weight greater than 5 g should translate into greater proportion of larger, higher valued fish at harvest and a growout period of 18-20 mo, rather than the 24-30 mo traditionally needed for the combined phase II and phase III of production.  相似文献   

11.
Silver perch fingerlings (mean weight 15.3 g) were stocked at densities of 21 000 and 7000 fish/ha in six 0.1-ha earthen ponds and cultured for 10 months. There were three replicate ponds for each density. Ponds were aerated for at least 11 h a day and water was added every 4 weeks to replace that lost by evaporation and seepage. Fish were fed a formulated diet containing 35% crude protein at 4% body weight per day for the first 4 weeks and at rates up to 3% thereafter. The mean annual production rate of 9819 kg/ha of fish stocked at 21 000/ha was significantly higher (P < 0.01) than the annual rate of 3699 kg/ha of fish stocked at 7000/ha. The maximum daily production and growth rates achieved in any pond over a 1-month period during summer were 97.7 kg/ha and 5.1 g/fish, respectively. Stocking density did not significantly (P > 0.05) affect survival rate (treatment means for 21 000 and 7000 fish/ha: 92.8 and 94.7%), daily growth rate (0.2–3.3 and 0.3–3.4 g/fish), weight at harvest (434.9 and 473.2 g), food conversion ratio (1.9:1 and 1.8:1) and cost of feeding ($A1.55 and $A1.47/kg), suggesting that higher stocking densities and production rates are possible. Water temperatures ranged from 11.1 to 30.0 °C. Significantly (P < 0.05) slower growth during December was associated with concentrations of NH3-N up to 0.65 mg/l. The results demonstrate that silver perch is an excellent species for semi-intensive culture in static earthen ponds with the potential to form the basis of a large industry in Australia, based on high-volume, relatively low-cost production.  相似文献   

12.
The presence of carryover (fish >350 g stocked the previous year but not yet market size) channel catfish, Ictalurus punctatus, in multiple‐batch production ponds has been shown to affect overall production performance and costs. However, little attention has been paid to effects of varying biomasses of carryover fish in ponds. Twelve 0.1‐ha earthen ponds were stocked March 20, 2007, with 15,000 catfish fingerlings per ha (mean weight 31 g), and carryover fish at either 726, 1460, or 2187 kg/ha (mean weight 408 g, range 204–703 g) to compare the effect of three different biomasses of carryover catfish on the production performance of understocked fingerlings. Gross and net yields increased with increasing biomass of carryover fish. Growth and mean weight at harvest of fingerlings were significantly greater at the lowest biomass of carryover fish (<1460 kg/ha), but there was no difference between the medium and high carryover density treatments. Net returns were highest with the highest biomass of carryover fish, but fell by $688/ha in Year 2 because of slower growth of fingerlings in Year 1.  相似文献   

13.
Diets containing 28% and 32% crude protein were compared for pond‐raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04‐ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia‐nitrogen (TAN) and nitrite‐nitrogen (NO2‐N) than ponds stocked at lower densities. However, stocking density had no significant effect on un‐ionized ammonia‐nitrogen (NH3‐N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single‐batch cropping systems. Optimum dietary protein concentration for pond‐raised channel catfish does not appear to be affected by stocking density.  相似文献   

14.
Restaurant patrons, particularly in upscale locations, increasingly prefer entrées developed from portions cut from fillets larger than those currently sold by the US catfish, Ictalurus punctatus, industry. A production study evaluated the feasibility of producing the necessary size (1.6 kg) of catfish. Twelve 0.1‐ha earthen ponds were stocked with 0.363‐kg channel catfish at 2500 (low); 5000 (medium); or 7500 (high) fish/ha, with four replicates. Mean individual weight at harvest exceeded the mean target weight (1.6 kg) at the two lower densities, and the minimum target weight (1.36 kg) at the highest density. Percentages of fish (by weight) that did not meet the minimum weight required were: 1, 5, and 18%, in the low, medium, and high density treatments, respectively. Yields were significantly greater at higher densities (P < 0.05). Costs of production at the two higher densities were 4 to 7% higher than in the traditional multiple‐batch system, but increased to 51% at the lowest density. Results demonstrated the biological feasibility of producing channel catfish of a mean weight of 1.6 kg. Economic feasibility depends on (1) the price premium paid and (2) development of a market for fish sizes between current acceptable maximum sizes accepted and 1.36 kg.  相似文献   

15.
Abstract.— Bighead carp Hypophthalmichthys nobilis have been raised in the United States for two decades and sold through the livehaul market, but their profitability in monoculture has not been evaluated. Three studies were conducted in 0.10-ha earthen ponds to evaluate the effect of bighead carp stocking density on growth, yield, dressout yield. and net returns. Initially, bighead carp (average weight of 0.36 kg) were stocked at rates of 500, 320, or 130 fish/ha with three replicates of each treatment. Stocking rates for 2-yr-old fish (average weight of 2.45 kg) were reduced to 320, 220, or 130 fish/ha in the second year. Net yields of bighead carp stocked at 500 fish/ha (963 kg/ha) were significantly higher ( P < 0.05) than net yields at the 320 fishha density (771 kg/ha), and these were significantly greater ( P < 0.05) than net yields at 130 fish/ha (369 kg/ha) in the first growing season. Net yields in the second growing season were not significantly different ( P > 0.05) among densities. There were no significant differences ( P > 0.05) among treatments in yearly growth which ranged from 11–17 g/d in the first and from 6–13 g/d in the second growing season. Dressout percentages for whole-dressed, steak, shank fillet, and shank fillets with white meat only did not differ with stocking density ( P > 0.05). Enterprise and partial budget analysis indicated that monoculture of bighead carp in fertilized ponds is profitable only in the short run at average livehaul market prices, because revenues exceeded variable but not fixed costs. The negative net returns, when all costs were accounted for, indicated that it is not profitable to construct ponds solely for monoculture of bighead carp.  相似文献   

16.
Growth, net production, and survival rates of milkfish cultured with Gracilariopsis bailinae at two stocking density combinations (T1– 30 fingerlings 100‐m?2 pond+1‐kg G. bailinae 4‐m?2 net cage, T2– 30 fingerlings 100‐m?2 pond+2‐kg G. bailinae 4‐m?2 net cage) in brackish water earthen ponds over four culture periods were determined. The control (T3) was stocked at 30 fingerlings 100‐m?2 pond. Specific growth and production rates of G. bailinae were also calculated. There were no significant differences in mean growth, survival, and net production rates of milkfish between the three treatments. Irrespective of stocking singly or in combination with G. bailinae, significantly higher mean growth and mean production rates for milkfish were obtained during the third culture period of year 1 than those obtained from the other culture periods. Survival rates were not significantly different among the four culture periods. There were no significant differences in mean specific growth and mean net production rates between the two stocking densities of G. bailinae. Significantly higher mean specific growth and mean net production rates of red seaweed were also obtained during the third culture period of year 1 than those obtained from other culture periods. The production of milkfish and red seaweed was higher during the dry season. Growth rates of milkfish was positively correlated with temperature and salinity, while net production rates were positively correlated with temperature and total rainfall, but was inversely correlated with dissolved oxygen. G. bailinae growth and net production rates were positively correlated with water temperature and salinity. Results show that milkfish can be polycultured with G. bailinae grown in net cages in brackish water ponds at stocking density combination of 30 fingerlings 100‐m?2 pond+1‐kg G. bailinae 4‐m?2 net cage.  相似文献   

17.
An experiment on integrated duck-cum-fish farming was conducted in 11 ponds of 0.1 ha each at the Fisheries Research Institute, Mymensingh, Bangladesh. Khaki Campbell layer ducks Anas platyrhychos were housed directly over the pond water surface at 200, 400 and 500 dncks/ha. Each density had three replicate ponds and two ponds had no ducks. Fish fingerlings were stocked at a total density of 8,850/ha. The species composition was silver carp Hypophthalmicthys molitrix 33.9%; catla Catla catla 12.4%; rohu Labeo rohita 18.1%; mrigal Cirrhina mrigala 28.8%. grass carp Ctenopharyngodon idella 1.4% and sor puti Puntius gonlonotus 5.4%. The fish were not given any supplemental feed, and the ponds were not fertilized except for the split duck feed and duck manure falling directly into the ponds. Ducks were fed with a feed formulated from locally available ingredients.
After one year the fish were harvested. The yield of fish increased with an increase in duck density. Highest net fish production of 4,250 kg/ha/yr was obtained from ponds with 500 ducks/ ha, compared to 490 kg/ha/yr from the control ponds. Manure of each duck contributed a net fish yield of 6.9–7.5/yr. Average egg production was 237 eggs per female duck per year. Economic analysis of the technology showed a net profit of about 100% of the total costs, indicating the economic viability of the technology.  相似文献   

18.
Multiple‐batch production is the most widely practiced method of raising channel catfish. Producers are increasingly adopting intensified production practices in multiple‐batch systems by increasing stocking density and aeration rates as a means to improve cost efficiencies. Proven stocking recommendations are required for the efficient implementation of recent developments in multiple‐batch production. Twelve 0.4‐ha ponds were understocked with 17,484, 20,612, and 26,124 fingerlings/ha (mean weight = 40 g/fish) over equal weights of carryover fish (0.46 kg/fish @ 4,589 kg/ha). Fish were fed once daily to apparent satiation with a 28% protein floating feed and aerated with a single 7.4‐kW electric paddlewheel aerator. Density‐dependent significant differences were absent for gross, net, daily net yields, marketable yields (≥0.54 kg), growth (g/day), and survival. Sub‐marketable yield (<0.54 kg) and feeding rate increased significantly with increased understocking density. Economic analysis revealed increased breakeven prices and diminished net returns with increased stocking density when sub‐marketable fish were not considered as revenue. These differences in production costs and profits among the three treatments became minimal when sub‐marketable fish were included as revenue. All three density treatments attained positive annual net cash flows. This study validates channel catfish understocking densities of 17,000–26,000 fish/ha to improve cost efficiency in intensively aerated, multiple‐batch production systems.  相似文献   

19.
Abstract— Alternative fish species that can be cultured together with catfish Ictalurus punctatus provide an opportunity to diversify caffish farms. A 2-yr study was conducted in 0.10-ha earthen ponds to evaluate the effect of bighead carp (BHC) stocking density on growth, yield, dressout yield, and net returns. Initially, bighead carp (average weight of 22 g) were stocked at rates of 380, 750, or 1,130 fishha in ponds with catfish. Caffish were cultured under commercial conditions by stocking caffish at a density of 12,500/ha, aerating nightly and feeding at an average rate of 82 kgha per d. Stocking rates for 2-yr-old fish were reduced to 77, 260, and 435/ha in the second growing season. There were no significant differences among treatments ( P > 0.05) in summer growth of bighead carp in either year. Bighead carp stocked at 1,130 fishha had significantly higher yields than those stocked at 380/ha, but did not reach minimum market size of 2.2 kg during the first year ( P > 0.05). There were no significant differences ( P > 0.05) in caffish growth, yield, survival, or feed conversion ratios due to the bighead carp stocking densities. Partial budget analysis indicated that net benefits were positive for all three treatments over a range of prevailing prices of bighead carp. Bighead carp production in catfish ponds is economically feasible over a wide range of prices. Given the market risk of producing smaller fish at the higher density, the medium density is the preferred stocking density of fingerling bighead carp in catfish ponds.  相似文献   

20.
Two experiments were conducted in consecutive years to evaluate the responses of hybrid catfish, ♀ Ictalurus punctatus × ♂ Ictalurus furcatus, to “superdosing” of 6‐phytase added to existing commercial catfish feeds. In each experiment, two diets with or without a phytase superdose (2500 and 5000 phytase units/kg, respectively) were compared. In Experiment 1, fingerlings (mean weight: 59 g/fish) were stocked in 17 0.4‐ha earthen ponds at 17,290 fish/ha and were fed once daily to apparent satiation for 198 d. In Experiment 2, fingerlings (mean weight: 47 g/fish) were stocked in 10 0.4‐ha ponds at 24,710 fish/ha and were fed for 128 d. In both experiments, there were no significant differences in total feed fed, gross yield, final fish weight, survival, or Blood packed cell volume between fish fed diets with or without phytase. The diets also had no significant effects on pond water column total phosphorus or chlorophyll a concentrations, but soluble reactive phosphorus concentrations were significantly higher in ponds receiving the phytase diet in Experiment 2. Phytase superdosing of nutritionally complete feeds does not appear to have additional benefits beyond the standard phytase dose on production characteristics or packed cell volume of pond‐raised hybrid catfish and had no beneficial effects on water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号