首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The purpose of the study was to determine pharmacokinetics of fentanyl after intravenous (i.v.) and transdermal (t.d.) administration to six adult alpacas. Fentanyl was administered i.v. (2 μg/kg) or t.d. (nominal dose: 2 μg kg?1 hr?1). Plasma concentrations were determined using liquid chromatography–mass spectrometry. Heart rate and respiratory rate were assessed. Extrapolated, zero‐time plasma fentanyl concentrations were 6.0 ng/ml (1.7–14.6 ng/ml) after i.v. administration, total plasma clearance was 1.10 L hr?1 kg?1 (0.75–1.40 L hr?1 kg?1), volumes of distribution were 0.30 L/kg (0.10–0.99 L/kg), 1.10 L/kg (0.70–2.96 L/kg) and 1.5 L/kg (0.8–3.5 L/kg) for V1, V2, and Vss, respectively. Elimination half‐life was 1.2 hr (0.5–4.3 hr). Mean residence time (range) after i.v. dosing was 1.30 hr (0.65–4.00 hr). After t.d. fentanyl administration, maximum plasma fentanyl concentration was 1.20 ng/ml (0.72–3.00 ng/ml), which occurred at 25 hr (8–48 hr) after patch placement. The area under the plasma fentanyl concentration‐vs‐time curve (extrapolated to infinity) after t.d. fentanyl was 61 ng*hr/ml (49–93 ng*hr/ml). The dose‐normalized bioavailability of fentanyl from t.d. fentanyl in alpacas was 35.5% (27–64%). Fentanyl absorption from the t.d. fentanyl patch into the central compartment occurred at a rate of approximately 50 μg/hr (29–81 μg/hr) between 8 and 72 hr after patch placement.  相似文献   

2.
Compartmental models were used to investigate the pharmacokinetics of intravenous (i.v. ), oral (p.o. ), and topical (TOP ) administration of dimethyl sulfoxide (DMSO ). The plasma concentration–time curve following a 15‐min i.v. infusion of DMSO was described by a two‐compartment model. Median and range of alpha (t 1/2α) and beta (t 1/2β) half‐lives were 0.029 (0.026–0.093) and 14.1 (6.6–16.4) hr, respectively. Plasma concentration–time curves of DMSO following p.o. and TOP administration were best described by one‐compartment absorption and elimination models. Following the p.o. administration, median absorption (t 1/2ab) and elimination (t 1/2e) half‐lives were 0.15 (0.01–0.77) and 15.5 (8.5–25.2) hr, respectively. The plasma concentrations of DMSO were 47.4–129.9 μg/ml, occurring between 15 min and 4 hr. The fractional absorption (F ) during a 24‐hr period was 47.4 (22.7–98.1)%. Following TOP administrations, the median t 1/2ab and t 1/2e were 1.2 (0.49–2.3) and 4.5 (2.1–11.0) hr, respectively. Plasma concentrations were 1.2–8.2 μg/ml occurring at 2–4 hr. Fractional absorption following TOP administration was 0.48 (0.315–4.4)% of the dose administered. Clearance (Cl) of DMSO following the i.v. administration was 3.2 (2.2–6.7) ml hr?1 kg?1. The corrected clearances (ClF ) for p.o. and TOP administrations were 2.9 (1.1–5.5) and 4.5 (0.52–18.2) ml hr?1 kg?1.  相似文献   

3.
This study describes the pharmacokinetics of intravenously administered (i.v.) fentanyl citrate, and its primary metabolite norfentanyl in Holstein calves. Eight calves (58.6 ± 2.2 kg), aged 3–4 weeks, were administered fentanyl citrate at a single dose of 5.0 μg/kg i.v. Blood samples were collected from 0 to 24 hr. Plasma (nor)fentanyl concentrations were determined using liquid chromatography with mass spectrometry and a lower limit of quantification (LLOQ ) of 0.03 ng/ml. To explore the effect of analytical performance on fentanyl parameter estimation, the noncompartmental pharmacokinetic analysis was then repeated with a hypothetical LLOQ value of 0.05 ng/ml. Terminal elimination half‐life was estimated at 12.7 and 3.6 hr for fentanyl and norfentanyl, respectively. For fentanyl, systemic clearance was estimated at 2.0 L hr?1 kg?1, volume of distribution at steady‐state was 24.8 L/kg and extraction ratio was 0.42. At a hypothetical LLOQ of 0.05 ng/ml fentanyl half‐life, volume of distribution at steady‐state and clearance were, respectively, of 3.0 hr, 8.8 L/kg and 3.4 L kg?1 hr?1. Fentanyl citrate administered i.v. at 5.0 μg/kg can reach levels associated with analgesia in other species. Pharmacokinetic parameters should be interpreted with respect to LLOQ , as lower limits can influence estimated parameters, such as elimination half‐life or systemic clearance and have significant impact on dosage regimen selection in clinical practice.  相似文献   

4.
The pharmacokinetics of orbifloxacin was studied after a single dose (7.5 mg/kg) of intravenous or intramuscular administration to crucian carp (Carassius auratus ) reared in freshwater at 25°C. Plasma samples were collected from six fish per sampling point. Orbifloxacin concentrations were determined by high‐performance liquid chromatography with a 0.02 μg/ml limit of detection, then were subjected to noncompartmental analysis. After intravenous injection, initial concentration of 5.83 μg/ml, apparent elimination rate constant (λz) of 0.039 hr?1, apparent elimination half‐life (T1/2λz) of 17.90 hr, systemic total body clearance (Cl) of 75.47 ml hr?1 kg?1, volume of distribution (Vz) of 1,948.76 ml/kg, and volume of distribution at steady‐state (Vss) of 1,863.97 ml/kg were determined, respectively. While after intramuscular administration, the λz, T 1/2λz, mean absorption time (MAT ), absorption half‐life (T 1/2ka), and bioavailability were determined as 0.027 hr?1, 25.69, 10.26, 7.11 hr, and 96.46%, respectively, while the peak concentration was observed as 3.11 ± 0.06 μg/ml at 2.0 hr. It was shown that orbifloxacin was completely but relatively slowly absorbed, extensively distributed, and slowly eliminated in crucian carp, and an orbifloxacin dosage of 10 mg/kg administered intravenously or intramuscularly would be expected to successfully treat crucian carp infected by strains with MIC values ≤0.5 μg/ml.  相似文献   

5.
Potassium bromide overdose (bromism) in the management of canine epilepsy has been known. However, a protocol to reduce bromide concentrations rapidly has not been previously established. The effects of three infusion fluids with different chloride contents on the steady‐state serum concentrations of bromide in beagles were determined. After stabilization of the serum bromide concentrations, seven dogs were infused with saline (Na+ 154 mmol/L; Cl? 154 mmol/L), lactated Ringer's (Na+ 131 mmol/L; Cl? 110 mmol/L), or maintenance solutions (Na+ 35 mmol/L; Cl? 35 mmol/L) at a rate of 2 or 10 ml kg?1 hr?1 for 5 hr. Serum and urine were collected hourly, and the bromide concentrations were measured. When saline and lactated Ringer's solutions were infused at a rate of 10 ml kg?1 hr?1 for 5 hr, serum bromide concentrations were decreased by 14.24% and urine bromide concentrations by 17.63%, respectively. Of all compositions of infusion fluids, only sodium and chloride contents were associated with the decreased serum concentrations and the increased renal clearance of bromide. In summary, saline and lactated Ringer's solutions reduced serum bromide concentrations in a sodium chloride‐dependent manner in dogs were found when infused at 10 ml kg?1 hr?1 for 5 hr.  相似文献   

6.
The pharmacokinetic profile of posaconazole in clinically normal koalas (n = 8) was investigated. Single doses of posaconazole were administered intravenously (i.v.; 3 mg/kg; n = 2) or orally (p.o.; 6 mg/kg; n = 6) with serial plasma samples collected over 24 and 36 hr, respectively. Plasma concentrations of posaconazole were quantified by validated high‐performance liquid chromatography. A noncompartmental pharmacokinetic analysis of data was performed. Following i.v. administration, estimates of the median (range) of plasma clearance (CL) and steady‐state volume of distribution (Vss) were 0.15 (0.13–0.18) L hr?1 kg?1 and 1.23 (0.93–1.53) L/kg, respectively. The median (range) elimination half‐life (t1/2) after i.v. and p.o. administration was 7.90 (7.62–8.18) and 12.79 (11.22–16.24) hr, respectively. Oral bioavailability varied from 0.43 to 0.99 (median: 0.66). Following oral administration, maximum plasma concentration (Cmax; median: 0.72, range: 0.55–0.93 μg/ml) was achieved in 8 (range 6–12) hr. The in vitro plasma protein binding of posaconazole incubated at 37°C was 99.25 ± 0.29%. Consideration of posaconazole pharmacokinetic/pharmacodynamic (PK/PD) targets for some yeasts such as disseminated candidiasis suggests that posaconazole could be an efficacious treatment for cryptococcosis in koalas.  相似文献   

7.
The purpose of this study was to evaluate the pharmacokinetics of cefquinome (CFQ ) following single intravenous (IV ) or intramuscular (IM ) injections of 2 mg/kg body weight in red‐eared slider turtles. Plasma concentrations of CFQ were determined by high‐performance liquid chromatography and analyzed using noncompartmental methods. The pharmacokinetic parameters following IV injection were as follows: elimination half‐life (t 1/2λz) 21.73 ± 4.95 hr, volume of distribution at steady‐state (V dss) 0.37 ± 0.11 L/kg, area under the plasma concentration–time curve (AUC 0–∞) 163 ± 32 μg hr?1 ml?1, and total body clearance (ClT) 12.66 ± 2.51 ml hr?1 kg?1. The pharmacokinetic parameters after IM injection were as follows: peak plasma concentration (C max) 3.94 ± 0.84 μg/ml, time to peak concentration (T max) 3 hr, t 1/2λz 26.90 ± 4.33 hr, and AUC 0–∞ 145 ± 48 μg hr?1 ml?1. The bioavailability after IM injection was 88%. Data suggest that CFQ has a favorable pharmacokinetic profile with a long half‐life and a high bioavailability in red‐eared slider turtles. Further studies are needed to establish a multiple dosage regimen and evaluate clinical efficacy.  相似文献   

8.
Bayesian population pharmacokinetic models of florfenicol in healthy pigs were developed based on retrospective data in pigs either via intravenous (i.v.) or intramuscular (i.m.) administration. Following i.v. administration, the disposition of florfenicol was best described by a two‐compartment open model with the typical values of half‐life at α phase (t 1/2α), half‐life at β phase (t 1/2β), total body clearance (Cl), and volume of distribution (V d) were 0.132 ± 0.0289, 2.78 ± 0.166 hr, 0.215 ± 0.0102, and 0.841 ± 0.0289 L kg?1, respectively. The disposition of florfenicol after i.m. administration was best described by a one‐compartment open model. The typical values of maximum concentration of drug in serum (C max), elimination half‐life (t 1/2Kel), Cl, and Volume (V ) were 5.52 ± 0.605 μg/ml, 9.96 ± 1.12 hr, 0.228 ± 0.0154 L hr?1 kg?1, and 3.28 ± 0.402 L/kg, respectively. The between‐subject variabilities of all the parameters after i.m. administration were between 25.1%–92.1%. Florfenicol was well absorbed (94.1%) after i.m. administration. According to Monte Carlo simulation, 8.5 and 6 mg/kg were adequate to exert 90% bactericidal effect against Actinobacillus pleuropneumoniae after i.v. and i.m. administration.  相似文献   

9.
NSAID s are often used in horses with colic syndrome during the postoperative period, due to their ability to contrast endotoxemia and to promote an analgesic and anti‐inflammatory effect. As the pharmacokinetics of a drug are often modified in unhealthy animals compared to healthy subjects, the aim of this study was to evaluate the pharmacokinetic profile of meloxicam after i.v. administration in horses undergoing laparotomy for colic syndrome. Eight horses received 0.6 mg/kg of meloxicam i.v. towards the end of surgery. Blood samples were taken at scheduled time points during the following 24 hr. The serum concentration of the drug was determined by HPLC . Terminal half‐life (6.88 ± 2.96 hr), volume of distribution at steady‐state (186.53 ± 61.20 ml/Kg) and clearance (27.91 ± 5.72 ml kg?1 hr?1) were similar to those reported in literature for healthy horses. This result suggests that no adjustment of the approved dose should be necessary when meloxicam is used to treat horses in the immediate postoperative period after surgery for colic syndrome.  相似文献   

10.
Nine horses received 20 mg/kg of intravenous (LEVIV ); 30 mg/kg of intragastric, crushed immediate release (LEVCIR ); and 30 mg/kg of intragastric, crushed extended release (LEVCER ) levetiracetam, in a three‐way randomized crossover design. Crushed tablets were dissolved in water and administered by nasogastric tube. Serum samples were collected over 48 hr, and levetiracetam concentrations were determined by immunoassay. Mean ± SD peak concentrations for LEVCIR and LEVCER were 50.72 ± 10.60 and 53.58 ± 15.94 μg/ml, respectively. The y ‐intercept for IV administration was 64.54 ± 24.99 μg/ml. The terminal half‐life was 6.38 ± 1.97, 7.07 ± 1.93 and 6.22 ± 1.35 hr for LEVCIR , LEVCER , and LEVIV , respectively. Volume of distribution at steady‐state was 630 ± 73.4 ml/kg. Total body clearance after IV administration was 74.40 ± 19.20 ml kg?1 hr?1. Bioavailability was 96 ± 10, and 98 ± 13% for LEVCIR and LEVCER , respectively. A single dose of Levetiracetam (LEV ) was well tolerated. Based on this study, a recommended dosing regimen of intravenous or oral LEV of 32 mg/kg every 12 hr is likely to achieve and maintain plasma concentrations within the therapeutic range suggested for humans, with optimal kinetics throughout the dosing interval in healthy adult horses. Repeated dosing and pharmacodynamic studies are warranted.  相似文献   

11.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight adult female Boer goats. A dose of 2.2 mg/kg was administered intravenously (IV) and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after flunixin meglumine for both routes of administration. Mean λz‐HL after IV administration was 6.032 hr (range 4.735–9.244 hr) resulting from a mean Vz of 584.1 ml/kg (range, 357.1–1,092 ml/kg) and plasma clearance of 67.11 ml kg?1 hr?1 (range, 45.57–82.35 ml kg?1 hr?1). The mean Cmax, Tmax, and λz‐HL for flunixin following TD administration was 0.134 μg/ml (range, 0.050–0.188 μg/ml), 11.41 hr (range, 6.00–36.00 hr), and 43.12 hr (15.98–62.49 hr), respectively. The mean bioavailability for TD flunixin was calculated as 24.76%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.28 μg/ml (range, 0.08–0.69 μg/ml) and was only achieved with IV formulation of flunixin in this study. The PK results support clinical studies to examine the efficacy of TD flunixin in goats. Determining the systemic effects of flunixin‐mediated PGE2 suppression in goats is also warranted.  相似文献   

12.
This study determined the pharmacokinetics, antinociceptive, and anti‐inflammatory effects of the soluble epoxide hydrolase (sEH ) inhibitor t ‐TUCB (trans ‐4‐{4‐[3‐(4‐Trifluoromethoxy‐phenyl)‐ureido]‐cyclohexyloxy}‐benzoic acid) in horses with lipopolysaccharide (LPS )‐induced radiocarpal synovitis. A total of seven adult healthy mares (n  = 4–6/treatment) were administered 3 μg LPS into one radiocarpal joint and t ‐TUCB intravenously (i.v.) at 0 (control), 0.03, 0.1, 0.3, and 1 mg/kg in a blinded, randomized, crossover design with at least 3 weeks washout between. Two investigators independently assigned pain scores (at rest, walk and trot) and lameness scores before and up to 48 hr after t ‐TUCB /LPS . Responses to touching the joint skin to assess tactile allodynia, plasma, and synovial fluid (SF ) t ‐TUCB concentrations were determined before and up to 48 hr after t ‐TUCB /LPS . Blood and SF were collected for clinical laboratory evaluations before and up to 48 hr after t ‐TUCB /LPS . Areas under the curves of pain and lameness scores were calculated and compared between control and treatments. Data were analyzed using repeated measures ANOVA with Dunnett or Bonferroni post‐test. p  < .05 was considered significant. Data are mean ± SEM . Compared to control, pain, lameness, and tactile allodynia were significantly lower with 1 mg/kg t ‐TUCB , but not the other doses. For 0.1, 0.3, and 1 mg/kg t ‐TUCB treatments, plasma terminal half‐lives were 13 ± 3, 13 ± 0.5, and 24 ± 5 hr, and clearances were 68 ± 15, 48 ± 5, and 14 ± 1 ml hr?1 kg?1. The 1 mg/kg t ‐TUCB reached the SF at high concentrations. There were no important anti‐inflammatory effects. In conclusion, sEH inhibition with t ‐TUCB may provide analgesia in horses with inflammatory joint pain.  相似文献   

13.
The purpose of this study was to determine the pharmacokinetics and dose‐scaling model of vitacoxib in either fed or fasted cats following either oral or intravenous administration. The concentration of the drug was quantified by UPLC‐MS/MS on plasma samples. Relevant parameters were described using noncompartmental analysis (WinNonlin 6.4 software). Vitacoxib is relatively slowly absorbed and eliminated after oral administration (2 mg/kg body weight), with a Tmax of approximately 4.7 hr. The feeding state of the cat was a statistically significant covariate for both area under the concentration versus time curve (AUC) and mean absorption time (MATfed). The absolute bioavailability (F) of vitacoxib (2 mg/kg body weight) after oral administration (fed) was 72.5%, which is higher than that in fasted cats (= 50.6%). Following intravenous administration (2 mg/kg body weight), Vd (ml/kg) was 1,264.34 ± 343.63 ml/kg and Cl (ml kg?1 hr?1) was 95.22 ± 23.53 ml kg?1 hr?1. Plasma concentrations scaled linearly with dose, with Cmax (ng/ml) of 352.30 ± 63.42, 750.26 ± 435.54, and 936.97 ± 231.27 ng/ml after doses of 1, 2, and 4 mg/kg body weight, respectively. No significant undesirable behavioral effects were noted throughout the duration of the study.  相似文献   

14.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight, adult, female, Huacaya alpacas. A dose of 2.2 mg/kg administered IV and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after IV flunixin meglumine administration but there was minimal change after TD application. Mean t1/2λz after IV administration was 4.531 hr (range 3.355 to 5.571 hr) resulting from a mean Vz of 570.6 ml/kg (range, 387.3 to 1,142 ml/kg) and plasma clearance of 87.26 ml kg?1 hr?1 (range, 55.45–179.3 ml kg?1 hr?1). The mean Cmax, Tmax and t1/2λz for flunixin following TD administration were 106.4 ng/ml (range, 56.98 to 168.6 ng/ml), 13.57 hr (range, 6.000–34.00 hr) and 24.06 hr (18.63 to 39.5 hr), respectively. The mean bioavailability for TD flunixin was calculated as 25.05%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.23 µg/ml (range, 0.01 to 1.38 µg/ml). Poor bioavailability and poor suppression of PGE2 identified in this study indicate that TD flunixin meglumine administered at 3.3 mg/kg is not recommended for use in alpacas.  相似文献   

15.
The study objective was to evaluate the effects of age on aminoglycoside pharmacokinetics in eight young‐adult (<4 years) and eight aged (≥14 years) healthy alpacas, receiving a single 6.6 mg/kg intravenous gentamicin injection. Heparinized plasma samples were obtained at designated time points following drug administration and frozen at ?80°C until assayed by a validated immunoassay (QMS ®). Compartmental and noncompartmental analyses of gentamicin plasma concentrations versus time were performed using WinNonlin (v6.4) software. Baseline physical and hematological parameters were not significantly different between young and old animals with the exception of sex. Data were best fitted to a two‐compartment pharmacokinetic model. The peak drug concentration at 30 min after dosing (23.8 ± 2.1 vs. 26.1 ± 2 μg/ml, p = .043 ) and area under the curve (70.4 ± 10.5 vs. 90.4 ± 17.6 μg hr/ml, p = .015 ) were significantly lower in young‐adult compared to aged alpacas. Accordingly, young alpacas had a significantly greater systemic clearance than older animals (95.5 ± 14.4 and 75.6 ± 16.1 ml hr?1 kg?1; p = .018 ), respectively). In conclusion, a single 6.6 mg/kg intravenous gentamicin injection achieves target blood concentrations of >10 times the MIC of gentamicin‐susceptible pathogens with MIC levels ≤2 μg/ml, in both young‐adult and geriatric alpacas. However, the observed reduction in gentamicin clearance in aged alpacas may increase their risk for gentamicin‐related adverse drug reactions.  相似文献   

16.
The purpose of this study was to determine the pharmacokinetic profile of intravenous firocoxib in neonatal foals. Six healthy foals were administered 0.09 mg/kg firocoxib intravenously once a day for 7 days. Blood was collected for plasma firocoxib analysis using high‐performance liquid chromatography with fluorescence detection at times 0 (day 1 of study only) and 0.08, 0.25, 1, 2, 4, 6, 8, 16 and 24 hr on dose numbers 1, 5 and 7. Blood was also collected immediately prior to doses 3, 4, 5 and 7. Final samples were collected at 36, 48, 72 and 96 hr following the final dose. Noncompartmental analysis using the trapezoidal method with linear interpolation revealed a moderate half‐life (15.9 ± 9.1 hr) with a large volume of distribution at steady state (1.79 ± 0.57 L/kg) and a clearance (96.0 ± 59.2 ml h?1 kg?1) that was more rapid than that observed in adult horses.  相似文献   

17.
The objective of this study was to describe the pharmacokinetics (PK) of cytarabine (CA) after subcutaneous (SC) administration to dogs with meningoencephalomyelitis of unknown etiology (MUE). Twelve dogs received a single SC dose of CA at 50 mg/m2 as part of treatment of MUE. A sparse sampling technique was used to collect four blood samples from each dog from 0 to 360 min after administration. All dogs were concurrently receiving prednisone (0.5–2 mg kg?1day?1). Plasma CA concentrations were measured by HPLC, and pharmacokinetic parameters were estimated using nonlinear mixed‐effects modeling (NLME). Plasma drug concentrations ranged from 0.05 to 2.8 μg/ml. The population estimate (CV%) for elimination half‐life and Tmax of cytarabine in dogs was 1.09 (21.93) hr and 0.55 (51.03) hr, respectively. The volume of distribution per fraction absorbed was 976.31 (10.85%) ml/kg. Mean plasma concentration of CA for all dogs was above 1.0 μg/ml at the 30‐, 60‐, 90‐, and 120‐min time points. In this study, the pharmacokinetics of CA in dogs with MUE after a single 50 mg/m2 SC injection in dogs was similar to what has been previously reported in healthy beagles; there was moderate variability in the population estimates in this clinical population of dogs.  相似文献   

18.
Florfenicol, a structural analog of thiamphenicol, has broad‐spectrum antibacterial activity against gram‐negative and gram‐positive bacteria. This study was conducted to investigate the epidemiological, pharmacokinetic–pharmacodynamic cutoff, and the optimal scheme of florfenicol against Escherichia coli (E. coli) with PK‐PD integrated model in the target infectious tissue. 220 E. coli strains were selected to detect the susceptibility to florfenicol, and a virulent strain P190, whose minimum inhibitory concentration (MIC) was similar to the MIC50 (8 μg/ml), was analyzed for PD study in LB and ileum fluid. The MIC of P190 in the ileum fluid was 0.25 times lower than LB. The ratios of MBC/MIC were four both in the ileum and LB. The characteristics of time‐killing curves also coincided with the MBC determination. The recommended dosages (30 mg/kg·body weight) were orally administrated in healthy pigs, and both plasma and ileum fluid were collected for PK study. The main pharmacokinetics (PK) parameters including AUC24 hr, AUC0–∞, Tmax, T1/2, Cmax, CLb, and Ke were 49.83, 52.33 μg*h/ml, 1.32, 10.58 hr, 9.12 μg/ml, 0.50 L/hr*kg, 0.24 hr?1 and 134.45, 138.71 μg*hr/ml, 2.05, 13.01 hr, 16.57 μg/ml, 0.18 L/hr*kg, 0.14 hr?1 in the serum and ileum fluid, respectively. The optimum doses for bacteriostatic, bactericidal, and elimination activities were 29.81, 34.88, and 36.52 mg/kg for 50% target and 33.95, 39.79, and 42.55 mg/kg for 90% target, respectively. The final sensitive breakpoint was defined as 16 μg/ml. The current data presented provide the optimal regimens (39.79 mg/kg) and susceptible breakpoint (16 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.  相似文献   

19.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

20.
The aim of this study was to evaluate the pharmacokinetics and bioavailability of cefquinome (CFQ) and ceftriaxone (CTX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. Using a parallel design, 24 premature calves were randomly divided into the two antibiotic groups. Each of the six animals in the first group received CFQ (2 mg/kg) through IV or IM administration. The second group received CTX (20 mg/kg) via the same administration route. Plasma concentrations of the drugs were analyzed by high‐performance liquid chromatography and noncompartmental methods. Mean pharmacokinetic parameters of CFQ and CTX following IV administration were as follows: elimination half‐life (t1/2λz) 1.85 and 3.31 hr, area under the plasma concentration–time curve (AUC0–∞) 15.74 and 174 hr * μg/ml, volume of distribution at steady‐state 0.37 and 0.45 L/kg, and total body clearance 0.13 and 0.12 L hr?1 kg?1, respectively. Mean pharmacokinetic parameters of CFQ and CTX after IM injection were as follows: peak concentration 4.56 and 25.04 μg/ml, time to reach peak concentration 1 and 1.5 hr, t1/2λz 4.74 and 3.62 hr, and AUC0–∞ 22.75 and 147 hr * μg/ml, respectively. The bioavailability of CFQ and CTX after IM injection was 141% and 79%, respectively. IM administration of CFQ (2 mg/kg) and CTX (20 mg/kg) can be recommended at 12‐hr interval for treating infections caused by susceptible bacteria, with minimum inhibitory concentration values of ≤0.5 and ≤4 μg/ml, respectively, in premature calves. However, further research is indicated to assess the pharmacokinetic parameters following multiple doses of the drug in premature calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号