首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Cefquinome is a fourth‐generation cephalosporin with broad‐spectrum antibacterial activity, including activity against enteric gram‐negative bacilli such as Riemerella anatipestifer. The pericarditis model was used to examine the pharmacodynamic characteristics of cefquinome against R. anatipestifer. Serum levels of cefquinome following the administration of different doses were determined by LC‐MS/MS. Ducks with ca. 106 CFU/mL at the initiation of therapy were treated with cefquinome at doses that ranged from 0.0156 to 2 mg/kg of body weight/day (in 3, 6, 12, or 24 divided doses) for 24 h. The percentage of a 24‐h dosing interval that the unbound serum cefquinome concentrations exceeded the MIC (fT > MIC) were the pharmacokinetic (PK)–pharmacodynamic (PD) parameter that best correlated with efficacy (R2 86.3% for R. anatipestifer, compared with 58.9% for the area under the concentration–time curve/MIC and 10.6% for peak/MIC). A sigmoid Emax model was used to estimate the magnitudes of the %fT > MIC associated with net bacterial stasis, a 1‐log10 CFU reduction from baseline, and a 2‐log10 CFU reduction from baseline; the corresponding values were (22.5 ± 1.3) %, (35.2 ± 4.5) %, and (42.4 ± 2.7) %. These data showed that treatment with cefquinome results in marked antibacterial effects in qvivo against R. anatipestifer and that the host's immunity may also play a key role in the anti‐infective therapy process.  相似文献   

2.
To explore the in vivo antimicrobial activity of cefquinome against Pasteurella multocida in piglets, a piglet tissue cage infection model was used in this study. After the population of P. multocida reached 107 CFU/mL in a tissue cage, piglets received an intramuscular administration of cefquinome at 0.2, 0.4, 0.8, 1, 2, and 4 mg/kg once daily for 3 days. To assess the tissue cage pharmacokinetics (PKTCF) of cefquinome, tissue cage fluid was collected for cefquinome analysis at 1, 3, 6, 9, 12, and 24 hr after each of the 3 daily drug administrations. Bacteria were counted every 24 hr after drug administration and at 48 and 72 hr after the last administration. Evaluation of the relationship between pharmacokinetic/pharmacodynamic (PK/PD) parameters and the antibacterial effect showed that the surrogate of %> minimum inhibitory concentration (MIC) (R2 = 0.981) was the best PK/PD index that correlated with effectiveness of cefquinome against P. multocida. The respective values of %> MIC required for continuous 1/3‐log, 1/2‐log, and 1‐log reductions were 14.23, 34.45, and 73.44%, respectively, during each 24‐hr treatment period. In conclusion, cefquinome exhibited a potent antibacterial effect against P. multocida. When %> MIC reached 73.44%, cefquinome exhibited a bactericidal effect against P. multocida after three successive daily administrations.  相似文献   

3.
A two‐period cross‐over study was carried to investigate the pharmacokinetics (PK) and ex‐vivo pharmacodynamics (PD) of cefquinome when administrated intravenously (IV) and intramuscularly (IM) in seven healthy dogs at a dose of 2 mg/kg of body weight. Serum concentrations were determined by HPLC‐MS/MS assay and cefquinome concentration vs. time data after IV and IM were best fit to a two‐compartment open model. Cefquinome mean values of area under concentration–time curve (AUC) were 5.15 μg·h/mL for IV dose and 4.59 μg·h/mL for IM dose. Distribution half‐lives and elimination half‐lives after IV dose and IM dose were 0.27 and 0.44 h, 1.53 and 1.94 h, respectively. Values of total body clearance (ClB) and volume of distribution at steady‐state (Vss) were 0.49 L·kg/h and 0.81 L/kg, respectively. After IM dose, Cmax was 2.53 μg/mL and the bioavailability was 89.13%. For PD profile, the determined MIC and MBC values against K. pneumonia were 0.030 and 0.060 μg/mL in MHB and 0.032 and 0.064 μg/mL in serum. The ex vivo time‐kill curves also were established in serum. In conjunction with the data on MIC, MBC values and the ex vivo bactericidal activity in serum, the present results allowed prediction that a single cefquinome dosage of 2 mg/kg may be effective in dogs against K. pneumonia infection.  相似文献   

4.
Florfenicol was administered subcutaneously to 10 calves at a dose of 40 mg/kg. Pharmacokinetic–pharmacodynamic (PK‐PD) integration and modelling of the data were undertaken using a tissue cage model, which allowed comparison of microbial growth inhibition profiles in three fluids, serum, exudate and transudate. Terminal half‐lives were relatively long, so that florfenicol concentrations were well maintained in all three fluids. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined in vitro for six strains each of the calf pneumonia pathogens, Mannhemia haemolytica and Pasteurella multocida. An PK‐PD integration for three serum indices provided mean values for P. multocida and M. haemolytica, respectively, of 12.6 and 10.4 for Cmax/MIC, 183 and 152 h for AUC0–24 h/MIC and 78 and 76 h for T>MIC. Average florfenicol concentrations in serum exceeded 4 × MIC and 1.5 × MIC for the periods 0–24 and 48–72 h, respectively. Ex vivo growth inhibition curves for M. haemolytica and P. multocida demonstrated a rapid (with 8 h of exposure) and marked (6 log10 reduction in bacterial count or greater) killing response, suggesting a concentration‐dependent killing action. During 24‐h incubation periods, inhibition of growth to a bacteriostatic level or greater was maintained in serum samples collected up to 96 h and in transudate and exudate samples harvested up to 120 h. Based on the sigmoidal Emax relationship, PK‐PD modelling of the ex vivo time–kill data provided AUC0–24 h/MIC serum values for three levels of growth inhibition, bacteriostatic, bactericidal and 4 log10 decrease in bacterial count; mean values were, respectively, 8.2, 26.6 and 39.0 h for M. haemolytica and 7.6, 18.1 and 25.0 h for P. multocida. Similar values were obtained for transudate and exudate. Based on pharmacokinetic and PK‐PD modelled data obtained in this study and scientific literature values for MIC distributions, Monte Carlo simulations over 100 000 trials were undertaken to predict once daily dosages of florfenicol required to provide 50% and 90% target attainment rates for three levels of growth inhibition, namely, bacteriostasis, bactericidal action and 4 log10 reduction in bacterial count.  相似文献   

5.
ESBL/AmpC‐producing Escherichia coli is increasingly isolated from humans and animals worldwide. The occurrence of ESBL/AmpC‐producing E. coli was studied in food‐producing animals in Finland, a country with a low and controlled use of antimicrobials in meat production chain. A total of 648 cattle, 531 pig, 495 broiler and 35 turkey faecal samples were collected from four Finnish slaughterhouses to determine the presence of extended‐spectrum β‐lactamase (ESBL/AmpC)‐producing E. coli. In addition, 260 broiler and 15 turkey samples were screened for carbapenemase‐producing E. coli. Susceptibility to different class of cephalosporins and meropenem was determined with disc diffusion tests according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Determination of ESBL/AmpC production was performed with a combination disc diffusion test according to the recommendations of the European Food Safety Authority (EFSA). Plasmidic blaESBL/AmpC genes were characterized by polymerase chain reaction and sequencing. A collection of isolates producing AmpC enzyme but not carrying plasmidic blaAmpC was analysed by PCR and sequencing for possible chromosomal ampC promoter area mutations. Altogether ESBL/AmpC‐producing E. coli was recovered from five cattle (0.8%), eight pig (1.5%) and 40 broiler samples (8.1%). No ESBL/AmpC‐producing E. coli was found in turkey samples. Carbapenem resistance was not detected. Altogether ESBL/AmpC‐producing E. coli was found on 4 (2.0%), 3 (4.5%) and 14 (25%) cattle, pig and broiler farms, respectively. From cattle samples 3 (27%) blaCTX‐M‐1 and from broiler samples 13 (33%) blaCTX‐M‐1 and 22 (55%) blaCMY‐2 gene‐carrying isolates were detected. In pigs, no plasmidic blaESBL/AmpC gene‐carrying isolates were found. In all analysed isolates, the same mutations in the promoter region of chromosomal ampC were detected. The results showed low occurrence of ESBL/AmpC‐producing E. coli in Finnish food‐producing animals. In pigs, plasmidic blaESBL/AmpC‐carrying E. coli was not detected at all.  相似文献   

6.
The cephalosporin antimicrobial drug cefquinome was administered to yellow cattle intravenously (i.v.) and intramuscularly (i.m.) at a dose of 1 mg/kg of body weight in a two‐period crossover study. The pharmacokinetic (PK) properties of cefquinome in serum, inflamed tissue‐cage fluid (exudate), and noninflamed tissue‐cage fluid (transudate) were studied using a tissue‐cage model. The in vitro and ex vivo activities of cefquinome in serum, exudate, and transudate against a pathogenic strain of Pasteurella multocida (P. multocida) were determined. A concentration‐independent antimicrobial activity of cefquinome was confirmed for levels lower than 4 × MIC. Integration of in vivo pharmacokinetic data with the in vitro MIC provided mean values for the time that drug levels remain above the MIC (T > MIC) in serum was 14.10 h after intravenous and 14.46 h after intramuscular dosing, indicating a likely high level of effectiveness in clinical infections caused by P. multocida of MIC 0.04 μg/mL or less. These data may be used as a rational basis for setting dosing schedules, which optimize clinical efficacy and minimize the opportunities for emergence of resistant organisms.  相似文献   

7.
The antimicrobial properties of amoxicillin were determined for the bovine respiratory tract pathogens, Mannheima haemolytica and Pasteurella multocida. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time‐kill curves were established. Pharmacokinetic (PK)/pharmacodynamic (PD) modelling of the time‐kill data, based on the sigmoidal Emax equation, generated parameters for three levels of efficacy, namely bacteriostatic, bactericidal (3log10 reduction) and 4log10 reduction in bacterial counts. For these levels, mean AUC(0–24 h)/MIC serum values for M. haemolytica were 29.1, 57.3 and 71.5 h, respectively, and corresponding values for P. multocida were 28.1, 44.9 and 59.5 h. Amoxicillin PK was determined in calf serum, inflamed (exudate) and noninflamed (transudate) tissue cage fluids, after intramuscular administration of a depot formulation at a dosage of 15 mg/kg. Mean residence times were 16.5 (serum), 29.6 (exudate) and 29.0 h (transudate). Based on serum MICs, integration of in vivo PK and in vitro PD data established maximum concentration (Cmax)/MIC ratios of 13.9:1 and 25.2:1, area under concentration–time curve (AUC0–∞)/MIC ratios of 179 and 325 h and T>MIC of 40.3 and 57.6 h for P. multocida and M. haemolytica, respectively. Monte Carlo simulations for a 90% target attainment rate predicted single dose to achieve bacteriostatic and bactericidal actions over 48 h of 17.7 and 28.3 mg/kg (M. haemolytica) and 17.7 and 34.9 mg/kg (P. multocida).  相似文献   

8.
The pharmacokinetics and bioavailability of cefquinome in Beagle dogs were determined by intravenous (IV), intramuscular (IM) or subcutaneous (SC) injection at a single dose of 2 mg/kg body weight (BW). The minimum inhibitory concentrations (MIC) of cefquinome against 217 Escherichia coli isolated from dogs were also investigated. After IV injection, the plasma concentration‐time curve of cefquinome was analyzed using a two‐compartmental model, and the mean values of t1/2α (h), t1/2β (h), Vss (L/kg), ClB (L/kg/h) and AUC (μg·h/mL) were 0.12, 0.98, 0.30, 0.24 and 8.51, respectively. After IM and SC administration, the PK data were best described by a one‐compartmental model with first‐order absorption. The mean values of t1/2Kel, t1/2Ka, tmax (h), Cmax (μg/mL) and AUC (μg·h/mL) were corresponding 0.85, 0.14, 0.43, 4.83 and 8.24 for IM administration, 0.99, 0.29, 0.72, 3.88 and 9.13 for SC injection. The duration of time that drug levels exceed the MIC (%T > MIC) were calculated using the determined MIC90 (0.125 μg/mL) and the PK data obtained in this study. The results indicated that the dosage regimen of cefquinome at 2 mg/kg BW with 12‐h intervals could achieve %T > MIC above 50% that generally produced a satisfactory bactericidal effect against E. coli isolated from dogs in this study.  相似文献   

9.
A calf tissue cage model was used to study the pharmacokinetics (PK) and pharmacodynamics (PD) of oxytetracycline in serum, inflamed (exudate) and noninflamed (transudate) tissue cage fluids. After intramuscular administration, the PK was characterized by a long mean residence time of 28.3 hr. Based on minimum inhibitory concentrations (MICs) for six isolates each of Mannheimia haemolytica and Pasteurella multocida, measured in serum, integration of in vivo PK and in vitro PD data established area under serum concentration–time curve (AUC0–∞)/MIC ratios of 30.0 and 24.3 hr for M. haemolytica and P. multocida, respectively. Corresponding AUC0–∞/MIC ratios based on MICs in broth were 656 and 745 hr, respectively. PK‐PD modelling of in vitro bacterial time–kill curves for oxytetracycline in serum established mean AUC0–24 hr/MIC ratios for 3log10 decrease in bacterial count of 27.5 hr (M. haemolytica) and 60.9 hr (P. multocida). Monte Carlo simulations predicted target attainment rate (TAR) dosages. Based on the potency of oxytetracycline in serum, the predicted 50% TAR single doses required to achieve a bacteriostatic action covering 48‐hr periods were 197 mg/kg (M. haemolytica) and 314 mg/kg (P. multocida), respectively, against susceptible populations. Dosages based on the potency of oxytetracycline in broth were 25‐ and 27‐fold lower (7.8 and 11.5 mg/kg) for M. haemolytica and P. multocida, respectively.  相似文献   

10.
Antibiotic resistance mediated by bacterial production of extended‐spectrum beta‐lactamase (ESBL) is a global threat to public health. ESBL resistance is most commonly hospital‐acquired; however, infections acquired outside of hospital settings have raised concerns over the role of livestock and wildlife in the zoonotic spread of ESBL‐producing bacteria. Only limited data are available on the circulation of ESBL‐producing bacteria in animals. Here, we report ESBL‐producing Escherichia coli in wild common vampire bats Desmodus rotundus and livestock near Lima, Peru. Molecular analyses revealed that most of this resistance resulted from the expression of blaCTX‐M‐15 genes carried by plasmids, which are disseminating worldwide in hospital settings and have also been observed in healthy children of Peru. Multilocus sequence typing showed a diverse pool of E. coli strains carrying this resistance that were not always host species‐specific, suggesting sharing of strains between species or infection from a common source. This study shows widespread ESBL resistance in wild and domestic animals, supporting animal communities as a potential source of resistance. Future work is needed to elucidate the role of bats in the dissemination of antibiotic‐resistant strains of public health importance and to understand the origin of the observed resistance.  相似文献   

11.
In order to estimate the prevalence of AmpC‐ and ESBL β‐lactamase‐producing Enterobacteriaceae in the faecal flora of a healthy domestic canine population, faecal samples were obtained from healthy dogs receiving routine parasitology screening at the Ohio State University Veterinary Medical Center, between January 2013 and April 2013. Samples were screened for the presence of AmpC and ESBL β‐lactamase phenotypes, and the clinically important genotypes, blaCMY and blaCTX‐M, were confirmed via conventional PCR. Minimum inhibitory concentrations were determined for isolates and plasmids were characterized. Two hundred and twelve canine faecal samples were screened, of which 30 harboured isolates carrying the AmpC blaCMY, representing 14.2% of the population (95% CI: 9.4–18.9%). Nine samples harboured isolates that carried the ESBL blaCTX‐M, representing 4.2% of the population (95% CI: 1.5–7.0%). Isolates containing blaCMY harboured multiple plasmid replicon types, while isolates containing blaCTX‐M harboured few plasmid replicon types. Our results suggest that domestic dogs may serve as a reservoir for extended‐spectrum cephalosporin resistance genes for other domestic animal populations as well as for their human companions. This represents a potential veterinary and public health risk that warrants further investigation and continued surveillance to ascertain the nature and extent of the risk. The high level of diversity of plasmid content among isolates harbouring blaCMY suggests broader dissemination relative to blaCTX‐M isolates.  相似文献   

12.
Pharmacokinetic (PK)–pharmacodynamic (PD) integration of crystalline ceftiofur‐free acid (CCFA) was established in six healthy female goats administered subcutaneously (s.c.) on the left side of the neck at a dosage of 6.6 mg/kg body weight. Serum concentrations of ceftiofur and desfuroylceftiofur (DFC) were determined using high‐performance liquid chromatography. Mutant prevention concentration (MPC), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ceftiofur were determined for Pasteurella (P.) multocida. Mean terminal half‐life and mean residence time of ceftiofur + DFC were 48.6 h and 104 h, respectively. In vitro plasma protein binding of ceftiofur was 46.6% in goats. The MIC and MBC values of ceftiofur were similar in serum and MHB and a very small difference between these values confirmed bactericidal activity of drug against P. multocida. In vitro and ex vivo time–kill curves for P. multocida demonstrated a time‐dependent killing action of drug. Considering target serum concentration of 0.20 μg/mL, PK‐PD values for AUC24 h/MIC90 and T > MIC90, respectively, were 302 h and 192 h against P. multocida. A MPC/MIC ratio of 10–14 indicated that selective pressure for proliferation of resistant mutants of P. multocida is minimal after CCFA single‐dose administration. Based on MPC = 1.40 μg/mL for P. multocida, the PK‐PD indices, viz. T > MPC and AUC24/MPC, were 48 h and 43 h, respectively. The data suggested the use of single dose (6.6 mg/kg, s.c.) of CCFA in goats to obtain clinical and bacteriological cure of pneumonia due to P. multocida.  相似文献   

13.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

14.
The dissemination of Enterobacteriaceae expressing resistance to extended‐spectrum cephalosporins, which are therapeutically used in both human and veterinary medicine, is of critical concern. The normal commensal flora of food animals may serve as an important reservoir for the zoonotic food‐borne transmission of Enterobacteriaceae harbouring β‐lactam resistance. We hypothesized that the predominant AmpC and ESBL genes reported in US livestock and fresh retail meat products, blaCMY‐2 and blaCTX‐M, would also be predominant in human enteric flora. We recovered enteric flora from a convenience sample of patients included in a large tertiary medical centre's Clostridium difficile surveillance programme to screen for and estimate the frequency of carriage of AmpC and ESBL resistance genes. In‐ and outpatient diarrhoeic submissions (n = 692) received for C. difficile testing at the medical centre's clinical diagnostic laboratory from July to December, 2013, were included. Aliquoted to a transport swab, each submission was inoculated to MacConkey broth with cefotaxime, incubated at 37°C and then inoculated to MacConkey agars supplemented with cefoxitin and cefepime to select for the AmpC and ESBL phenotypes, with blaCMY and blaCTX‐M genotypes confirmed by PCR and sequencing. From the 692 diarrhoeic submissions, our selective culture yielded 184 isolates (26.6%) with reduced susceptibility to cefotaxime. Of these, 46 (6.7%) samples harboured commensal isolates carrying the AmpC blaCMY. Another 21 (3.0%) samples produced isolates harbouring the ESBL blaCTX‐M: 19 carrying CTX‐M‐15 and 2 with CTX‐M‐27. Our results indicate that β‐lactam resistance genes likely acquired through zoonotic food‐borne transmission are present in the enteric flora of this hospital‐associated population at lower levels than reported in livestock and fresh food products.  相似文献   

15.
The emergence and spread of extended‐spectrum beta‐lactamase producing Enterobacteriaceae (ESBL‐PE) are complex and of the public health concern across the globe. This review aimed at assessing the ESBL‐PE clones circulating in humans, animals and the environment to provide evidence‐based insights for combating ESBL‐PE using One Health approach. Systematic search from Medline/PubMed, Google Scholar and African Journals Online was carried out and retrieved nine eligible articles (of 131) based on phenotypic and genotypic detection of ESBL‐PE between 2005 and 2016 in Tanzania. Analysis was performed using STATA 11.0 software to delineate the prevalence of ESBL‐PE, phenotypic resistance profiles and clones circulating in the three interfaces. The overall prevalence of ESBL‐PE in the three interfaces was 22.6% (95% CI: 21.1–24.2) with the predominance of Escherichia coli (E. coli) strains (51.6%). The majority of ESBL‐PE were resistant to the commonly used antimicrobials such as trimethoprim–sulfamethoxazole and tetracycline/doxycycline, 38%–55% were resistant to ciprofloxacin and all were sensitive to meropenem/imipenem. ESBL‐PE infections were more associated with deaths compared to non‐ESBL‐PE infections. Strikingly, E. coli ST38, ST131 and ST2852 were found to intersect variably across the three interfaces. The predominant allele, blaCTX‐M‐15, was found mostly in the conjugative IncF plasmids connoting transmission potential. The high prevalence of ESBL‐PE and shared clones across the three interfaces, including the global E. coli ST131 clone, indicates wide and inter‐compartmental spread that calls for One Health genomic‐driven studies to track the resistome flow.  相似文献   

16.
The pharmacokinetics, PK/PD ratios, and Monte Carlo modeling of enrofloxacin HCl‐2H2O (Enro‐C) and its reference preparation (Enro‐R) were determined in cows. Fifty‐four Jersey cows were randomly assigned to six groups receiving a single IM dose of 10, 15, or 20 mg/kg of Enro‐C (Enro‐C10, Enro‐C15, Enro‐C20) or Enro‐R. Serial serum samples were collected and enrofloxacin concentrations quantified. A composite set of minimum inhibitory concentrations (MIC) of Leptospira spp. was utilized to calculate PK/PD ratios: maximum serum concentration/MIC (Cmax/MIC90) and area under the serum vs. time concentration of enrofloxacin/MIC (AUC0‐24/MIC90). Monte Carlo simulations targeted Cmax/MIC = 10 and AUC0‐24/MIC = 125. Mean Cmax obtained were 6.17 and 2.46 μg/ml; 8.75 and 3.54 μg/ml; and 13.89 and 4.25 μg/ml, respectively for Enro‐C and Enro‐R. Cmax/MIC90 ratios were 6.17 and 2.46, 8.75 and 3.54, and 13.89 and 4.25 for Enro‐C and Enro‐R, respectively. Monte Carlo simulations based on Cmax/MIC90 = 10 indicate that only Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cows, predicting a success rate ≥95% when MIC50 = 0.5 μg/ml, and ≥80% when MIC90 = 1.0 μg/ml. Although Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cattle, clinical trials are necessary to confirm this proposal.  相似文献   

17.
The pharmacokinetics of cefquinome was studied in plasma after a single dose (10 mg/kg) of intramuscular (i.m.) or intraperitoneal (i.p.) administration to tilapia (Oreochromis niloticus) in freshwater at 30 °C. Ten fish per sampling point were examined after treatment. The data were fitted to two‐compartment open models following both routes of administration. The estimates of total body clearance (CL/F), volume of distribution (Vd/F), and absorption half‐life (T1/2ka) were 0.049 and 0.037 L/h/kg, 0.41 and 0.33 L/kg, and 0.028 and 0.035 h following i.m. and i.p. administration, respectively. After i.m. injection, the elimination half‐life (T1?2β) was calculated to be 5.81 h, the maximum plasma concentration (Cmax) to be 49.40 μg/mL, the time to peak plasma cefquinome concentration (Tmax) to be 0.14 h, and the area under the plasma concentration–time curve (AUC) to be 204.6 μg h/mL. Following i.p. administration, the corresponding estimates were 6.05 h, 44.39 μg/mL, 0.17 h and 267.8 μg h/mL. The minimum inhibitory concentrations of cefquinome, determined for 30 strains of Streptococcus agalactiae isolated from diseased tilapia, ranged from 0.015 to 0.12 μg/mL. Results from these studies support that 10 mg cefquinome/kg body weight daily could be expected to control tilapia bacterial pathogens inhibited in vitro by a minimal inhibitory concentration value of ≤2 μg/mL.  相似文献   

18.
The aim of this study was to evaluate the potential of chloramphenicol and florfenicol as second‐line antimicrobial agents for treatment of infections caused by methicillin‐resistant Staphyococcus pseudintermedius (MRSP) and extended‐spectrum β‐lactamase (ESBL)‐producing Escherichia coli in dogs, through a systematic in vitro assessment of the pharmacodynamic properties of the two drugs. Minimum inhibitory concentrations (MIC) and phenicol resistance genes were determined for 169 S. pseudintermedius and 167 E. coli isolates. Minimum bactericidal concentrations (MBC), time‐killing kinetics, and postantibiotic effect (PAE) of both agents against wild‐type isolates of each species were assessed. For S. pseudintermedius, the chloramphenicol MIC90 was 32 μg/mL. No florfenicol resistance was detected in this species (MIC90 = 4 μg/mL). The MIC90 of both agents against E. coli was 8 μg/mL. Resistance genes found were catpC221 in S. pseudintermedius and catA1 and/or floR in E. coli. The phenicols displayed a time‐dependent, mainly, bacteriostatic effect on both species. Prolonged PAEs were observed for S. pseudintermedius, and no PAEs were detected for E. coli. More research into determination of PK/PD targets of efficacy is needed to further assess the clinical use of chloramphenicol and florfenicol as second‐line agents in dogs, optimize dosage regimens, and set up species‐specific clinical break points.  相似文献   

19.
The combined antibacterial effects of tilmicosin (TIL) and florfenicol (FF) against Actinobacillus pleuropneumoniae (APP) (n = 2), Streptococcus suis (S. suis) (n = 2), and Haemophilus parasuis (HPS) (n = 2) were evaluated by chekerboard test and time‐kill assays. The pharmacokinetics (PKs) of TIL‐ and FF‐loaded hydrogenated castor oil (HCO)‐solid lipid nanoparticles (SLN) were performed in healthy pigs. The results indicated that TIL and FF showed synergistic or additive antibacterial activities against APP, S. suis and HPS with the fractional inhibitory concentration (FIC) ranging from 0.375 to 0.75. The time‐kill assays showed that 1/2 minimum inhibitory concentration (MIC) TIL combined with 1/2 MIC FF had a stronger ability to inhibit the growth of APP, S. suis, and HPS than 1 MIC TIL or 1 MIC FF, respectively. After oral administration, plasma TIL and FF concentrations could maintain about 0.1 μg/ml for 192 and 176 hr. The SLN prolonged the last time point with detectable concentrations (Tlast), area under the concentration–time curve (AUC0‐t), elimination half‐life (T½ke), and mean residence time (MRT) by 3.1, 5.6, 12.7, 3.4‐fold of the active pharmaceutical ingredient (API) of TIL and 11.8, 16.5, 18.1, 12.1‐fold of the API of FF, respectively. This study suggests that the TIL‐FF‐SLN could be a useful oral formulation for the treatment of APP, S. suis, and HPS infection in pigs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号