首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, transgenic potato plants were created showing underexpression of the 20R isoform of the 14-3-3 protein. The transgenic plants grown in tissue culture showed a significant increase in nitrate reductase activity and a decrease in nitrate level. The transgenic line with the lowest 14-3-3 quantity was field-trialed (1997-2000) and analyzed. The reduction in the 14-3-3 protein level consistently resulted in a starch content increase and in an increase in the ratio of soluble sugars to starch in the tubers, although the latter was only barely visible. The determination of amino acid composition in the tubers showed a significant increase in methionine, proline, and arginine content and a slight but consistent increase in hydrophobic amino acid and lysine content in the cells of the transgenic potato plants. We also observed an increase in the crude protein content, from 19 to 22.1% of the control value in consecutive years. It is proposed that all of these changes might have resulted from the downregulation of nitrate reductase and sucrose phosphate synthase activities by 14-3-3, although other potential mechanisms cannot be excluded (e.g., an increase in enzyme protein level). 14-3-3-repressed transgenic plants showed a significant increase in calcium content in their tubers. It is thus proposed that a function of the isolated 14-3-3 isoform is in the control of amino acid synthesis and calcium metabolism. However, the mechanism of this control is as yet unknown.  相似文献   

2.
Recently, transgenic potato plants were created with overexpression of the 14-3-3 protein derived from Cucurbita pepo. Detailed analysis of those plants suggested that the function of the isolated 14-3-3 isoform is in the control of carbohydrate and lipid metabolism in the plants. 14-3-3 protein overexpression gave rise to an increase in soluble sugar and catecholamine contents in both leaves and tubers. It is proposed that 14-3-3 protein affects carbohydrate metabolism in potato plants via regulation of catecholamine synthesis. Furthermore, genetically modified potato tubers with 14-3-3 protein overexpression showed changes in lipid content and composition. The transgenic potato tubers contained 69% more total fat compared to the wild-type plant. Separation of tuber lipids into polar and nonpolar fractions revealed that the transgenic potato tubers contained almost 3 times more nonpolar lipids than the control. Analysis of fatty acid composition, conducted by the means of gas chromatography, showed that linoleic acid was the main fatty acid present in the tubers of both modified and control potato plants. In the nonpolar fraction of the fat of the transgenic tubers the unsaturated fatty acids exhibited a higher participation in the sum of all fatty acids.  相似文献   

3.
In our recent studies we have evidenced that repression of ADP-ribosylation factor (ARF) in potato plants results in 14-3-3 gene activation. The significant alteration in plant phenotype and in carbohydrate content clearly indicates that there may also be changes in other metabolite syntheses. In this paper we present the data on contents of compounds, occurring in transgenic potato tubers from field trial, known to be important for the human diet. We also determine which of the ARF-antisense plant features resulted from ARF repression. This determination was accomplished by the analysis of ARF-antisense plants transformed with cDNA encoding 14-3-3 protein in reverse orientation. The sucrose accumulation and the decrease in glycoalkaloids level were found to be characteristic features of all transgenic plants. The increase in antioxidant capacity of transgenic potato tubers should also be pointed out. The analysis of fat from modified potato tubers revealed a nutritionally valuable composition of fatty acids, including the significant increase of linoleic acid level.  相似文献   

4.
The main goal of this study was to generate potato tubers with increased levels of flavonoids and thus modified antioxidant capacities. To accomplish this, the vector carrying multigene construct was prepared and several transgenic plants were generated, all overexpressing key biosynthesis pathway enzymes. The single-gene overexpression or simultaneous expression of genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) resulted in a significant increase of measured phenolic acids and anthocyanins. The increase in phenolic compounds synthesis is accompanied by decreases in starch and glucose levels in transgenic plants. The flavonoids-enriched plants showed improved antioxidant capacity; however, there is a complex relationship between antioxidant capacity and flavonoids content, suggesting the great participation of other compounds in the antioxidant potential of the plants. These other compounds are not yet recognized.  相似文献   

5.
为研究马铃薯蔗糖非发酵-1-型相关蛋白激酶-1基因StSnRK1对于调控植物耐盐性的促进作用,以过表达StSnRK1的烟草株系及野生型为试验材料,研究盐胁迫下StSnRK1对植株生长的影响。耐盐性鉴定结果表明,过表达StSnRK1基因显著提高烟草植株的耐盐性。实时荧光定量PCR(RT-qPCR)分析显示,StSnRK1基因显著上调脯氨酸生物合成相关基因(吡咯琳-5-羧酸合酶NtP5CS)、胚胎发育后期丰富蛋白基因(NtLEA5)和活性氧清除系统相关基因(超氧化物歧化酶NtSOD和过氧化物酶NtPOD)。同时,转基因烟草植株的SOD活性、POD活性和脯氨酸含量显著高于野生型烟草植株,丙二醛(MDA)含量和过氧化氢(H2O2)含量显著低于野生型植株。由此可见,StSnRK1基因在改良植物耐盐性方面具有重要作用,为耐盐马铃薯生物技术育种提供了理论基础。  相似文献   

6.
钾素对食用型甘薯糖代谢相关酶活性的影响   总被引:10,自引:6,他引:4  
为了探讨钾素提高甘薯块根可溶性糖含量的生理基础。选用典型的食用型甘薯品种北京553,设置不同施钾处理,于2009~2010年2个生长季在山东农业大学农学试验站进行试验。采用甘薯块根膨大过程中定期取样的方法,测定块根可溶性糖和淀粉含量及相关酶活性、功能叶蔗糖含量及相关酶活性。结果表明,与对照比较,施用钾肥能显著提高块根产量、可溶性糖及各糖组分含量,其中K2O用量为24 g/m2处理增幅最大,为最适用量。进一步研究发现,适宜供钾处理显著提高了功能叶磷酸蔗糖合成酶活性和蔗糖含量,生育期内平均增幅分别为10.31%和34.13%,同时提高了块根中蔗糖合成酶、不溶性酸性转化酶的活性,生育期内平均增幅为16.47%和3.66%,在提高源端光合产物供应的同时促进蔗糖在库端的卸载,促进块根中淀粉和可溶性糖的积累;适宜供钾处理还提高了块根中-和-淀粉酶的活性,生育期内平均增幅分别为26.06%和14.64%,促进淀粉向可溶性糖转化。此外,适宜供钾处理还显著提高了生长前期和后期块根中可溶性酸性转化酶活性、以及生长后期块根中蔗糖-蔗糖果糖基转移酶活性,促进了葡萄糖、果糖和果聚糖在块根中的积累。在甘薯收获期,块根可溶性糖和淀粉含量分别提高了13.52%和3.02%。即钾肥能够增加块根中蔗糖的供应量、促进块根对蔗糖的吸收、促进淀粉水解,是其提高块根可溶性糖含量的生理原因。  相似文献   

7.
臧倩  王光华  张明静  胡雪  徐承昱  蒋敏  黄丽芬 《核农学报》2022,36(10):2072-2083
为探讨不同肥料处理下抽穗期高温胁迫对水稻籽粒淀粉酶活性及淀粉品质形成的影响,本试验以优质食味水稻南粳9108为材料,设置施用有机肥(OF)和常规化肥(CF)处理,于抽穗期进行常温(NT)、+2℃(较常温增加2℃,MT)和+5℃(较常温增加5℃,HT)处理,对籽粒淀粉合成特性进行研究。结果表明,抽穗期温度升高降低了蔗糖合成酶(SS)、淀粉合成酶(SSS)和淀粉分支酶(SBE)的活性,提高了蔗糖磷酸合成酶(SPS)和焦磷酸化酶(AGP)的活性。蔗糖含量、淀粉平均粒径、热焓值与峰值温度均表现为HT>MT>NT;淀粉含量、直链淀粉含量与黏度值则随着温度升高而下降。在肥料处理方面,各淀粉相关酶活性均表现为OF>CF,且在OF处理下有较好的淀粉品质。综上所述,温度升高通过抑制淀粉合成,加速了形成淀粉原料的积累,进而导致籽粒中蔗糖含量升高;有机肥处理能促进蔗糖合成并提高淀粉合成相关酶活性。从气候变暖应对措施方面,可选择有机肥替代化肥调控淀粉相关酶活性,进一步改善淀粉品质。本研究结果为减少高温对水稻的危害与提高淀粉品质提供了技术参考。  相似文献   

8.
The present investigation reports the effects of different doses of sodium selenate and sodium selenite on its uptake, carbohydrate composition, and sucrose and starch metabolizing enzymes in flag leaf and developing grains of wheat grown under greenhouse conditions. Selenium (Se) concentration increased significantly in leaves and developing grains of Se-treated plants compared to control at different intervals post-anthesis. Total soluble sugars and sucrose concentrations in developing grains increased due to various Se treatments. Different selenite treatments increased sucrose synthase activity from 10 to 20 days post-anthesis and increased starch accumulation compared to control plants. Lower starch accumulation in selenate than control and selenite treatments was observed. The activities of α, β and total amylase, invertase and sucrose synthase increased whereas sucrose phosphate synthase declined. Results indicated that Se accumulation causes disturbances in carbohydrate metabolism that is dependent on Se concentration, form and the development stage of the plant.  相似文献   

9.
为了明确不同施氮量对高温胁迫后马铃薯块茎淀粉合成酶、淀粉含量及产量的影响,本研究于2019-2020年在宁南山区海原县进行田间试验.供试品种为青薯9号,通过搭建高温棚构建高温环境,设2个温度处理(T1:块茎形成初期高温胁迫,T2:自然温度),4个氮肥水平(不施氮N0:0 kg·hm-2,低氮水平N1:75 kg·hm-...  相似文献   

10.
为了解草铵膦对转基因抗草铵膦马铃薯田间杂草的防效及对马铃薯和环境的安全性,本研究在转基因抗草铵膦马铃薯苗期向田间杂草和马铃薯茎叶定向喷施有效成分分别为0(G0)、847.5(G1)、1 271.25(G2)和1 695 g·hm-2(G3)的草铵膦,系统比较了药后1、4、11和20 d时马铃薯叶片丙二醛(MDA)和脯氨酸(Pro)含量、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性,药后30和45 d时马铃薯植株的平均株高、茎直径、根茎叶鲜干重和杂草株数,以及成熟期马铃薯块茎营养品质、单株产量、土壤和块茎中草铵膦残留在各处理间的差异。结果表明,药后不同时期,各处理间的马铃薯叶片MDA和Pro含量、SOD和CAT活性均无显著差异。药后30和45 d时,除各草铵膦处理区的根茎叶鲜干重显著高于清水对照外,各处理间的马铃薯株高、茎直径和成熟期块茎营养品质均无显著差异,说明试验剂量的草铵膦对马铃薯生长发育及品质无显著影响。与清水对照相比,各剂量的草铵膦对杂草均有明显的防除效果,且可以明显地提高马铃薯的单株产量,杂草的株、鲜重防效和成熟期马铃薯单株产量在各处理间的差异均依次表现为G3>G2>G1,但在土壤和块茎中均未检测到草铵膦残留。综上,采用有效成分1 695 g·hm-2草铵膦可以有效防除杂草,对马铃薯安全,且在土壤和马铃薯块茎中未检出草铵膦残留。本研究结果为草铵膦的科学使用提供了理论依据。  相似文献   

11.
The principal goal of this paper was to investigate the significance of anthocyanin 5-O-glucosyltransferase (5-UGT) for potato tuber metabolism. The ectopic expression of a 5-UGT cDNA in the tuber improved the plant's defense against pathogen infection. The resistance of transgenic lines against Erwinia carotovora subsp. carotovora was about 2-fold higher than for nontransformed plants. In most cases the pathogen resistance was accompanied by a significant increase in tuber yield. To investigate the molecular basis of transgenic potato resistance, metabolic profiling of the plant was performed. In tuber extracts, the anthocyanin 3,5-O-substituted level was significantly increased when compared to that of the control plant. Of six anthocyanin compounds identified, the highest quantity for pelargonidin 3-rutinoside-5-glucoside acylated with p-coumaric acid and peonidin 3-rutinoside-5-glucoside acylated with p-coumaric acid was detected. A significant increase in starch and a decrease in sucrose level in transgenic tubers have been detected. The level of all other metabolites (amino acids, organic acids, polyamines, and fatty acids) was quite the same as in nontransformants. The plant resistance to bacterial infection correlates with anthocyanin content and sucrose level. The properties of recombinant glucosyltransferase were analyzed in in vitro experiments. The enzyme kinetics and its biochemical properties were similar to those from other sources.  相似文献   

12.
吴佳瑞  康建宏  柳强娟  慕宇  孙建波  吴娜 《核农学报》2019,33(12):2482-2491
为探明宁南半干旱雨养农业区马铃薯块茎中淀粉和关键酶活性对黑色地覆盖膜的响应机理,在2016年和2017年以宁南山区马铃薯主栽品种青薯9号为材料,通过两年大田试验,研究了黑膜覆盖(BF)、白膜覆盖(WF)和不覆膜(NF)对马铃薯块茎中淀粉及其组分积累、淀粉合成关键酶活性的影响。结果表明,与WF和NF相比,BF的直链淀粉、支链淀粉、总淀粉含量分别增加11.37%~35.68%、8.56%~27.05%、8.33%~27.60%,淀粉积累速率提高13.80%~37.90%;BF、WF、NF条件下块茎ADPG焦磷酸化酶(AGPase)、UDPG焦磷酸化酶(UGPase)、淀粉分支酶(SBE)、可溶性淀粉合酶(SSS)、束缚态淀粉合酶(GBSS)活性均呈单峰曲线变化,BF的淀粉合成关键酶活性明显高于WF和NF。与WF和NF相比,BF的AGPase活性分别增加12.81%和40.24%;UGPase活性分别增加15.34%和36.52%、SBE活性分别增加16.64%和44.17%、SSS活性分别增加13.69%和34.76%、GBSS活性分别增加15.75%和45.44%。BF产量较WF和NF分别提高14.54%和57.23%。相关分析表明,马铃薯块茎中直链淀粉、支链淀粉和总淀粉含量与AGPase、UGPase、SBE、SSS、GBSS活性在多数测定时期呈正相关(P<0.01)。因此,在干旱半干旱地区采用黑色地膜覆盖栽培能够通过影响淀粉合成关键酶,进而提高马铃薯块茎中的淀粉及其组分含量,最终影响马铃薯的产量。  相似文献   

13.
Starch is an important agricultural product deposited in vegetative and reproductive storage organs (sinks) of various crop species. Starch yield may in some cases be limited by photosynthesis, i.e. source-limited. This is particularly true for starch synthesized in potato tubers. Here, the physiological sink is characterized by a symplastic phloem unloading path. In reproductive storage tissues (seeds), however, photosynthates must pass the apoplast on their path from phloem unloading to the storage cell. In cereal grains, phloem unloading of sucrose and poslunloading processes rather than photosynthesis may thus control starch synthesis (sink-limited). Various limiting steps along the path of photosynthate movement from the phloem to the storage cells are considered. The primary organic carbon for starch synthesis is sucrose. Sucrose delivered to the storage cell is metabolized to UDPglucose and fructose by means of sucrose synthase activity. Concerning sucrose breakdown the role of cell-wall bound invertase is not well defined. Competition for UDPglucose consumed for growth or storage may be a crucial process in photosynthate partitioning. High starch yields of crops require an undisturbed growth of the sink organ and an optimal filling of sink amyloplasts with starch. The most important form of organic carbon imported into amyloplasts of storage organs (cereal grain and potato tuber) and used for starch synthesis is glucose 1-phosphate. It is still to be clarified whether the rate of glucose 1-phosphate absorption has a direct impact on starch yield. In cereals, the total amount of starch accumulated depends significantly on the duration of grain filling. Ample nutrient and water supply at the post-anthesis stage prolongs the period of grain filling and hence favours starch production. High temperature reduces the activity of soluble starch synthase with negative consequences for starch accumulation. The biochemical and physiological implications of these stress factors are discussed. Recently, successful transgenic manipulations of starch synthesis in crop plants have increased starch yield.  相似文献   

14.
Detached ears from barley plants of the same age but of different K status (0.25 or 1.0 me K/l in the nutrient solution) were fed with 14C sucrose at 14,21,28 and 35 days after ear emergence. Single grain weights were always higher in plants grown at 1 mMK. To establish whether this effect was due to a direct influence of K on the storage capacity, incorporation of 14C sucrose into grain starch was studied and the activity of bound ADPG-starch synthase under in vitro conditions determined. 14C sucrose incorporation into grain declined with grain development without significant differences between K treatments. The conversion of 14C sucrose into grain starch was also unaffected by the K status of the plant. The activity of ADPG starch synthase was either unaffected or influenced inconsistently by the K nutrition of the crop. Results of both approaches indicate, that at K contents > 0.7% of grain-DM, the rate of starch synthesis is not limited by the K concentration in the grain. This nutrient thus appears to increase grain yield more by its effect on assimilate supply (source) than by influences on the rate of synthesis of storage products (sink).  相似文献   

15.
尿苷二磷酸葡萄糖焦磷酸化酶(UDP-glucose pyrophosphorylase,UGPase)是植物糖代谢的主要参与酶之一,在植物的生长发育过程中起着重要作用。本研究将甘蔗(Saccharum officinarum)UGPase基因cDNA片段连接至载体pBI121,通过BamHⅠ和SacⅠ酶切鉴定及测序验证,结果表明,植物表达载体成功构建;通过农杆菌(Agrobacterium tumefaciens)的介导,采用浸花法转化拟南芥(Arabidopsis thaliana)。结合卡那霉素抗性筛选和PCR检测,获得了5株T0代转基因植株。对T1代转基因植株进行PCR及Southern blot分析,结果表明,目的基因已成功转入拟南芥中,并且不同的转化植株含有目的基因的拷贝数不同。对T2代转基因植株进行PCR和RT-PCR检测,结果表明,目的基因不仅能在自交系后代中稳定遗传,而且在RNA水平也有表达。同时,对T2代转基因植株的可溶性总糖、蔗糖及淀粉含量进行测定,结果表明,与野生型相比,转基因植株中可溶性总糖含量没有明显的变化,但蔗糖含量有所提高,并且差异明显,比野生型植株提高了50.85%~96.99%,而淀粉含量都较野生型植株的低,降低了9.69%~36.76%。说明UGPase在蔗糖与淀粉的转换过程中起着较为重要的作用,其催化的反应方向影响着组织中这两种产物(蔗糖和淀粉)的分配。  相似文献   

16.
为探索不同施氮量对宁夏旱区马铃薯块茎淀粉形成和产量的影响机理,分别于2017年(平水年)和2019年(丰水年)在宁夏南部山区开展大田试验,以马铃薯栽培品种青薯9号为材料,采用单因素随机区组试验设计,以不施氮肥(N0)为对照,研究施纯氮量75(N1)、150(N2)、225 kg·hm-2(N3)对马铃薯淀粉含量、淀粉形成关键酶及产量的影响。结果表明,随着施氮量的增加,总淀粉和支链淀粉含量呈先上升后下降的趋势,以N2最高,分别较N0显著提高21.23、26.42个百分点(2017年)和19.74、24.93个百分点(2019年);而直链淀粉含量随着施氮量的增加而增加,在N3达到最高,比N0增加1.59个百分点(2017年)、1.78个百分点(2019年)。腺苷二磷酸葡萄糖焦磷酸化酶(AGPP)和淀粉分支酶(SBE)均以N2最高,分别较N0增加了57.38%、36.83%(2017年)和67.19%、29.01%(2019年);而可溶性淀粉合酶(SSS)和束缚态淀粉合酶(GBSS)活性则以N3最高,分别较N0增加33.90%、49.51%(2017年)和46.02%、51.00%(2019年)。相关、通径分析结果表明,淀粉含量与淀粉合成关键酶均呈正相关,AGPP、SSS、GBSS在淀粉合成过程中的直接贡献较大;与N0相比,N1~N3在2017年和2019年的产量分别增加了10.72%~21.02%和8.40%~16.30%,以N2的产量最优;综合产量回归曲线分析可知,达到最高产量的最佳施氮量为150~184(2017年)、150~196 kg·hm-2(2019年)。因此,建议宁夏旱区马铃薯施氮量为150~200 kg·hm-2,该条件能有效提高淀粉形成关键酶活性,加快淀粉形成和积累,促进马铃薯产量增加,从而提高当地农民的经济收益。  相似文献   

17.
土壤紧实胁迫对黄瓜碳水化合物代谢的影响   总被引:4,自引:0,他引:4  
用容重分别为1.25 g/cm3(疏松土壤,即对照)和1.55 g/cm3(紧实土壤)的土壤进行盆栽试验,研究了土壤紧实胁迫对“津春4号”黄瓜(Cucumis sativusL.)不同生育期叶片和根系碳水化合物代谢的影响,以探讨土壤紧实胁迫对黄瓜生长产生影响的机理.结果表明,在土壤紧实胁迫条件下,黄瓜不同生育期叶片的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均显著下降,胞间CO2浓度(Ci)显著升高,光合作用受到抑制;叶片中蔗糖磷酸合成酶(SPS)活性显著降低,蔗糖合成酶(SS)、酸性转化酶(AI)和中性转化酶(NI)活性显著增强,蔗糖、葡萄糖、果糖和淀粉含量显著增加,蔗糖的合成与输出受到抑制;不同生育期根系SPS、AI和NI活性显著下降,而SS活性显著增强,蔗糖、葡萄糖和果糖含量显著增加,淀粉含量基本不变.这表明,土壤紧实胁迫抑制了黄瓜叶片中同化物的合成和输出,降低了碳水化合物向根系中的输入,阻碍了根系对碳水化合物的利用,使植株矮小,产量下降.  相似文献   

18.
为了降低马铃薯(Solanum tuberosum )块茎低温贮藏下还原糖的积累,实验构建了马铃薯块茎特异性启动子(CIPP)调控的烟草液泡转化酶抑制子Nt-VIF基因表达载体pBICNI,并转化马铃薯植株。PCR、Northern杂交和Southern杂交分析结果显示,CIPP调控的Nt-VIF基因全长cDNA成功地导入鄂马铃薯3号(E-3)植株。14个转基因株系块茎分别贮藏在4℃和20℃条件下,贮藏1个月后进行还原糖含量和液泡酸性转化酶(VI)活性测定。结果表明,在20℃条件下转基因株系块茎还原糖(RS)含量与对照相比差异不明显,在4℃条件下RS含量则显著下降,与对照相比下降幅度从34%(株系B-13)至76.8%(株系B-1),说明Nt-VIF cDNA在马铃薯中的表达,成功地抑制了液泡酸性转化酶的活性,导致还原糖含量降低。进一步分析表明,转基因块茎低温贮藏其液泡转化酶活性与还原糖含量呈显著的正直线相关(VI = 0.3084RS + 0.0673)。实验获得的B-1、B-2、B-6、B-9、B-14等5个转基因株系,块茎低温贮藏后能直接满足炸片加工对还原糖含量的要求。  相似文献   

19.
锌对苦瓜叶片碳代谢及相关酶活性的影响研究   总被引:9,自引:0,他引:9  
田间试验研究不同Zn肥施用量对苦瓜叶片C代谢及相关酶活性的影响结果表明 ,低Zn胁迫时苦瓜上位和下位叶片蔗糖、可溶性糖、淀粉、Zn含量、蔗糖磷酸合成酶活性和碳酸酐酶活性均显著下降 ,而酸性转化酶活性、中性转化酶活性和淀粉酶活性显著提高 ,且它们之间均呈显著和极显著相关性。  相似文献   

20.
The principal goal of this paper was to generate flax (Linum usitatissimum L.) plants with increased antioxidant properties. To accomplish this a vector containing a multigene construct was prepared, and transgenic plants overexpressing essential flavonoid biosynthesis pathway enzymes were generated and analyzed. The simultaneous expression of genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) resulted in a significant increase of flax antioxidant capacity. To investigate the determinants of higher antioxidant properties of transgenic plants, the phenolic acids and lignans compound contents were measured. In both green part and seed extracts from transgenic plants, the phenolic acids level was increased when compared to the control. The calculated correlation coefficient between phenolic acids content and antioxidant capacity (0.82 and 0.70 for green part and flaxseed, respectively) perfectly reflects their strong relationship. The increase in yield of transgenic plants and their higher resistance to Fusarium culmorum and Fusarium oxysporum when compared to the control plants was a characteristic feature. It was assessed a very high correlation (correlation coefficient = 0.9) between phenolic acids level in flaxseed extract and resistance to F. culmorum. The flowering date of transgenic plants was approximately 3 weeks earlier than that of the control plants. Interestingly, a significant increase in monounsaturated fatty acids and a slight increase in lignans content accompanied the increase in antioxidant properties of flaxseeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号