首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first polarization measurements of the orbiter cloud photopolarimeter have detected a planet-wide layer of submicrometer aerosols of substantial visible optical thickness, of the order of 0.05 to 0.1, in the lower stratosphere well above the main visible sulfuric acid cloud layer. Early images show a number of features observed by Mariner 10 in 1974, including planetary scale markings that propagate around the planet in the retrograde sense at roughly 100 meters per second and bright- and dark-rimmed cells suggesting convective activity at low latitudes. The polar regions are covered by bright clouds down to latitudes aproximately 50 degrees, with both caps significantly brighter (relative to low latitudes) than the south polar cloud observed by Mariner 10. The cellular features, often organized into clusters with large horizontal scale, exist also at mid-latitudes, and include at least one case in which a cell cuts across the edge of the bright polar cloud of the northern hemisphere.  相似文献   

2.
A space-time composite of polar stereographic ultraviolet images of Venus from Mariner 10 shows a remarkable circumpolar vortex. The vortex is characterized by a cloud which appears similar to dense terrestrial stratus having an albedo that is 50 percent higher. Spiral streaks converge into it from low latitudes, akin to the spiral bands of a hurricane. The bright visible polar cloud is not axisymmetric but has roughly an elliptical shape. The high brightness of the polar cloud suggests that it has a different origin from the rest of the Venus cloud cover.  相似文献   

3.
Ultraviolet images of Venus over a 3-month period show marked evolution of the planetary scale features in the cloud patterns. The dark horizontal Y feature recurs quasi-periodically, at intervals of about 4 days, but it has also been absent for periods of several weeks. Bow-shaped features observed in Pioneer Venus images are farther upstream from the subsolar point than those in Mariner 10 images.  相似文献   

4.
Near-infrared spectra of a bright and a dark thermal emission feature on the night side of Venus have been obtained from 2.2 to 2.5 micrometers (microm) at a spectral resolution of 1200 to 1500. Both bright and dark features show numerous weak absorption bands produced by CO(2), CO, water vapor, and other gases. The bright feature (hot spot) emits more radiation than the dark feature (cold spot) throughout this spectral region, but the largest contrasts occur between 2.21 and 2.32 microm, where H(2)SO(4) clouds and a weak CO(2) band provide the only known sources of extinction. The contrast decreases by 55 to 65 percent at wavelengths longer than 2.34 microm, where CO, clouds, and water vapor also absorb and scatter upwelling radiation. This contrast reduction may provide direct spectroscopic evidence for horizontal variations in the water vapor concentrations in the Venus atmosphere at levels below the cloud tops.  相似文献   

5.
Images of Neptune obtained by the narrow-angle camera of the Voyager 2 spacecraft reveal large-scale cloud features that persist for several months or longer. The features' periods of rotation about the planetary axis range from 15.8 to 18.4 hours. The atmosphere equatorward of -53 degrees rotates with periods longer than the 16.05-hour period deduced from Voyager's planetary radio astronomy experiment (presumably the planet's internal rotation period). The wind speeds computed with respect to this radio period range from 20 meters per second eastward to 325 meters per second westward. Thus, the cloud-top wind speeds are roughly the same for all the planets ranging from Venus to Neptune, even though the solar energy inputs to the atmospheres vary by a factor of 1000.  相似文献   

6.
Further results from the Venus orbiter radiometric temperature experiment (VORTEX) on the Pioneer orbiter are presented. These are used to characterize the three-dimensional temperature field, the cloud structure, and the dynamics of the 60-to 130-kilometer altitude region of the Venus atmosphere. One of the new discoveries is a "dipole" structure at high latitudes, with two hot spots rotating around the pole, surrounded by banks of cold cloud.  相似文献   

7.
Net radiation measurements in the atmosphere of Venus indicate that the bulk of the atmosphere is radiatively cooling at high latitudes and heating at low latitudes. Similarity of features observed by all three probes indicate planetwide stratification. Flux variations within the clouds provide evidence of significant differences in cloud structure. A feature of unusually large opacity found near 60 kilometers at the north probe site is probably related to the unique circulation regime revealed by ultraviolet and infrared imagery. A stable layer between the cloud bottoms and about 35 kilometers contains several features in the flux profiles probably resulting from large-scale compositional stratifications rather than clouds. In the layer below 35 kilometers unexpectedly large fluxes were observed.  相似文献   

8.
Results from the Pioneer Venus sounder probe neutral mass spectrometer indicate that there is no difference in the isotopic ratios of carbon and oxygen between Venus and Earth to within +/- 5 percent. The mixing ratio of nitrogen is 3.5(+3)(-2) percent with an isotopic ratio within 20 percent of that of Earth. The ratio of argon-36 to argon-40 is 85 percent, and the ratio of argon-38 to argon-36 is 20 percent. The mixing ratios of argon-36 and argon-40 are approximately 40 and 50 parts per million, respectively, with an error of about a factor of 2 (mainly toward a lesser amount) resulting from uncertainty in the response of the ion pump to rare gases. Hydrogen chloride cannot account for more than a few percent of the 36 mass peak, and therefore the large excess of primordial argon is a reasonable conclusion. The ratio of neon-20 to argon-36 of 0.5 +/- 0.3 is definitely terrestrial in character rather than solar. These results indicate that there is a large excess of all primordial noble gases on Venus relative to Earth. There appears to be a considerably higher abundance of sulfur compounds below 20 kilometers than in or above the main cloud layer. The 32 and 60 mass peaks show a sharp increase below 22 kilometers, indicating the possible production of sulfur and carbon oxysulfide (COS) at the expense of sulfur dioxide.  相似文献   

9.
The altitude profiles of temperature and pressure measured during the descent of the four Pioneer Venus probes show small contrast below the clouds but significant differences within the clouds at altitudes from 45 to 61 kilometers. At 60 kilometers, the probe which entered at 59.3 degrees north latitude sensed temperatures 25 K below those of the lower latitude probes, and a sizable difference persisted down to and slightly below the cloud base. It also sensed pressure below those of the other probes by as much as 49 millibars at a mean pressure of 200 millibars. The measured pressure differences are consistent with cyclostrophic balance of zonal winds ranging from 130 +/- 20 meters per second at 60 kilometers to 60 +/- 17 meters per second at 40 kilometers, with evidence in addition of a nonaxisymmetric component of the winds. The clouds were found to be 10 to 20 K warmer than the extended profiles of the lower atmosphere, and the middle cloud is convectively unstable. Both phenomena are attributed to the absorption of thermal radiation from below. Above the clouds, in the lower stratosphere, the lapse rate decreases abruptly to 3.5 K per kilometer, and a superimposed wave is evident. At 100 kilometers, the temperature is minimum, with a mean value of about 170 K.  相似文献   

10.
Jurgens RF 《Science (New York, N.Y.)》1968,162(3860):1388-1390
Spectrum analysis of radar waves backscattered from an anulus near the limb of Venus shows that a uniform scattering model applies over regions extending from the equator to within approximately 15 degrees of the poles. These observations indicate that large polar ice caps extending to latitudes as low as 60 degrees are very unlikely.  相似文献   

11.
The cloud-level atmosphere of Venus takes little more than 4 days to complete one rotation, whereas the solid planet below has a 243-day period. Computer simulations of the circulation of the Venus middle atmosphere between 40 and 85 kilometers, as driven by solar radiation absorbed in the clouds, reproduce (i) the observed cloud-level rotation rate, (ii) strong vertical shears above and below the cloud tops, and (iii) midlatitude jets and strong poleward flow on the day side. Simulated circulations converge to yield nearly the same zonal winds when initialized with both stronger or weaker rotation rates. These results support the hypothesis that the observed cloud-top rotation rate is maintained by statistical balance between fluxes of momentum by thermal tides and momentum advection by mean meridional circulation.  相似文献   

12.
Optical observations of Venus have yielded various values of the rotation period extending from less than one to several hundred days. Radar observations give a retrograde rotation of the solid globe in 244 +/- 2 days. Recent ultraviolet photographs, however, show relatively rapid displacements of clouds in the high atmosphere of Venus which suggest a retrogrode rotation in only 5 days. The two rates seem to be physically incompatible.  相似文献   

13.
Combination of two types of radar data shows the orbital plane and equator of Venus to be included by less than 2 degrees, and the sidereal rotation period to be 243.09 +/- 0.18 days (retrograde)-remarkably close to the 243.16-day period for which the spin would be in resonance with the relative orbital motions of Earth and Venus. In this resonance, Venus would make, on average, four axial rotations as seen by an Earth observer between successive close approaches of the two planets. Estimates of the instantaneous spin period, accurate within about 0.01 day, would provide important information on the difference of Venus's equatorial moments of inertia, on their orientation, and on the magnitude of the tidal torque exerted on Venus by the sun.  相似文献   

14.
Voyager 2 images of the southern hemisphere of Uranus indicate that submicrometersize haze particles and particles of a methane condensation cloud produce faint patterns in the atmosphere. The alignment of the cloud bands is similar to that of bands on Jupiter and Saturn, but the zonal winds are nearly opposite. At mid-latitudes (-70 degrees to -27 degrees ), where winds were measured, the atmosphere rotates faster than the magnetic field; however, the rotation rate of the atmosphere decreases toward the equator, so that the two probably corotate at about -20 degrees . Voyager images confirm the extremely low albedo of the ring particles. High phase angle images reveal on the order of 10(2) new ringlike features of very low optical depth and relatively high dust abundance interspersed within the main rings, as well as a broad, diffuse, low optical depth ring just inside the main rings system. Nine of the newly discovered small satellites (40 to 165 kilometers in diameter) orbit between the rings and Miranda; the tenth is within the ring system. Two of these small objects may gravitationally confine the e ring. Oberon and Umbriel have heavily cratered surfaces resembling the ancient cratered highlands of Earth's moon, although Umbriel is almost completely covered with uniform dark material, which perhaps indicates some ongoing process. Titania and Ariel show crater populations different from those on Oberon and Umbriel; these were probably generated by collisions with debris confined to their orbits. Titania and Ariel also show many extensional fault systems; Ariel shows strong evidence for the presence of extrusive material. About halfof Miranda's surface is relatively bland, old, cratered terrain. The remainder comprises three large regions of younger terrain, each rectangular to ovoid in plan, that display complex sets of parallel and intersecting scarps and ridges as well as numerous outcrops of bright and dark materials, perhaps suggesting some exotic composition.  相似文献   

15.
Three large Venus surface features, identified previously in images obtained from Earth-based radar observations, are shown by the Pioneer Venus radar mapper to be elevated 5 to 10 kilometers above the surrounding terrain. Two of these features, one bright and the other dark, lie adjacent to each other astride the 65 degrees N parallel between longitudes 310 degrees E and 10 degrees E. The combined region forms a huge tectonically uplifted plateau, surmounted by radar-bright ridges that may have either a volcanic or tectonic origin. The third feature, located at 30 degrees N, 283 degrees E, is radar-bright and may consist of volcanic material extruded along a fault zone. A first radar-scattering image, compiled from data obtained by the mapper in its imaging mode, shows a region north of the equator; several circular depressions seen in this area may result from meteoritic impact.  相似文献   

16.
Near-infrared images of the Venus night side show bright contrast features that move from east to west, in the direction of the cloud-top atmospheric superrotation. Recently acquired images of the Venus night side along with earlier spectroscopic observations allow identification of the mechanisms that produce these features, their level of formation, and the wind velocities at those levels. The features are detectable only at wavelengths near 1.74 and 2.3 micrometers, in narrow atmospheric windows between the CO(2) and H(2)O bands. The brightest features have brightness temperatures near 480 Kelvin, whereas the darkest features are more than 50 Kelvin cooler. Several factors suggest that this radiation is emitted by hot gases at altitudes below 35 kilometers in the Venus atmosphere. The feature contrasts are produced as this thermal radiation passes through a higher, cooler, atmospheric layer that has horizontal variations in transparency. The 6.5-day east-west rotation period of the features indicates that equatorial wind speeds are near 70 meters per second in this upper layer. Similar wind speeds have been measured by entry probes and balloons at altitudes between 50 and 55 kilometers in the middle cloud layer. The bright features indicate that there are partial clearings in this cloud deck. The presence of these clearings could decrease the efficiency of the atmospheric greenhouse that maintains the high surface temperatures on Venus.  相似文献   

17.
Initial images of Venus's south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet's north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.  相似文献   

18.
The solar flux radiometer aboard the Pioneer Venus large probe operated successfully during its descent through the atmosphere of Venus. Upward, downward, and net fluxes from 0.4 to 1.0 micrometers were obtained at more than 390 levels between 185 millibars (at an altitude of approximately 61 kilometers) and the surface. Fluxes from 0.4 to 1.8 micrometers were also obtained between 185 millibars and about the level at which the pressure was 2 atmospheres. Data from 80 to 185 millibars should be available after additional decoding by the Deep Space Network. Upward and downward intensities in a narrower band from 0.59 to 0.66 micrometers were also obtained throughout the descent in order to constrain cloud properties. The measurements indicate three cloud regions above the 1.3-atmosphere level (at an altitude of approximately 49 kilometers) and a clear atmosphere beneath that level. At the 67 degrees solar zenith of the probe entry site, some 15 watts per square meter are absorbed at the surface by a dark ground, which implies that about 2 percent of the solar energy incident on the planet is absorbed at the ground.  相似文献   

19.
Observations of Venus made during 1967 and 1968 at a frequency of 15.4 gigahertz set an upper limits of 5 percent for the variation of brightness temperature with phase. This negative result appears to contradict earlier detections of a phase effect. By comparison with Virg A (3C 274), which has an assumed flux density of 29 x 10(-26) watt per square meter per hertz, the brightness temperature of Venus at this frequency is 485 + 60, -40 degrees K (mean error).  相似文献   

20.
Voyager 2 radio occultation measurements of Saturn's atmosphere probed to the 1.2-bar pressure level, where the temperature was 143 +/- 6 K and the lapse rate apparently equaled the dry adiabatic value of 0.85 K per kilometer. The tropopause at both mid-latitude occultation locations (36.5 degrees N and 31 degrees S) was at a pressure level of about 70 millibars and a temperature of approximately 82 K. The stratospheric structures were very similar with the temperature rising to about 140 K at the 1-millibar pressure level. The peak electron concentrations sensed were 1.7 x 10(4) and 0.64 x 10(4) per cubic centimeter in the predawn (31 degrees S) and late afternoon (36.5 degrees N) locations. The topside plasma scale heights were about 1000 kilometers for the late afternoon profile, and 260 kilometers for the lower portions and 1100 kilometers for the upper portions of the topside predawn ionosphere. Radio measurements of the masses of Tethys and Iapetus yield (7.55 +/- 0.90) x 10(20) and (18.8 +/- 1.2) x 10(20) kilograms respectively; the Tethys-Mimas resonance theory then provides a derived mass for Afimas of (0.455 +/- 0.054) x 10(20) kilograms. These values for Tethys and Mimas represent major increases from previously accepted ground-based values, and appear to reverse a suggested trend of increasing satellite density with orbital radius in the Saturnian system. Current results suggest the opposite trend, in which the intermediate-sized satellites of Saturn may represent several classes of objects that differ with respect to the relative amounts of water, ammonia, and methane ices incorporated at different temperatures during formation. The anomalously low density of lapetus might then be explained as resulting from a large hydrocarbon content, and its unusually dark surface markings as another manifestation of this same material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号