首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of alkali (aqueous NaOH and KOH solutions) pre-treatment on dye exhaustion, color values, color fastness, tensile and surface properties of lyocell yarns were investigated. Dye exhaustion and color yield of lyocell yarns increased by increasing alkali concentrations. The lyocell yarns showed weight loss due to the decrease in carboxyl groups during alkali pre-treatment. The tensile strengths of lyocell yarns decreased with the increase of alkali concentrations because of the decrement of yarn diameter by weight loss the open twist spirals, and the increased volume of lyocell yarns after alkali pre-treatment. The washing and perspiration fastness results of untreated lyocell yarns were better than alkali pre-treated lyocell yarns, while the light fastness results of untreated and alkali pre-treated samples were similar.  相似文献   

2.
In this study, a facile method was developed to coat AgCl nanoparticles (NPs) onto knitted cotton fabrics. The AgCl NPs were characterized by ultraviolet absorption spectrum, X-ray diffraction (XRD) and dynamic laser light scattering (DLS). The AgCl NPs were coated onto cotton fabrics through a pad-dry-cure process with the assistance of 1,2,3,4- butanetetracarboxylic acid (BTCA). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ICP-OES analysis and energy-dispersive X-ray spectroscopy (EDX) confirmed that AgCl NPs were successfully coated onto cotton fabrics. The prepared cotton samples exhibited excellent antimicrobial activity against both Gram-positive S. aureus and Gram-negative K. pneumonia bacteria. Rat skin fibroblast cytotoxicity testing demonstrated the treated cotton fabrics to be non-toxic. The washing durability evaluation showed that the antimicrobial function of cotton fabrics was durable to washing. In addition, the wrinkle resistance of the coated cotton fabrics was improved and there was no obvious change in whiteness.  相似文献   

3.
The aim of this study was to examine the influence of dyeing on antibacterial efficiency of corona activated polyamide and polyester fabrics loaded with colloidal Ag nanoparticles as well as the influence of the presence of Ag nanoparticles on the color change of dyed fabrics. C.I. Acid Green 25 and C.I. Disperse Blue 3 were used for dyeing of polyamide fabrics and C.I. disperse violet 8 for polyester fabrics. The color change of polyamide fabrics depends on the dye type, which was generally lower compared to polyester fabrics. Antibacterial efficiency of Ag loaded fabrics was tested against Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Escherichia coli. Corona activated polyester and polyamide fabrics showed excellent antibacterial efficiency independently of order of dyeing and Ag loading. The morphology of fibers loaded with Ag nanoparticles was assessed by SEM and atomic absorption spectroscopy for elemental analysis.  相似文献   

4.
This research presents a novel strategy to fabricate multi-functional cotton textiles. In this study, silver nanoparticles-sericin (Ag NPS-sericin) hybrid colloid has been prepared using sericin as reducing agent and dispersing agent. Cotton fabrics was oxidized selectively with sodium periodate (NaIO4) to generate oxidized cotton fabrics, and which has then been finished using Ag NPS-sericin hybrid colloid prepared to obtain multi-functional cotton textiles. The finished cotton fabric not only possessed excellent antibacterial activity, but also it was modified functionally by sericin protein, which endowed antibacterial cotton fabrics relatively smooth surface and good wear ability. Fourier transform infrared spectrogram confirmed that sericin protein was grafted onto cellulose fibers. Ag NPs were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and X-ray powder diffraction (XRD). The results of SEM, X-ray photoelectron spectroscopy (XPS) and EDS confirmed that silver nanoparticles and sericin been loaded successfully on the surface of cotton fabrics. The antibacterial experiments showed bacterial reduction rates of S.aureus and E.coli were able to reach above 99 %. After washing 20 times, it showed still good antibacterial activity at over 95 % against S.aureus and E.coli.  相似文献   

5.
This article focuses on the functional finishing of textiles using silver nanoparticles (AgNPs) and chitosan derivative binder, which was synthesized by a modification of chitosan using α-ketoglutaric acid. The binder covalently linked to cotton fabric via esterification of the hydroxyl groups on the cotton surface, and tightly adhered to surface of the AgNPs by coordination bonds. As a result, the coating of AgNPs on the cotton fabric showed excellent antibacterial property and laundering durability. After 30 consecutive laundering cycles, the Ag content on the fabrics decreased to 37.6 %, but the bacterial reduction rates against both S. aureus and E. coli were maintained over 95 %. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile.  相似文献   

6.
In this study silver nanoparticles with different particle sizes and hence colors were synthesized on silk and cotton fabrics through reduction of silver nitrate. Particle sizes of the silver colloids were measured by dynamic light scattering (DLS). The structure and properties of the treated fabrics were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and UV-Vis reflectance spectroscopy. Various characteristics of the treated fabrics including antibacterial activities against a Gram positive (Staphylococcus aureus) and a Gram negative (Escherichia coli) bacteria, color effect, wash and light fastness, water absorption, fabric rigidity, and UV blocking properties were also assessed. The results indicated that the treated fabrics displayed different colors in the presence of silver nanoparticles with different particle sizes and exhibited good and durable fastness properties. Also, the size of the silver particles had a tangible effect on antibacterial activity of treated fabrics and its antibacterial performance was improved by decreasing the size of particles. Moreover, this process imparted significantly UV blocking activity to fabric samples.  相似文献   

7.
Nanostructured silver thin films were sputtered onto the aromatic thermotropic liquid crystalline fibers of Vectran by magnetron sputtering technology. Plasma treatment was used as pre-treatment in order to improve the deposition of the coating layer. Surface morphology of the coated fibers was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A full energy dispersive X-ray analysis (EDX) was used to detect the elemental composition of the material. Its conductivity and mechanical properties were measured and analyzed as well. The study revealed that a very thin conductive silver deposition exhibited high electrical conductivity as well as less influence on the mechanical properties of the pre-treated Vectran fiber. The plasma treatment could improved the deposition of the coating layer, but the surface roughness caused by plasma treatment also affected the surface conductivity. It was found that the surface resistivity could reach very low value of 1.66×10−3 Ω·cm after sputtering deposition for 30 min.  相似文献   

8.
Madder is a natural colorant which is commonly applied with metal salts as a mordant to improve its affinity to fibers and color fastness. Madder produces an insoluble complex or lake in the presence of metal ions on mordanted fabric. In this study, wool fabric was pretreated with AgNPs (silver nanoparticles) as a mordant, then dyed with madder. The wool fabric samples were examined by scanning electron microscopy (SEM) and their colorimetric characteristics were evaluated. The formation of spherical silver nanoparticle was confirmed using UV-Visible spectroscopy, SEM images, and elemental analysis. The average size of synthesized silver nanoparticles on the surface of wool fibers is around 73 nm. The dyed wool samples were pretreated with different concentration of Ag+ ions or AgNPs, which showed higher color strength value compared to untreated dyed wool fabric. This pretreatment also presented good antibacterial activity.  相似文献   

9.
GSP/gelatin composite nanofiber membranes containing silver nanoparticles were successfully fabricated as a novel biomaterial by electrospinning. The silver nanoparticles (AgNPs) were synthesized with the grape seed polyphenols (GSP) as reducing agent in aqueous solution of gelatin, and then the GSP/gelatin/AgNPs mixed solution was electrospun into nanofibers at 55 °C. The scanning electron microscopy (SEM) confirmed that the composite fibers were uniform and the average fiber diameter ranged between 150 nm and 230 nm with an increase in applied potentials from 14 kV to 22 kV. And the transmission electron microscopy (TEM) showed that silver nanoparticles distributed individually in the fibers with the average particle size of about 11 nm. Furthermore, the ultraviolet visible spectrophotometer (UV-vis spectroscopy) test demonstrated that all of Ag+ converted to Ag0 when the concentration of gelatin was 24 wt% and the mass ratio of GSP to AgNO3 was about 5:2. The antibacterial activities of the fiber membranes against E.coli and S.aureus were measured via a shake flank test and demonstrated good performance after the importation of silver nanopaticles. Cytotoxicity testing also revealed that fiber membranes contained silver nanoparticles had no cyto-toxic. All the results indicated that the GSP was effective for the formation and stabilization of silver nanoparticles in composite nanofibers mats which had the potential for applications in antimicrobial tissue engineering and wound dressing.  相似文献   

10.
This paper presents a facile and novel approach for the synthesis of ZnO nanoparticles in aqueous solution based on a one-step reaction between a modified hyperbranched polymer (PNP) and zinc nitrate. The prepared ZnO nanoparticles polymeric hybrid was characterized and its antibacterial activity was investigated. The results indicated that the ZnO nanoparticles have an average size about 6 nm and well dispersed in aqueous medium. The minimum inhibitory concentration (MIC) of them was 20 ppm and 60 ppm against S. aureus and E. coli, respectively. For the functional finishing of cotton fabrics by these ZnO nanoparticles, a microwave assisted in situ fabrication method was employed. Scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) measurements confirmed that the ZnO nanoparticles in situ generated in cotton fabrics successfully. Fourier transform infrared (FT-IR) spectroscopic investigation demonstrated that the ZnO nanoparticles were fixed on the cotton fibers by PNP. The treated cotton fabrics exhibited excellent UV protective properties and antibacterial activities. When ZnO content of cotton fabric was 1.49 %, the UPF value of treated cotton fabric exceeded 125 and the bacterial reduction rate against S. aureus and E. coli reached 99.97 % and 98.40 %, respectively.  相似文献   

11.
The present work described the development of multifunctional, electrically conductive and durable fabrics by coating of silver and copper particles using a dipping-drying method. The particles were directly grown on fabric structure to form electrically conductive fibers. Particles were found to fill the spaces between the microfibers, and were stacked together to form networks with high electrical conductivity. The electrically conductive fabrics showed low resistance with high stretch ability. The utility of conductive fabrics was analyzed for electromagnetic shielding ability over frequency range of 30 MHz to 1.5 GHz. The EMI shielding was found to increase with increase in concentration of copper and silver particles. Furthermore, the heating performance of the copper and silver coated fabric was studied through measuring the change in temperature at the surface of the fabric while applying a voltage difference across the fabric. The maximum temperature (119°C for silver and 112°C for copper) were obtained when the applied voltage was 10 V. Moreover, the role of deposited particles on antibacterial properties was examined against pathogenic bacteria such as Staphylococcus aureus and Escherichia coli. At the end, the durability of coated fabrics was examined against several washing cycles. The fabrics showed good retention of the particles, proved by small loss in the conductivity of the material after washing.  相似文献   

12.
In this study, the surface of polyester fiber was modified by means of thermal treatment with a silver carbamate complex. We used scanning electron microscopy (SEM), an X-ray diffraction technique (XRD), and X-ray photoelectron spectroscopy (XPS) to allow a detailed characterization of the silver-coated polyethylene terephthalate (PET) fibers. The results revealed remarkable changes in the surface morphology and microstructure of the silver film after thermal reduction. On SEM, the silver nanoparticles (AgNPs) were seen to be uniformly and densely deposited on the fiber surface. The XRD pattern of the silver-coated fiber indicated that the film has a crystalline structure. A continuous layer of AgNPs, between 30 and 100 nm in size, was assembled on the PET fibers. The PET/Ag composite was found to impart high conductivity to the fibers, with an electrical resistivity as low as 0.12 kΩ·cm.  相似文献   

13.
Sponge-gourd (SG) natural fibers obtained from Luffa cylindrica plant were chemically treated separately using alkali (5, 10, and 15 wt%), acetic anhydride (5, 10, and 15 wt%), and benzoyl chloride (5, 10, and 15 wt%). Both untreated and chemically treated SG fibers (SGFs) were subsequently characterized using a field emission scanning electron microscope, a Fourier transform infrared spectrometer, an X-ray diffractometer, a universal testing machine, and a thermogravimetric analyzer. Surface analysis by scanning electron microscopy shows that the alkali treatments promote better outer surface layer than other treatments of the SGF with the exposition of inner fibrillar structure, thereby increasing roughness of the fiber surface. Alkali treatment also improves the crystallinity and exhibits new chemical bond formation in the SGF. The tensile strength and Young’s modulus have been analyzed through a two-parameter Weibull distribution model, where a significant increase in mechanical property of benzoylated fibers has been observed. The thermal stability of the modified fibers is also found to increase by acetic anhydride treatment.  相似文献   

14.
Pre-loading of monochlorotriazinyl β-Cyclodextrin (MCT-βCD) onto/within viscose/wool (V/W) and cotton/wool (C/W) blended fabrics provide hosting cavities that can form host-guest inclusion complexes with reactive dyes in postprinting as well as with triclosan derivative or silver nanoparticles/hyperbranched polyamide-amine (AgNPs/HBPAA) composite in subsequent final antibacterial finishing step. Coloration properties, antibacterial activity against (S. aureus) and (E. coli) pathogenic bacteria, durability of the obtained products, according to the above mentioned route, to wash, surface morphology and composition of selected samples were investigated. Results obtained signify that premodification of the nominated substrates with MCT-βCD (10 g/l), followed by reactive printing with mono-or bifunctional reactive dye (20 g/l), and subsequent post-finishing with triclosan derivative or AgNPs/HBPAA composite (15 g/l each) is an efficient treatments sequence for attaining reactive prints with significant antibacterial efficacy and noticeable durability to wash. Surface depositions of selected active ingredients were also confirmed using SEM and EDX analysis.  相似文献   

15.
This paper reports on an antimicrobial finishing for polyamide with high washfastness. As antimicrobial agent modified silica sols containing silver components are used as coating agent and are applied to the polyamide fabric by using a semi-industrial procedure. The antimicrobial properties of coated polyamide fabrics are determined against the bacteria E. coli. Significant antimicrobial effects are observed even after 40 washing cycles. The amount of silver on the polyamide fabrics was measured by using ICP-OES. Besides this, samples are investigated by means of UV/Vis-spectroscopy and scanning electron microscopy. Furthermore textile properties as, e.g., air permeability and mechanical properties were measured. Due to high antimicrobial effect and the strong washfastness of this finishing, this reported method could be of high interest for industrial production processes.  相似文献   

16.
The objective of this research was to impart antimicrobial properties to hemp fibers by incorporation of silver ions in hemp fibers by chemisorption. Sorption properties of hemp fibers were improved by non-selective oxidation using hydrogen peroxide and potassium permanganate. The optimal conditions for silver ions sorption by hemp fibers were determined by changing sorption conditions: pH value and concentration of aqueous silver nitrate solution, as well as duration of sorption. The maximum sorption capacity of modified hemp fibers was 1.84 mmol of Ag+ ions per gram of fibers. Antimicrobial activity of silver-loaded hemp fibers against different pathogens: Staphylococcus aureus, Escherichia coli, and Candida albicans was evaluated in vitro. Obtained silver-loaded hemp fibers show antimicrobial activity against tested pathogens.  相似文献   

17.
Wool fabric was treated with liquid ammonia at -40 °C for 30 and 60 s prior to the application of polypyrrole (PPy). The polymer was deposited on wool fiber using the chemical oxidation method with 0.02 and 0.05 mol/l (Py) monomer concentration and FeCl3 as a catalyst. Functional groups of wool samples were analyzed using FT-IR, and surface morphology was investigated using SEM micrographs. Properties such as water absorbency, surface resistivity, abrasion resistance, weight add-on, and air permeability of coated specimens were explored. The FT-IR outcomes revealed the liquid ammonia pre-treatment changed the amount of amide I (NH), cystic acid, cystic monoxide, and dioxide content of the fiber. SEM micrographs revealed the descaling of wool surface after pre-treatment and smooth coating of polymer. Pre-treatment of wool in liquid ammonia improved absorbency of wool fabric with respect to the treatment duration. The surface resistivity of wool fabric decreased with the increase of monomer concentration and pre-treatment duration. The results of abrasion resistance confirmed that the pre-treated fabric exhibited lower loss of polymer after 200 cycles of abrasion. The weight of the fabric was increased and air permeability decreased when the monomer concentration and liquid ammonia pre-treatment duration was increased.  相似文献   

18.
In this study, synthesis of zinc oxide nanoparticles was carried out along with the hydrolysis of polyester fabric using sodium hydroxide to increase the surface activity and enhance the nanoparticles adsorption. The polyester fabrics were treated with zinc acetate and sodium hydroxide at different bath conditions, ultrasound and stirrer, resulting in formation of ZnO nanospheres and ZnO nanorods. The presence of zinc oxide with different shapes on the surface of the polyester fabrics was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Also, the X-ray diffraction patterns established the composition of wurtzite structure of zinc oxide. The self-cleaning property of treated polyester fabrics was evaluated through discoloring dye stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound treated polyester fabrics were superior compared to the stirrer treated samples.  相似文献   

19.
Alkali treatment may change the structures and properties of cellulosic fibers. The aim of this work was to study the mechanism of structural changes of hemp fibers treated with different alkali concentrations and time by SEM, FTIR, tensile and bending tests. The results showed that the alkali treatment removed some of non-cellulosic materials from the surface of fibers and caused many cracks along the axis of fibers. The crystalline order index increased firstly followed by decreased with the increase of concentration. The deconvolution spectra in OH stretching region showed that the alkali treatment decreased the amount of hydrogen bonding firstly and then increased. The S/G ratio results also support the removal of non-cellulosic materials. The tensile strength of the fibers increased with the alkali concentration. Furthermore, the suitable chemical treatment not only slenderized the hemp fibers, but also softened the fibers dramatically.  相似文献   

20.
Cellulose fabrics (viscose and cotton) were treated with atmospheric pressure dielectric barrier discharge (DBD) in air. After DBD treatment, samples were characterized and volume electrical resistance was measured under different relative humidity conditions (φ=40-55 %). Results have shown that DBD treatment increases wettability and polar surface functional groups content, which consequently causes a decrease of volume electrical resistivity of cellulose fabrics in measured relative humidity range (φ=40-55 %). Metal ions (silver, copper, and zinc) were incorporated in untreated and plasma treated samples through sorption from aqueous solutions and incorporation of metal ions into plasma treated cellulose samples decreased electrical resistivity even further. Resistivity of cotton and viscose fabrics with incorporated metal ions followed the order Zn2+ > Cu2+ > Ag+. The most pronounced decrease, for entire order of a magnitude, was obtained by modification of cotton fabric with DBD and silver ions, where value of resistivity dropped from GΩ to a several dozens of MΩ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号