首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Acknowledgment that the matrix matters in conserving wildlife in human-modified landscapes is increasing. However, the complex interactions of habitat loss, habitat fragmentation, habitat condition and land use have confounded attempts to disentangle the relative importance of properties of the landscape mosaic, including the matrix. To this end, we controlled for the amount of remnant forest habitat and the level of fragmentation to examine mammal species richness in human-modified landscapes of varying levels of matrix development intensity and patch attributes. We postulated seven alternative models of various patch habitat, landscape and matrix influences on mammal species richness and then tested these models using generalized linear mixed-effects models within an information theoretic framework. Matrix attributes were the most important determinants of terrestrial mammal species richness; matrix development intensity had a strong negative effect and vegetation structural complexity of the matrix had a strong positive effect. Distance to the nearest remnant forest habitat was relatively unimportant. Matrix habitat attributes are potentially a more important indicator of isolation of remnant forest patches than measures of distance to the nearest patch. We conclude that a structurally complex matrix within a human-modified landscape can provide supplementary habitat resources and increase the probability of movement across the landscape, thereby increasing mammal species richness in modified landscapes.  相似文献   

2.
Generating confidence intervals for composition-based landscape indexes   总被引:3,自引:0,他引:3  
Hess  George R.  Bay  Jeff M. 《Landscape Ecology》1997,12(5):309-320
Many landscape indexes with ecological relevance have been proposed, including diversity indexes, dominance, fractal dimension, and patch size distribution. Classified land cover data in a geographic information system (GIS) are frequently used to calculate these indexes. However, a lack of methods for quantifying uncertainty in these measures makes it difficult to test hypothesized relations among landscape indexes and ecological processes. One source of uncertainty in landscape indexes is classification error in land cover data, which can be reported in the form of an error matrix. Some researchers have used error matrices to adjust extent estimates derived from classified land cover data. Because landscape diversity indexes depend only on landscape composition – the extent of each cover in a landscape – adjusted extent estimates may be used to calculate diversity indexes. We used a bootstrap procedure to extend this approach and generate confidence intervals for diversity indexes. Bootstrapping is a technique that allows one to estimate sample variability by resampling from the empirical probability distribution defined by a single sample. Using the empirical distribution defined by an error matrix, we generated a bootstrap sample of error matrixes. The sample of error matrixes was used to generate a sample of adjusted diversity indexes from which estimated confidence intervals for the diversity indexes were calculated. We also note that present methods for accuracy assessment are not sufficient for quantifying the uncertainty in landscape indexes that are sensitive to the size, shape, and spatial arrangement of patches. More information about the spatial structure of error is needed to calculate uncertainty for these indexes. Alternative approaches should be considered, including combining traditional accuracy assessments with other probability data generated during the classification procedure.  相似文献   

3.
Wetlands, carbon, and climate change   总被引:3,自引:0,他引:3  
Wetland ecosystems provide an optimum natural environment for the sequestration and long-term storage of carbon dioxide (CO2) from the atmosphere, yet are natural sources of greenhouse gases emissions, especially methane. We illustrate that most wetlands, when carbon sequestration is compared to methane emissions, do not have 25 times more CO2 sequestration than methane emissions; therefore, to many landscape managers and non specialists, most wetlands would be considered by some to be sources of climate warming or net radiative forcing. We show by dynamic modeling of carbon flux results from seven detailed studies by us of temperate and tropical wetlands and from 14 other wetland studies by others that methane emissions become unimportant within 300 years compared to carbon sequestration in wetlands. Within that time frame or less, most wetlands become both net carbon and radiative sinks. Furthermore, we estimate that the world’s wetlands, despite being only about 5–8 % of the terrestrial landscape, may currently be net carbon sinks of about 830 Tg/year of carbon with an average of 118 g-C m?2 year?1 of net carbon retention. Most of that carbon retention occurs in tropical/subtropical wetlands. We demonstrate that almost all wetlands are net radiative sinks when balancing carbon sequestration and methane emissions and conclude that wetlands can be created and restored to provide C sequestration and other ecosystem services without great concern of creating net radiative sources on the climate due to methane emissions.  相似文献   

4.
The focus of biodiversity conservation is shifting to larger spatial scales in response to habitat fragmentation and the need to integrate multiple landscape objectives. Conservation strategies increasingly incorporate measures to combat fragmentation such as ecological networks. These are often based on assessment of landscape structure but such approaches fail to capitalise on the potential offered by more ecologically robust assessments of landscape function and connectivity. In this paper, we describe a modelling approach to identifying functional habitat networks and demonstrate its application to a fragmented landscape where policy initiatives seek to improve conditions for woodland biodiversity including increasing woodland cover. Functional habitat networks were defined by identifying suitable habitat and by modelling connectivity using least-cost approaches to account for matrix permeability. Generic focal species (GFS) profiles were developed, in consultation with stakeholders, to represent species with high and moderate sensitivity to fragmentation. We demonstrated how this form of analysis can be used to aid the spatial targeting of conservation actions. This ‘targeted’ action scenario was tested for effectiveness against comparable scenarios, which were based on random and clumped actions within the same landscape. We tested effectiveness using structural metrics, network-based metrics and a published functional connectivity indicator. Targeting actions within networks resulted in the highest mean woodland area and highest connectivity indicator value. Our approach provides an assessment of landscape function by recognising the importance of the landscape matrix. It provides a framework for the targeting and evaluation of alternative conservation options, offering a pragmatic, ecologically-robust solution to a current need in applied landscape ecology.  相似文献   

5.
In urbanising landscapes, planning for sustainable biodiversity occurs in a context of multifunctional land use. Important conditions for species persistence are habitat quality, the amount and configuration of habitat and the permeability of the landscape matrix. For planning purposes, these determinants should be integrated into simple indicators for spatial conditions of persistence probability. We propose a framework of three related indices. The cohesion index is based on the ecology of metapopulations in a habitat network. We discuss how an indicator for species persistence in such a network could be developed. To translate this network index into an area index, we propose the concept of spatial cohesion. Habitat cohesion and spatial cohesion are defined and measured for single species or, at best, for species profiles. Since species differ in their perception of the same landscape, different species will rate different values of these indices for the same landscape. Because landscapes are rarely planned for single species, we further propose the index of landscape cohesion, which integrates the spatial cohesion indices of different species. Indices based on these concepts can be built into GIS tools for landscape assessment. We illustrate different applications of these indices, and emphasise the distinction between ecological and political decisions in developing and applying such tools. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Understanding the influence of large and small-scale heterogeneity on species distribution and abundance is one of the major foci of landscape ecology research in fragmented environments. Although a large number of studies have addressed this issue individually, little effort has been made to synthesize the vast amount of literature published in the last decade. We reviewed 122 focal patch studies on 954 species published between 1998 and 2009 to determine the probability of species responding significantly to landscape, patch, and within-patch variables. We assessed the influence of taxonomic, life history, and methodological variables on probability of response to these 3 levels. Species in diverse taxa responded at high rates to factors at all three levels, suggesting that a multi-level approach is often necessary for understanding species response in patchy systems. Mammals responded at particularly high rates to landscape variables and therefore may benefit more than other taxa from landscape-level conservation efforts in fragmented environments. The probability of detecting a species response to landscape context, patch, and within-patch factors was influenced by a variety of methodological aspects of the studies such as type of landscape metric used, type of response variable, and sample size. Study design issues rarely are discussed by authors as reasons why a particular study did not find an effect of a variable, but should be given more consideration in future studies.  相似文献   

7.
For simulating hierarchically structured raster maps of landscapes that consist of multiple land cover types, we extend the concept of neutral landscape models to provide a general Markovian model. A stochastic transition matrix provides the probability rules that govern landscape fragmentation processes by assigning finer resolution land cover categories, given coarser resolution categories. This matrix can either be changed or remain the same at different resolutions. The probability rules may be defined for simulating properties of an actual landscape or they may be specified in a truly neutral manner to evaluate the effects of particular transition probability rules.For illustration, model parameters are defined heuristically to simulate properites of actual watershed-delineated landscapes in Pennsylvania. Three landscapes were chosen; one is mostly forested, one is in a transitional state between mostly forested and a mixture of agriculture, urban and suburban land, while the third is fully developed with only remnant forest patches that are small and disconnected. For each landscape type, a small sample of raster maps are simulated in a Monte Carlo fashion to illustrate how an empirical distribution of landscape measurements can be obtained.  相似文献   

8.
The need to avert unacceptable and irreversible environmental change is the most urgent challenge facing society. Landscape ecology has the capacity to help address these challenges by providing spatially-explicit solutions to landscape sustainability problems. However, despite a large body of research, the real impact of landscape ecology on sustainable landscape management and planning is still limited. In this paper, we first outline a typology of landscape sustainability problems which serves to guide landscape ecologists in the problem-solving process. We then outline a formal problem-solving approach, whereby landscape ecologists can better bring about disciplinary integration, a consideration of multiple landscape functions over long time scales, and a focus on decision making. This framework explicitly considers multiple ecological objectives and socio-economic constraints, the spatial allocation of scarce resources to address these objectives, and the timing of the implementation of management actions. It aims to make explicit the problem-solving objectives, management options and the system understanding required to make sustainable landscape planning decisions. We propose that by adopting a more problem-solving approach, landscape ecologists can make a significant contribution towards realising sustainable future landscapes.  相似文献   

9.
We examined the use of coarse resolution land cover data (USGS LUDA) to accurately discriminate ecoregions and landscape-scale features important to biodiversity monitoring and management. We used land cover composition and landscape indices, correlation and principal components analysis, and comparison with finer-grained Landsat TM data, to assess how well LUDA data discriminate changing patterns across an agriculture-forest gradient in Minnesota, U.S.A. We found LUDA data to be most accurate at general class levels of agriculture and forest dominance (Anderson Level I), but in consistent and limited in ecotonal areas of the gradient and within forested portions of the study region at finer classes (Anderson Level II). We expected LUDA to over-represent major (matrix) cover types and under-represent minor types, but this was not consistent with all classes. 1) Land cover types respond individualistically across the gradient, changing landscape grain as well as their spatial distribution and abundance. 2) Agriculture is not over-represented where it is the dominant land cover type, but forest is over-represented where it is dominant. 3) Individual forest types are under-represented in an open land matrix. 4) Within forested areas, mixed deciduous-coniferous forest is over-represented by several orders of magnitude and the separate conifer and hardwood types under-represented. Across gradual, transitional agriculture-forest areas, LUDA cover class dominance changes abruptly in a stair-step fashion. In general, rare cover types that are discrete, such as forest in agriculture or wetlands or water in forest, are more accurately represented than cover classes having lower contrast with the matrix. Northward across the gradient, important changes in the proportions of conifer and deciduous forest mixtures occur at scales not discriminated by LUDA data. Results suggest that finer-grained data are needed to map within-state ecoregions and discriminate important landscape characteristics. LUDA data, or similar coarse resolution data sources, should be used with caution and the biases fully understood before being applied in regional landscape management. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Movement of animals is a key process affecting population dynamics. Information on factors that affect pathway use is essential for identifying and protecting pathways, and important for maintaining connectivity among populations. We present an innovative, non-invasive, approach for predicting pathways of reintroduced Asiatic wild ass (Equus hemionus) in Israel, which is based on understanding the effects of landscape factors on pathways use. The approach includes: Predicting pathways, by employing a least cost pathway (LCP) GIS models based on several landscape factors, so as to efficiently direct a field survey and explore the wild ass’s general preferences of pathway types; Collecting empirical data by surveying the dung density of wild ass along each of the predicted pathways and using the data as an index of pathway use; Evaluating the predicted pathways against the empirical data collected, to estimate the general pathway preferences of the wild ass; and Developing and evaluating alternative generalized linear models, according to a priori hypotheses based on empirical data so as to quantify the effect of different landscape factors on pathway use. The analyses were conducted for the entire landscape, and then for two distinct landscape types, open landscape and landscape-barriers (mountain ridges), as subsets of the entire landscape. There were clear differences in the mean number of faeces counts between the LCPs, indicating that the wild ass prefers certain pathway types as a function of landscape features. We further found that the factors affecting E. hemionus pathway usage—vegetation; slopes; canyons; and 4-wheel drive routes—varied largely between the two major landscape types studied, demonstrating the importance of studying space use patterns at different landscape terrains. This information can be applicable to landscape planning measures that aim to enhance protection of the species. This approach provides a framework for studying animal space-use patterns of a variety of species, including elusive species, in a heterogeneous landscape.  相似文献   

11.
Design in science: extending the landscape ecology paradigm   总被引:9,自引:7,他引:2  
Landscape ecological science has produced knowledge about the relationship between landscape pattern and landscape processes, but it has been less effective in transferring this knowledge to society. We argue that design is a common ground for scientists and practitioners to bring scientific knowledge into decision making about landscape change, and we therefore propose that the pattern–process paradigm should be extended to include a third part: design. In this context, we define design as any intentional change of landscape pattern for the purpose of sustainably providing ecosystem services while recognizably meeting societal needs and respecting societal values. We see both the activity of design and the resulting design pattern as opportunities for science: as a research method and as topic of research. To place design within landscape ecology science, we develop an analytic framework based on the concept of knowledge innovation, and we apply the framework to two cases in which design has been used as part of science. In these cases, design elicited innovation in society and in science: the design concept was incorporated in societal action to improve landscape function, and it also initiated scientific questions about pattern–process relations. We conclude that landscape design created collaboratively by scientists and practitioners in many disciplines improves the impact of landscape science in society and enhances the saliency and legitimacy of landscape ecological scientific knowledge.  相似文献   

12.
Land use maps are widely used in modeling land use change, urban sprawl, and for other landscape related studies. A misclassification confusion matrix for land use maps is usually provided as a measure of their quality and uncertainty. However, this very important information is rarely considered in land use map based studies, especially in modeling landscape dynamics. Ignoring uncertainty of land use maps may cause models to provide unreliable predictions. This study is an attempt to investigate the impact of the accuracy of land use maps used as input for an urban sprawl model. In the study area, the regional confusion matrix has been localized using a topographical map. Based on the regional and local confusion matrices, several error levels have been defined. The results showed that a localized confusion matrix that reflected the characteristics of the study area had error rates that were much different than the regional confusion matrix. The predictions of the probability of urban sprawl based on the land use maps and defined error levels were quite different.  相似文献   

13.
Landscapes are complex systems that require a multiscale approach to fully understand, manage, and predict their behavior. Remote sensing technologies represent the primary data source for landscape analysis, but suffer from the modifiable areal unit problem (MAUP). To reduce the effects of MAUP when using remote sensing data for multiscale analysis we present a novel analytical and upscaling framework based on the spatial influence of the dominant objects composing a scene. By considering landscapes as hierarchical in nature, we theorize how a multiscale extension of this object-specific framework may assist in automatically defining critical landscape thresholds, domains of scale, ecotone boundaries, and the grain and extent at which scale-dependent ecological models could be developed and applied through scale.  相似文献   

14.
The aim of this paper is to examine the role of urban public parks in maintaining connectivity and butterfly assemblages. Using a regression framework, we first test the relative importance of park size and isolation in predicting abundance and species richness of butterfly assemblages across a set of 24 public parks within a large metropolitan area, Marseille (South-East France). Then, we focus on landscape features that affect diversity patterns of the recorded butterfly communities. In this second part, the urban landscape surrounding each park is described (within a 1 × 1 km window) according to two major components: vegetated areas (habitat patches) and impervious or built areas (matrix patches). Specifically, we aim to test whether the incorporation of this built component (matrix) in the landscape analysis provides new insights into the understanding of ecological connectivity in the urban environment. We found a significant effect of both matrix configuration (shape complexity of the built patches) and distance from regional species pool (park isolation) on diversity of butterflies that overrides park size in their contribution to variation in species richness. This result suggests that many previous studies of interactions between biodiversity and urban landscape have overlooked the influence of the built elements.  相似文献   

15.
Gradient modeling of conifer species using random forests   总被引:2,自引:2,他引:0  
Landscape ecology often adopts a patch mosaic model of ecological patterns. However, many ecological attributes are inherently continuous and classification of species composition into vegetation communities and discrete patches provides an overly simplistic view of the landscape. If one adopts a niche-based, individualistic concept of biotic communities then it may often be more appropriate to represent vegetation patterns as continuous measures of site suitability or probability of occupancy, rather than the traditional abstraction into categorical community types represented in a mosaic of discrete patches. The goal of this paper is to demonstrate the high effectiveness of species-level, pixel scale prediction of species occupancy as a continuous landscape variable, as an alternative to traditional classified community type vegetation maps. We use a Random Forests ensemble learning approach to predict site-level probability of occurrence for four conifer species based on climatic, topographic and spectral predictor variables across a 3,883 km2 landscape in northern Idaho, USA. Our method uses a new permutated sample-downscaling approach to equalize sample sizes in the presence and absence classes, a model selection method to optimize parsimony, and independent validation using prediction to 10% bootstrap data withhold. The models exhibited very high accuracy, with AUC and kappa values over 0.86 and 0.95, respectively, for all four species. The spatial predictions produced by the models will be of great use to managers and scientists, as they provide vastly more accurate spatial depiction of vegetation structure across this landscape than has previously been provided by traditional categorical classified community type maps.  相似文献   

16.
Landscape ecology is in a position to become the scientific basis for sustainable landscape development. When spatial planning policy is decentralised, local actors need to collaborate to decide on the changes that have to be made in the landscape to better accommodate their perceptions of value. This paper addresses two prerequisites that landscape ecological science has to meet for it to be effective in producing appropriate knowledge for such bottom-up landscape-development processes—it must include a valuation component, and it must be suitable for use in collaborative decision-making on a local scale. We argue that landscape ecological research needs to focus more on these issues and propose the concept of landscape services as a unifying common ground where scientists from various disciplines are encouraged to cooperate in producing a common knowledge base that can be integrated into multifunctional, actor-led landscape development. We elaborate this concept into a knowledge framework, the structure–function–value chain, and expand the current pattern–process paradigm in landscape ecology with value in this way. Subsequently, we analyse how the framework could be applied and facilitate interdisciplinary research that is applicable in transdisciplinary landscape-development processes.  相似文献   

17.
Bridging the gap between ecology and spatial planning in landscape ecology   总被引:1,自引:0,他引:1  
Opdam  Paul  Foppen  Ruud  Vos  Claire 《Landscape Ecology》2001,16(8):767-779
Landscapes are studied by pattern (the geographical approach) and by process (the ecological approach within landscape ecology). The future of landscape ecology depends on whether the two approaches can be integrated. We present an approach to bridge the gap between the many detailed process studies on species, and applied activities such as landscape evaluation and design, which require integrated knowledge. The approach consists of four components: 1) Empirical case studies of different scales, organisms and processes. 2) Modeling studies to extrapolate empirical studies across space and time. 3) Modeling studies to produce guidelines and standards for landscape conditions. 4) Methods and tools for integration to the landscape level, which can be built into multidisciplinary tools for design and evaluation. We conclude that in the landscape ecological literature, the steps 1 and 2 are well represented, whereas the steps 3 and 4 are mostly neglected. We challenge landscape ecologists to push landscape ecology to a higher level of maturation and to further develop its profile as a problem-oriented science.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

18.
Size of a forest patch is a useful predictor of density and reproductive success of Neotropical migratory birds in much of eastern North America. Within these forested landscapes, large forest tracts appear to be sources – fragments in which surpluses of offspring are produced and can potentially colonize new fragments including woodlot sinks where reproduction fails to balance adult mortality. Within agricultural landscapes of the midwestern U.S., where forests are severely fragmented, high levels of brood parasitism by brown-headed cowbirds (Molothrus ater) and intense predation on nests generally result in low reproductive success for Neotropical migrants regardless of forest size. In some midwestern U.S. landscapes, however, the variation in reproductive success among forest fragments suggests that `source' habitat could still exist for Neotropical migrants. We used vegetation, fragment and landscape metrics to develop multivariate models that attempt to explain the variation in abundance and reproductive success of Neotropical migrants nesting in an agricultural landscape in northern Indiana, USA. We produced models that reasonably described the pattern of species richness of Neotropical migrants and the abundance of wood thrushes (Hylocichla mustelina) and several other Neotropical migrant species within 14 forest fragments. In contrast, we were unable to produce useful models of the reproductive success of wood thrushes breeding in the same forest fragments. Our results suggest that (1) abundance patterns of Neotropical migrants are probably influenced by both landscape- and fragment-scale factors; (2) multivariate analyses of Neotropical migrant abundance are not useful in modeling the corresponding patterns of reproductive success; and (3) the location of any remaining `source' habitat for Neotropical migrants breeding within agricultural landscapes in North America will be difficult to predict with indirect measures such as vegetation composition or landscape context. As a result, the potential for developing conservation strategies for Neotropical migrants will be limited without labor-intensive, direct measurements of demographic parameters.  相似文献   

19.
In this study, we sought to understand how landscape structure affects roe deer movements within their home-range in a heterogeneous and fragmented agricultural system of south-western France. We analysed the movements of 20 roe deer fitted with GPS collars which recorded their locations every 2–6 h over several months (mean = 9 months). Based on empirical observations and previous studies of roe deer habitat use, we hypothesised that roe deer should avoid buildings and roads, move preferentially along valley bottoms and through the more wooded areas of the landscape. To test these hypotheses we paired each observed movement step with 10 random ones. Using conditional logistic regression, we modelled a step selection function, which represents the probability of selecting a given step as a function of these landscape variables. The selected model indicated that movements were influenced by all the tested landscape features, but not always in the predicted direction: our results suggested that roe deer tend to avoid buildings, roads, valley bottoms and possibly the more wooded areas (although the latter result should be interpreted with caution, as it may be influenced by a bias in the rate of GPS fix acquisition in woods). The distances to buildings and to roads were the most influential variables in the model, suggesting that the avoidance of potential sources of disturbance may be a key factor in determining ranging behaviour of roe deer in human dominated landscapes.  相似文献   

20.
The urban matrix was recently shown to be a mosaic of heterogeneous dispersal habitats. We conducted a playback experiment of mobbing calls to examine the probabilities of forest birds to cross a distance of 50 m over urban matrix with different land-cover types in an urban area. We treated the reciprocal of the crossing probabilities as a movement resistance for forest birds. We drew resistance surfaces based on the land-cover maps of urban Sapporo. We applied a circuit theory to examine the relative role of a detour route consisting of a riparian corridor and urban matrix for dispersing forest bird individuals from continuous forest to an isolated green space in the midst of an urban area. Our results showed that wood cover had the highest crossing probability, while open land (grassland and pavement) had the lowest probabilities. Buildings and water surface displayed an intermediate probability. Resistance surfaces and flow maps at 25- and 50-m resolutions were very similar and suggested that dispersing individuals are likely to use the intervening building areas that dominate the urban matrix rather than detour through riparian corridors. Our results showed the useful combination of experimental approaches and circuit theory, and the importance of the spatial configuration of corridors, as well as the composition and management of dispersal habitats, to landscape connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号