首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The temperature sensitive and host range mutant clone 147 of equine herpesvirus 1 (EHV-1) was assessed for its ability to protect conventional, susceptible adult horses against respiratory infection by EHV-1 and equine herpesvirus 4 (EHV-4).Intranasal (IN) vaccination with 5.2 log(10) TCID(50) did not cause adverse clinical reactions although a limited virus shedding and viraemia (leukocytes) was observed in 11 of 15 and 10 of 15 vaccinated horses respectively. All 15 vaccinated horses showed a significant seroresponse to both EHV-1 and EHV-4 for virus neutralising (VN) antibody. None of 14 control horses shed virus or became viraemic or seroconverted prior to challenge. EHV-1 challenge (dose 6.0 log(10)) 6 weeks after vaccination resulted in pyrexia in all eight control horses while eight vaccinated horses remained unaffected. Six control horses developed nasal discharge, five of which were mucopurulent nasal discharge (mean duration 3.2 days) which also occurred in four vaccinated horses for 1 day. All eight control horses shed challenge EHV-1 at a significantly higher level (group mean titre 2.6+/-0.4 log(10) TCID(50) per sample) and for much longer (mean duration 4.8+/-1.5 days) than that (group mean titre 1.4+/-0.8 log(10) TCID(50) per sample and mean duration 1.5+/-0.5 days) in six vaccinated horses. Furthermore, all eight control horses became viraemic (mean duration 2.9 days) but viraemia did not occur in eight vaccinated horses. Following EHV-1 challenge, all eight control horses showed a significant VN antibody rise to both EHV-1 and EHV-4 but this occurred in only one vaccinated horse and to EHV-4 only. In EHV-4 challenge (dose of 4.2 log(10) TCID(50)) of a separate pair of seven vaccinated and six control horses, 6 weeks after EHV-1 vaccination resulted in pyrexia (mean duration 2.3 days) and nasal discharge (mean duration 1.8 days) in three and five control horses respectively but the only reaction observed in the vaccinated group was nasal discharge for 1 day in one animal. All six control animals shed virus (mean titre 2.5+/-0.6 log(10) TCID(50) per sample and mean duration 2+/-0.6 days) compared to one vaccinated animal. Although EHV-4 viraemia is rare, 3 of 6 control horses became viraemic after EHV-4 challenge but this was not observed in vaccinated horses. After EHV-4 challenge 3 and 5 of 6 control horses seroconverted for VN antibody to EHV-1 and EHV-4 respectively; a non-responsive control horse had high level of pre-existing VN antibody to EHV-4. However, only 1 of 7 vaccinated horses showed a significant antibody rise and only to EHV-4.  相似文献   

2.
A silent cycle of equine herpesvirus 1 infection was described following epidemiological studies of unvaccinated mares and foals on a Hunter Valley stud farm. Following the introduction of routine vaccination with an inactivated whole virus equine herpesvirus 1 (EHV-1) and equine herpesvirus 4 (EHV-4) vaccine in 1997, a subsequent study identified excretion of EHV-1 and EHV-4 in nasal swab samples tested by PCR from vaccinated mares and their unweaned, unvaccinated foals. The current sero-epidemiological investigation of vaccinated mares and their young foals found serological evidence of EHV-1 and EHV-4 infection in mares and foals in the first 5 weeks of life. The results further support that EHV-1 and EHV-4 circulate in vaccinated populations of mares and their unweaned foals and confirms the continuation of the cycle of EHV-1 and EHV-4 infection.  相似文献   

3.
Fifteen unweaned thoroughbred foals, born on a stud farm to vaccinated mares, were clinically monitored during their first six months of life and repeatedly tested for equine herpesvirus type 1 (EHV-1) and equine herpesvirus type 4 (EHV-4). Nasopharyngeal swabs and blood samples were collected and screened respectively by PCR and seroneutralisation to detect the presence of the virus, explore its role as a possible cause of respiratory disease, and to assess the efficiency of the pcr for the diagnosis of this disease. The foals were divided into three groups on the basis of their clinical signs and whether they had seroconverted to EHV-1 and/or EHV-4: first, foals with no clinical signs of disease that had not seroconverted; secondly, foals with clinical signs that had seroconverted, and thirdly, foals with clinical signs that had not seroconverted. The results indicated that the viruses circulated on the stud farm despite stringent vaccination regimens against them, and confirmed their association with respiratory disease. The absence of significantly different pcr results among the three groups of foals showed that the pcr was effective in confirming the circulation of the viruses on the premises without being particularly helpful as a diagnostic tool.  相似文献   

4.
We have shown previously that equine herpesvirus 1 (EHV-1) glycoprotein D (gD) DNA elicited protective immune responses against EHV-1 challenge in murine respiratory and abortion models of EHV-1 disease. In this study, 20 horses, all with pre-existing antibody to EHV-4 and two with pre-existing antibody to EHV-1, were inoculated intramuscularly with three doses each of 50, 200 or 500microg EHV-1 gD DNA or with 500microg vector DNA. In 8 of 15 horses, inoculation with EHV-1 gD DNA led to elevated gD-specific antibody and nine horses exhibited increased virus neutralising (VN) antibody titres compared to those present when first inoculated. A lack of increase in gC-specific antibody during the 66 weeks of the experiment showed that the increase in gD-specific antibodies was not due to a natural infection with either EHV-1 or EHV-4. The increase in EHV-1 gD-specific antibodies was predominantly an IgGa and IgGb antibody response, similar to the isotype profile reported following natural EHV-1 infection.  相似文献   

5.
REASONS FOR PERFORMING STUDY: A silent cycle of equine herpesvirus 1 infection has been described following epidemiological studies in unvaccinated mares and foals. In 1997, an inactivated whole virus EHV-1 and EHV-4 vaccine was released commercially in Australia and used on many stud farms. However, it was not known what effect vaccination might have on the cycle of infection of EHV-1. OBJECTIVE: To investigate whether EHV-1 and EHV-4 could be detected in young foals from vaccinated mares. METHODS: Nasal and blood samples were tested by PCR and ELISA after collection from 237 unvaccinated, unweaned foals and vaccinated and nonvaccinated mares during the breeding season of 2000. RESULTS: EHV-1 and EHV-4 DNA was detected in nasal swab samples from foals as young as age 11 days. CONCLUSIONS: These results confirm that EHV-1 and EHV-4 circulate in vaccinated populations of mares and their unweaned, unvaccinated foals. POTENTIAL RELEVANCE: The evidence that the cycle of EHV-1 and EHV-4 infection is continuing and that very young foals are becoming infected should assist stud farms in their management of the threat posed by these viruses.  相似文献   

6.
A German abortion isolate of EHV-1 (strain M8) was grown in equine dermal (ED) cells at a low multiplicity of infection in presence of 5-bromo-2-deoxy uridine. The resulting stock was dialysed, titrated and cloned by terminal dilution in ED cells grown in 96-well microtitration plates. Of 192 clones each originating from a single focus, clone 147 (C147) was found to be restricted for growth at and above temperatures of 38.5 degrees C. It was also restricted for growth at 37 degrees C in rabbit kidney (RK-13) cells which are widely used for the isolation and titration of EHV-1; hence clone 147 was EHV-4-like.Clone 147 showed a remarkable efficacy as a vaccine in protecting conventional pregnant Welsh Mountain pony mares against abortions due to EHV-1. A single intranasal (IN) vaccination protected five out of six (83.3%), and four out of five (80%) of mares upon challenge 4 and 5-6 months, respectively, after the immunisation, whereas all six unvaccinated mares aborted between 9 and 19 days after IN EHV-1 challenge. With the exception of the day 9 abortion, foetuses of the remaining five mares were EHV-1 infected. Placenta from the early aborting mare was, however, EHV-1 positive. Both groups of vaccinated mares were also significantly protected against clinical reaction (notably pyrexia), nasal shedding and viraemia following challenge infection.  相似文献   

7.
REASONS FOR PERFORMING STUDY: Neurological disease in horses caused by infection with certain 'paralytic' strains of equine herpesvirus-1 (EHV-1) is a potentially devastating condition the pathogenesis of which is poorly understood. Preliminary observations in both experimentally induced and naturally occurring cases of the central nervous system disease have revealed a more robust cell-associated viraemia in horses infected with paralytic isolates of EHV-1, relative to horses infected with abortigenic isolates. To investigate further this pathogenesis-relevant question, the present study was performed using a greater number of horses and a more precise method for quantification of EHV-1 DNA present in viraemic leucocytes. OBJECTIVE: To compare the magnitude and duration of leucocyte-associated viraemia in seronegative, age-matched foals following infection with paralytic vs. abortigenic isolates of EHV-1. METHODS: Peripheral blood mononuclear cells (PBMC) were collected from 20 weanling foals at 2, 4, 7, 9, 11, 14 and 21 days after intranasal inoculation with either paralytic or abortigenic isolates of EHV-1. The amount of EHV-1 DNA present in each PBMC sample was measured by real-time quantitative PCR. RESULTS: Foals inoculated with paralytic strains of EHV-1 developed both a greater magnitude and longer duration of PBMC-associated viraemia than foals inoculated with abortigenic strains of the virus. CONCLUSIONS: Both the higher magnitude and longer duration of cell-associated viraemia contribute to the risk for development of neurological signs in horses infected with paralytic strains of EHV-1. POTENTIAL RELEVANCE: Our results provide empirically derived, scientific data that contributes to a better understanding of the pathogenetic basis for the differing abilities of paralytic and abortigenic strains of EHV-1 to cause post infection central nervous system disease in the horse. The findings identify the importance of minimising the quantitative burden of viraemic leucocytes that follows exposure to the virus, by the use of effective therapeutic antiviral drugs and efficacious prophylactic vaccines that stimulate cytotoxic immune responses against EHV-1 infected cells.  相似文献   

8.
Protecting equids against equine herpesvirus-1 (EHV-1) infection remains an elusive goal. Repeated infection with EHV-1 leads to protective immunity against clinical respiratory disease, and a study was conducted to measure the regulatory cytokine response (IFN-gamma and IL-4) in repeatedly infected immune ponies compared to non-immune ponies. Two groups of four ponies were established. Group 1 ponies had previously been infected on two occasions, and most recently 7 months before this study. Group 2 ponies had no history no vaccination or challenge infection prior to this study. Both groups were subjected to an intranasal challenge infection with EHV-1, and blood samples were collected pre-infection, and at 7 and 21 days post-infection for preparation of PBMCs. At each time point, the in vitro responses of PBMCs to stimulation with EHV-1 were measured, including IFN-gamma and IL-4 mRNA production, and lymphoproliferation. Group 1 ponies showed no signs of clinical disease or viral shedding after challenge infection. Group 2 ponies experienced a biphasic pyrexia, mucopurulent nasal discharge, and nasal shedding of virus after infection. Group 1 ponies had an immune response characterized both before and subsequent to challenge infection by an IFN-gamma response to EHV-1 in the absence of an IL-4 response, and demonstrated increased EHV-1-specific lymphoproliferation post-infection. Group 2 ponies had limited cytokine or lymphoproliferative responses to EHV-1 pre-challenge, and demonstrated increases in both IFN-gamma and IL-4 responses post-challenge, but without any lymphoproliferative response. Protective immunity to EHV-1 infection was therefore characterized by a polarized IFN-gamma dependent immunoregulatory cytokine response.  相似文献   

9.
The epizootiology of equine herpesvirus type 2 (EHV-2) infection was investigated in Thoroughbred foals on a stud farm which in previous years had suffered economic loss due to respiratory disease. Sixteen pairs of foals and their dams were selected for this study and all of the foals became infected with EHV-2 by two to four months of age. These animals responded serologically to the virus infection as detected by an enzyme-linked immunosorbent assay (ELISA). EHV-2 infection persisted in these foals for two to six months with constant or intermittent virus recovery. This persistent infection stimulated continuous production of antibodies against EHV-2. As soon as the antibody levels reached their peak at five to six months, the isolation rate of EHV-2 from the nasal cavity of these animals decreased, and eventually by nine months of age virus could no longer be recovered. Respiratory disease was observed in ten of the 16 foals; and two severely affected animals died at two months of age. EHV-2 was isolated from both foals at ante and/or post mortem examination. It is postulated that EHV-2, either as an initiating agent or by means of immnunosuppression, caused the respiratory disease observed in these foals.  相似文献   

10.
Equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) cause infections of horses worldwide. While both EHV-1 and EHV-4 cause respiratory disease, abortion and myeloencephalopathy are observed after infection with EHV-1 in the vast majority of cases. Disease control is achieved by hygiene measures that include immunization with either inactivated or modified live virus (MLV) vaccine preparations. We here compared the efficacy of commercially available vaccines, an EHV-1/EHV-4 inactivated combination and an MLV vaccine, with respect to induction of humoral responses and protection of clinical disease (abortion) in pregnant mares and foals on a large stud with a total of approximately 3500 horses. The MLV vaccine was administered twice during pregnancy (months 5 and 8 of gestation) to 383 mares (49.4%), while the inactivated vaccine was administered three times (months 5, 7, and 9) to 392 mares (50.6%). From the vaccinated mares, 192 (MLV) and 150 (inactivated) were randomly selected for serological analyses. There was no significant difference between the groups with respect to magnitude or duration of the humoral responses as assessed by serum neutralization assays (median range from 1:42 to 1:130) and probing for EHV-1-specific IgG isotypes, although neutralizing responses were higher in animals vaccinated with the MLV preparation at all time points sampled. The total number of abortions in the study population was 55/775 (7.1%), 9 of which were attributed to EHV-1. Seven of the abortions were in the inactivated and two in the MLV vaccine group (p=0.16). When foals of vaccinated mares were followed up, a dramatic drop of serum neutralizing titers (median below 1:8) was observed in all groups, indicating that the half-life of maternally derived antibody is less than 4 weeks.  相似文献   

11.
A drug induced equine herpesvirus-1 (EHV-1) mutant lacking thymidine kinase inducing activity was developed and evaluated as a vaccine. The safety and effectiveness of the vaccine to protect against experimentally induced EHV-1 respiratory disease were evaluated in weanling horses free of EHV-1 neutralizing antibody. The vaccine was safe when administered either intramuscularly or intravenously, and EHV-1 was not shed intranasally during the 12 days following administration. Intranasal challenge with virulent EHV-1 was used to evaluate vaccine efficacy. Following challenge, there was a significantly (p less than 0.05) greater increase in peak body temperatures and duration of nasal virus shedding in the nonvaccinates, and a significant (p less than 0.05) increase in serum neutralizing antibody titers in the vaccinates.  相似文献   

12.
The envelope glycoprotein D of equine herpesvirus 1 (EHV-1 gD) has been shown in laboratory animal models to elicit protective immune responses against EHV-1 challenge, and hence is a potential vaccine antigen. Here we report that intramuscular inoculation of EHV-1 gD produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD-specific ELISA antibody in the serum of over 90% of adult mixed breed horses. The virus-neutralizing antibody responses to EHV-1 gD were similar to those observed after inoculation with a commercially available killed EHV-1/4 whole virus vaccine. Intramuscular inoculation of EHV-1 gD DNA encoded in a mammalian expression vector was less effective in inducing antibody responses when administered as the sole immunogen, but inoculation with EHV-1 gD DNA followed by recombinant EHV-1 gD induced increased gD ELISA and virus-neutralizing antibody titres in six out of seven horses. However, these titres were not higher than those induced by either EHV-1 gD or the whole virus vaccine. Isotype analysis revealed elevated gD-specific equine IgGa and IgGb relative to IgGc, IgG(T) and IgA in horses inoculated with EHV-1 gD or with the whole virus vaccine. Following inoculation of pregnant mares with EHV-1 gD, their foals had significantly higher levels of colostrally derived anti-gD antibody than foals out of uninoculated mares. The EHV-1 gD preparation did not induce a significant mean antibody response in neonatal foals following inoculation at 12 h post-partum and at 30 days of age, irrespective of the antibody status of the mare. The ability of EHV-1 gD to evoke comparable neutralizing antibody responses in horses to those of a whole virus vaccine confirms EHV-1 gD as a promising candidate for inclusion in subunit vaccines against EHV-1.  相似文献   

13.
AIMS: To identify the respiratory viruses that are present among foals in New Zealand and to establish the age at which foals first become infected with these viruses. METHODS: Foals were recruited to the study in October/ November 1995 at the age of 1 month (Group A) or in March/ April 1996 at the age of 4-6 months (Groups B and C). Nasal swabs and blood samples were collected at monthly intervals. Nasal swabs and peripheral blood leucocytes (PBL) harvested from heparinised blood samples were used for virus isolation; serum harvested from whole-blood samples was used for serological testing for the presence of antibodies against equine herpesvirus (EHV)-1 or -4, equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3). Twelve foals were sampled until December 1996; the remaining 19 foals were lost from the study at various times prior to this date. RESULTS: The only viruses isolated were EHV-2 and EHV-5. EHV-2 was isolated from 155/157 PBL samples collected during the period of study and from 40/172 nasal swabs collected from 18 foals. All isolations from nasal swabs, except one, were made over a period of 2-4 months from January to April (Group A), March to April (Group B) or May to July (Group C). EHV-5 was isolated from either PBL, nasal swabs, or both, from 15 foals on 32 occasions. All foals were positive for antibodies to EHV-1 or EHV-4, as tested by serum neutralisation (SN), on at least one sampling occasion and all but one were positive for EHV-1 antibodies measured by enzyme-linked immunosorbent assay (ELISA) on at least one sampling occasion. Recent EHV-1 infection was evident at least once during the period of study in 18/23 (78%) foals for which at least two samples were collected. SN antibodies to ERBV were evident in 19/23 (83%) foals on at least one sampling occasion and 15/23 foals showed evidence of seroconversion to ERBV. Antibodies to ERAV were only detected in serum samples collected from foals in Group A and probably represented maternally-derived antibodies. Haemagglutination inhibition (HI) antibody titres 1:10 to EAdV-1were evident in 21/23 (91%) foals on at least one sampling occasion and 16/23 foals showed serological evidence of recent EAdV-1 infection. None of the 67 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. There was no clear association between infection with any of the viruses isolated or tested for and the presence of overt clinical signs of respiratory disease. CONCLUSIONS: There was serological and/or virological evidence that EHV-1, EHV-2, EHV-5, EAdV-1 and ERBV infections were present among foals in New Zealand. EHV-2 infection was first detected in foals as young as 3 months of age. The isolation of EHV-2 from nasal swabs preceded serological evidence of infection with other respiratory viruses, suggesting that EHV-2 may predispose foals to other viral infections.  相似文献   

14.
AIM: To identify viruses associated with respiratory disease in young horses in New Zealand.

METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3).

RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV. Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV-2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR)=2.67, 95% CI=1.59-4.47, p=0.017].

CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV-2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.  相似文献   

15.
AIM: To identify viruses associated with respiratory disease in young horses in New Zealand. METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3). RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV. Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV-2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR)=2.67, 95% CI=1.59-4.47, p=0.017]. CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV-2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.  相似文献   

16.
A group of three horses was experimentally infected with equine herpesvirus type 1 (EHV-1) and showed clinical signs characterised by a biphasic febrile response, leucopenia and cell associated viraemia accompanied by virus shedding from the nasopharynx. A second exposure to the virus 18 days later resulted in the isolation of virus from the nasopharynx of one horse. This and a further group of three EHV-1 seropositive horses were subsequently infected with equine herpesvirus type 4 (EHV-4) 147 days after the initial EHV-1 infection and virus was shed from the nasopharynx in the absence of clinical disease. Following the first EHV-1 infection, virus specific immunoglobulin M (IgM) was present by day 5 and remained high until the second exposure at day 18 at which point levels decreased. In contrast, EHV-1 specific IgG, detected at day 6 peaked at day 18, after which time levels remained high. Virus neutralising antibodies and antibodies able to mediate antibody-dependent cellular cytotoxicity were present by day 10. The immune response to EHV-1 is discussed with reference to the disease.  相似文献   

17.
DNA-mediated immunization was assessed in a murine model of equine herpesvirus 1 (EHV-1) abortion. Whilst there are differences between the model and natural infection in the horse, literature suggests that EHV-1 infection of pregnant mice can be used to assess the potential ability of vaccine candidates to protect against abortion. Female BALB/c mice were inoculated twice, 4 weeks apart, with an expression vector encoding EHV-1 glycoprotein D (gD DNA). They were mated 15 days after the second inoculation, challenged at day 15 of pregnancy and killed 3 days later. The gD DNA-inoculated mice had fewer foetuses which were damaged or had died in utero (6% in gD DNA, 21% vector DNA and 28% in nil inoculated groups challenged with EHV-1), a reduction in the stunting effect of EHV-1 infection on foetuses (gD DNA: 0.40g+/-0.06, vector DNA: 0.34g+/-0.10), reduced placental and herpesvirus-specific lung histopathology and a lower titre of virus (TCID(50)+/-SEM/lung) in maternal lung than control groups (gD DNA 4.7+/-0.3, vector 5.3+/-0.2, nil 5.6+/-0.2). Maternal antibody to EHV-1 gD was demonstrated in pups born to a dam inoculated 123 days earlier with gD DNA. Although protection from abortion was incomplete, immunization of mice with gD DNA demonstrated encouragingly the potential of this vaccine strategy.  相似文献   

18.
Four foals were raised under specific pathogen free (SPF) conditions. At 3 to 4 months of age, SPF foals and 1 other non-SPF foal were intranasally inoculated with equine herpes virus type 1 (EHV-1). Clinical signs included depression, fever, inappetence and intermittent coughing. Clinical recovery was complete by seven days but high titres of virus were detected in nasal mucus for at least 10 days after inoculation. Clinical illness was less severe in the non-SPF foal. Interferon was detected in the nasal mucus of all foals from 2 days post infection (dpi), persisting until 8 or 10 dpi. ELISA antibody was detected in serum from 6 dpi. Titres continued to rise throughout the period of observation, and were slightly stimulated by re-inoculation. EHV antibody, identified as belonging to the IgM class by the double sandwich ELISA, was detected from 6 dpi. Peak IgM titres were observed between day 10 and 18, declining to base levels by day 42. Virus neutralizing antibody was detectable in serum from day 14 and rises in titre were parallel to that of total ELISA antibody. Cellular immunity in EHV-1 infected SPF horses was examined by the antibody dependent cytotoxicity (ADCC) test and the specific lymphocyte transformation test. The ability of foal neutrophils to effect ADCC decreased significantly between 3 to 10 days after inoculation. Peripheral blood mononuclear cells (PBMC) displayed reactivity towards EHV-1 antigens from about day 14, with maximum stimulation indices being obtained between 28 and 42 dpi.  相似文献   

19.
In 2009, a novel swine-origin H1N1 influenza A virus (S-OIV), antigenically and genetically divergent from seasonal H1N1, caused a flu pandemic in humans. Development of an effective vaccine to limit transmission of S-OIV in animal reservoir hosts and from reservoir hosts to humans and animals is necessary. In the present study, we constructed and evaluated a vectored vaccine expressing the H1 hemagglutinin of a recent S-OIV isolate using equine herpesvirus 1 (EHV-1) as the delivery vehicle. Expression of the recombinant protein was demonstrated by immunofluorescence and western blotting and the in vitro growth properties of the modified live vector were found to be comparable to those of the parental virus. The EHV-1-H1 vaccine induced an influenza virus-specific antibody response when inoculated into mice by both the intranasal and subcutaneous routes. Upon challenge infection, protection of vaccinated mice could be demonstrated by reduction of clinical signs and faster virus clearance. Our study shows that an EHV-1-based influenza H1N1 vaccine may be a promising alternative for protection against S-OIV infection.  相似文献   

20.
An adjuvanted vaccine containing inactivated equine influenza, herpesvirus antigens, and tetanus toxoid was administered to young seronegative foals of 8 months of age by deep intramuscular injection in the neck (Group A). The first two vaccinations were given 4 weeks apart. The third was administered 6 months later. Another group of foals (Group B) was vaccinated according to the same scheme at the same time with monovalent equine herpes virus (EHV) vaccine (EHV1.4) vaccine. Antibody responses to the equine influenza (single radial haemolysis; SRH) and tetanus (ToBi ELISA) components of the vaccines were examined from first vaccination until 1 year after the third vaccination. The influenza components of the combination vaccine induced high antibody titres at two weeks after the second vaccination whereafter titres declined until the time of the third vaccination. After the third vaccination, the titres rose rapidly again to remain high for at least 1 year. Antibody titres against tetanus peaked only after the third vaccination but remained high enough to offer protective immunity for at least 1 year. Foals vaccinated with monovalent EHV1.4 remained seronegative for influenza and tetanus throughout the study. Four and a half months after the third vaccination of groups A and B, a third group of animals was vaccinated twice with monovalent EHV1.4 vaccine 4 weeks apart (Group C). Two weeks after the administration of the second dose in the later group, all groups (A, B, C and an unvaccinated control group D) were challenged with EHV-4. Vaccinated foals (Group A, B, C) showed a clear reduction of clinical symptoms and virus excretion after EHV-4 challenge compared with the unvaccinated control foals. No difference could be demonstrated among the vaccinated groups, suggesting that the combination vaccine protects as well as the monovalent vaccine. In EHV1.4-vaccinated foals both antigenic fractions induced clear protection up to 6 months after vaccination (9). It can therefore be anticipated that the efficacy of the combination vaccine against EHV-1 challenge is similar to the efficacy against EHV-1 induced by EHV1.4 vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号