首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide and produce co-infections especially in areas of the world where both viruses are endemic; but little is known about the interactions between these two viruses. The objective of this study was to determine if co-infection with NDV affects HPAIV replication in chickens. Only infections with virulent NDV strains (mesogenic Pigeon/1984 or velogenic CA/2002), and not a lentogenic NDV strain (LaSota), interfered with the replication of HPAIV A/chicken/Queretaro/14588-19/95 (H5N2) when the H5N2 was given at a high dose (106.9 EID50) two days after the NDV inoculation, but despite this interference, mortality was still observed. However, chickens infected with the less virulent mesogenic NDV Pigeon/1984 strain three days prior to being infected with a lower dose (105.3–5.5 EID50) of the same or a different HPAIV, A/chicken/Jalisco/CPA-12283-12/2012 (H7N3), had reduced HPAIV replication and increased survival rates. In conclusion, previous infection of chickens with virulent NDV strains can reduce HPAIV replication, and consequently disease and mortality. This interference depends on the titer of the viruses used, the virulence of the NDV, and the timing of the infections. The information obtained from these studies helps to understand the possible interactions and outcomes of infection (disease and virus shedding) when HPAIV and NDV co-infect chickens in the field.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-015-0237-5) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
High pathogenicity avian influenza viruses (HPAIV) have caused fatal infections in mammals through consumption of infected bird carcasses or meat, but scarce information exists on the dose of virus required and the diversity of HPAIV subtypes involved. Ferrets were exposed to different HPAIV (H5 and H7 subtypes) through consumption of infected chicken meat. The dose of virus needed to infect ferrets through consumption was much higher than via respiratory exposure and varied with the virus strain. In addition, H5N1 HPAIV produced higher titers in the meat of infected chickens and more easily infected ferrets than the H7N3 or H7N7 HPAIV.  相似文献   

4.
为建立H5N1亚型禽流感病毒感染海兰白鸡模型,本研究选取1株鹅源H5N1高致病性禽流感病毒A/goose/guangdong/1/96(H5N1)(简称GD1/96),测定其对4周龄海兰白鸡的半数致死量.感染模型试验中,将30只4周龄海兰白鸡随机分成3组,每组10只,5只直接感染,5只同居,试验组设置一个重复,将病毒液稀释至104.5EID50,滴鼻、点眼各0.1 mL,对照组接种PBS,感染后24 h放入同居鸡;感染后连续观察14 d,记录死亡时间,每天采集咽喉拭子和泄殖腔拭子;感染组和同居组第3、5 天各剖解3只鸡,采集气管、肺脏、脑、脾脏、肾脏和十二指肠,进行病毒分离;qRT-PCR法分析感染组和同居组第3、5 天鸡肺组织中IFN-α和TNF-α的相对表达量.结果显示,GD1/96株的鸡胚半数感染量(EID50)为10-8.167/0.1 mL,对4周龄海兰白鸡的半数致死量为104.5 EID50.感染模型试验结果显示,以104.5EID50的攻毒剂量感染海兰白鸡,感染组鸡在感染后8 d全部死亡;在感染和同居3 d后,各组鸡的咽喉拭子和泄殖腔拭子均可检测到病毒;感染和同居后第3、5 天,各组鸡的6种组织中均可分离到高滴度的病毒;IFN-α和TNF-α在感染组和同居组的鸡肺脏组织中的表达量均显著增加(P <0.05).本试验建立了海兰白鸡的H5N1亚型禽流感病毒感染模型,为H5N1亚型禽流感病毒的致病机理及表达抗流感基因转基因鸡的研究奠定了基础.  相似文献   

5.
Low and highly pathogenic avian influenza viruses (LPAIVs and HPAIVs, respectively) have been co-circulating in poultry populations in Asian, Middle Eastern, and African countries. In our avian-flu surveillance in Vietnamese domestic ducks, viral genes of LPAIV and HPAIV have been frequently detected in the same individual. To assess the influence of LPAIV on the pathogenicity of H5 HPAIV in domestic ducks, an experimental co-infection study was performed. One-week-old domestic ducks were inoculated intranasally and orally with phosphate-buffered saline (PBS) (control) or 106 EID50 of LPAIVs (A/duck/Vietnam/LBM678/2014 (H6N6) or A/Muscovy duck/Vietnam/LBM694/2014 (H9N2)). Seven days later, these ducks were inoculated with HPAIV (A/Muscovy duck/Vietnam/LBM808/2015 (H5N6)) in the same manner. The respective survival rates were 100% and 50% in ducks pre-infected with LBM694 or LBM678 strains and both higher than the survival of the control group (25%). The virus titers in oral/cloacal swabs of each LPAIV pre-inoculation group were significantly lower at 3–5 days post-HPAIV inoculation. Notably, almost no virus was detected in swabs from surviving individuals of the LBM678 pre-inoculation group. Antigenic cross-reactivity among the viruses was not observed in the neutralization test. These results suggest that pre-infection with LPAIV attenuates the pathogenicity of HPAIV in domestic ducks, which might be explained by innate and/or cell-mediated immunity induced by the initial infection with LPAIV.  相似文献   

6.
Two low-pathogenicity (LP) and two high-pathogenicity (HP) avian influenza (AI) viruses were inoculated into chickens by the intranasal route to determine the presence of the AI virus in breast and thigh meat as well as any potential role that meat could fill as a transmission vehicle. The LPAI viruses caused localized virus infections in respiratory and gastrointestinal (GI) tracts. Virus was not detected in blood, bone marrow, or breast and thigh meat, and feeding breast and thigh meat from virus-infected birds did not transmit the virus. In contrast to the two LPAI viruses, A/chicken/Pennsylvania/1370/1983 (H5N2) HPAI virus caused respiratory and GI tract infections with systemic spread, and virus was detected in blood, bone marrow, and breast and thigh meat. Feeding breast or thigh meat from HPAI (H5N2) virus-infected chickens to other chickens did not transmit the infection. However, A/lchicken/Korea/ES/2003 (H5N1) HPAI virus produced high titers of virus in the breast meat, and feeding breast meat from these infected chickens to other chickens resulted in Al virus infection and death. Usage of either recombinant fowlpox vaccine with H5 AI gene insert or inactivated Al whole-virus vaccines prevented HPAI virus in breast meat. These data indicate that the potential for LPAI virus appearing in meat of infected chickens is negligible, while the potential for having HPAI virus in meat from infected chickens is high, but proper usage of vaccines can prevent HPAI virus from being present in meat.  相似文献   

7.
8.
As well as H5 highly pathogenic avian influenza viruses (HPAIV), H7 HPAIV strains have caused serious damages in poultry industries worldwide. Cases of bird-to-human transmission of H7 HPAIV have also been reported [11]. On the outbreak of avian influenza, rapid diagnosis is critical not only for the control of HPAI but also for human health. In the present study, a rapid diagnosis kit based on immunochromatography for the detection of H7 hemagglutinin (HA) antigen of influenza A virus was developed using 2 monoclonal antibodies that recognize different epitopes on the H7 HAs. The kit detected each of the tested 15 H7 influenza virus strains and did not react with influenza A viruses of the other subtypes than H7 or other avian viral and bacterial pathogens. The kit detected H7 HA antigen in the swabs and tissue homogenates of the chickens experimentally infected with HPAIV strain A/chicken/Netherlands/2586/03 (H7N7). The results indicate that the present kit is specific and sensitive enough for the diagnosis of HPAI caused by H7 viruses, thus, recommended for the field application as a pen-site test kit.  相似文献   

9.
H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.  相似文献   

10.
The study of influenza type A (IA) infections in wild mammals populations is a critical gap in our knowledge of how IA viruses evolve in novel hosts that could be in close contact with avian reservoir species and other wild animals. The aim of this study was to evaluate the susceptibility to infection, the nasal shedding and the transmissibility of the H7N1 and H5N1 highly pathogenic avian influenza (HPAI) viruses in the bank vole (Myodes glareolus), a wild rodent common throughout Europe and Asia. Two out of 24 H5N1-infected voles displayed evident respiratory distress, while H7N1-infected voles remained asymptomatic. Viable virus was isolated from nasal washes collected from animals infected with both HPAI viruses, and extra-pulmonary infection was confirmed in both experimental groups. Histopathological lesions were evident in the respiratory tract of infected animals, although immunohistochemistry positivity was only detected in lungs and trachea of two H7N1-infected voles. Both HPAI viruses were transmitted by direct contact, and seroconversion was confirmed in 50% and 12.5% of the asymptomatic sentinels in the H7N1 and H5N1 groups, respectively. Interestingly, viable virus was isolated from lungs and nasal washes collected from contact sentinels of both groups. The present study demonstrated that two non-rodent adapted HPAI viruses caused asymptomatic infection in bank voles, which shed high amounts of the viruses and were able to infect contact voles. Further investigations are needed to determine whether bank voles could be involved as silent hosts in the transmission of HPAI viruses to other mammals and domestic poultry.  相似文献   

11.
During 2006, H5N1 HPAI caused an epizootic in wild birds, resulting in a die-off of Laridae in the Novosibirsk region at Chany Lake. In the present study, we infected common gulls (Larus canus) with a high dose of the H5N1 HPAI virus isolated from a common gull to determine if severe disease could be induced over the 28 day experimental period. Moderate clinical signs including diarrhea, conjunctivitis, respiratory distress and neurological signs were observed in virus-inoculated birds, and 50% died. The most common microscopic lesions observed were necrosis of the pancreas, mild encephalitis, mild myocarditis, liver parenchymal hemorrhages, lymphocytic hepatitis, parabronchi lumen hemorrhages and interstitial pneumonia. High viral titers were shed from the oropharyngeal route and virus was still detected in one bird at 25 days after infection. In the cloaca, the virus was detected sporadically in lower titers. The virus was transmitted to direct contact gulls. Thus, infected gulls can pose a significant risk of H5N1 HPAIV transmission to other wild migratory waterfowl and pose a risk to more susceptible poultry species. These findings have important implications regarding the mode of transmission and potential risks of H5N1 HPAI spread by gulls.  相似文献   

12.
为了解广西玉林市2020年规模禽场禽流感病毒感染状况,采用荧光RT-PCR方法,对广西玉林市7个县(市、区)42个规模化禽场采集的1260份禽喉/泄殖腔棉拭子样品进行了通用型禽流感病毒核酸检测(荧光PCR),并对检测为阳性的样本进行H5、H7亚型(双重荧光PCR)和H9亚型(荧光PCR)分型鉴定。结果显示:在42个规模化禽场中,未检出H5和H7亚型高致病性禽流感病毒阳性样品;在2个鸡场中检出18份H9亚型低致病性禽流感病毒阳性样品,在2个鸡场和4个鸭场中检出115份其他亚型低致病性禽流感病毒阳性样品。结果表明:在高致病性禽流感(H5+H7)三价灭活疫苗强制免疫政策下,广西玉林市规模化禽场的高致病性禽流感病毒感染风险较小,但仍须加强禽流感的免疫、监测,做好综合防控,以降低禽流感病毒由低致病性重组变异为高致病性的风险。本检测为指导广西玉林市禽流感防控提供了依据。  相似文献   

13.
禽流感病毒(avian influenza virus,AIV)是一种重要的人兽共患病病原,严重制约养禽业的健康发展,并对公共卫生安全构成极大威胁。其中,H5(H5N1、H5N2、H5N6、H5N8等)和H7N9亚型高致病性禽流感病毒(highly pathogenic avian influenza virus,HPAIV)引起的高致病性禽流感(highly pathogenic avian influenza,HPAI)对我国养禽业危害巨大。通过实施强制免疫,疫情得到了控制,但在禽群中仍散状暴发,并出现多种新型病毒,防控形势依然严峻。本文总结了截至2021年9月我国禽类暴发H5和H7N9亚型HPAI的所有官方公布的疫情暴发事件以及监测数据,分析了其流行特点,以期为禽流感的预警和防控提供参考。  相似文献   

14.
In this study, two highly pathogenic avian influenza (HPAI) H5N8 viruses were isolated from chicken and geese in 2018 and 2019 (Chicken/ME-2018 and Geese/Egypt/MG4/2019). The hemagglutinin and neuraminidase gene analyses revealed their close relatedness to the clade-2.3.4.4b H5N8 viruses isolated from Egypt and Eurasian countries. A monovalent inactivated oil-emulsion vaccine containing a reassortant virus with HA gene of the Chicken/ME-2018/H5N8 strain and a bivalent vaccine containing same reassortant virus plus a previously generated reassortant H5N1 strain (CK/Eg/RG-173CAL/17). The safety of both vaccines was evaluated in specific-pathogen-free (SPF) chickens. To evaluate the efficacy of the prepared vaccines, 2-week-old SPF chickens were vaccinated with 0.5 mL of a vaccine formula containing 108/EID50 /dose from each strain via the subcutaneous route. Vaccinated birds were challenged with either wild-type HPAI-H5N8 or H5N1 viruses separately at 3 weeks post-vaccine. Results revealed that both vaccines induced protective hemagglutination-inhibiting (HI) antibody titers as early as 2 weeks PV (≥5.0 log2). Vaccinated birds were protected clinically against both subtypes (100 % protection). HPAI-H5N1 virus shedding was significantly reduced in birds that were vaccinated with the bivalent vaccine; meanwhile, HPAI-H5N8 virus shedding was completely neutralized in both tracheal and cloacal swabs after 3 days post-infection in birds that had been vaccinated with either vaccine. In conclusion, the developed bivalent vaccine proved to be efficient in protecting chickens clinically and reduced virus shedding via the respiratory and digestive tracts. The applicability of the multivalent avian influenza vaccines further supported their value to facilitate vaccination programs in endemic countries.  相似文献   

15.
Kwon YK  Swayne DE 《Avian diseases》2010,54(4):1260-1269
The H5N1 type A influenza viruses classified as Qinghai-like virus (clade 2.2) are a unique lineage of type A influenza viruses with the capacity to produce significant disease and mortality in gallinaceous and anseriform birds, including domestic and wild ducks. The objective of this study was to determine the susceptibility and pathogenesis of chickens and domestic ducks to A/Whooper Swan/Mongolia/224/05 (H5N1) high pathogenicity avian influenza (HPAI) virus when administered through respiratory or alimentary routes of exposure. The chickens and ducks were more susceptible to the H5N1 HPAI virus, as evidenced by low infectious and lethal viral doses, when exposed by intranasal as compared to alimentary routes of inoculation (intragastric or oral-fed infected chicken meat). In the alimentary exposure pathogenesis study, pathologic changes included hemorrhage, necrosis, and inflammation in association with virus detection. These changes were generally observed in most of the visceral organs of chickens, between 2 and 4 days postinoculation (DPI), and are similar to lesions and virus localization seen in birds in natural cases or in experimental studies using the intranasal route. Alimentary exposure to the virus caused systemic infection in the ducks, characterized by moderate lymphocytic encephalitis, necrotized hepatitis, and pancreatitis with a corresponding demonstration of virus within the lesions. In both chickens and ducks with alimentary exposure, lesions, virus, or both were first demonstrated in the upper alimentary tract on 1 DPI, suggesting that the alimentary tract was the initial site affected upon consumption of infected meat or on gavage of virus in liquid medium. However, as demonstrated in the infectivity study in chickens, alimentary infection required higher exposure doses to produce infection as compared to intranasal exposure in chickens. These data suggest that upper respiratory exposure to H5N1 HPAI virus in birds is more likely to result in virus infection and transmission than will consumption of infected meat, unless the latter contains high doses of virus, as found in cannibalized infected carcasses.  相似文献   

16.
The continuing outbreaks of avian influenza A H5N1 virus infection in Asia and Africa have caused worldwide concern because of the high mortality rates in poultry, suggesting its potential to become a pandemic influenza virus in humans. The transmission route of the virus among either the same species or different species is not yet clear. Broilers and BABL/c mice were inoculated with the H5N1 strain of influenza A virus isolated from birds. The animals were inoculated with 0.1 mL 106.83 TCID50 of H5N1 virus oronasally, intraperitoneally and using eye drops. The viruses were examined by virological and pathological assays. In addition, to detect horizontal transmission, in each group, healthy chicks and mice were mixed with those infected. Viruses were detected in homogenates of the heart, liver, spleen, kidney and blood of the infected mice and chickens. Virus antigen was not detected in the spleen, kidney or gastrointestinal tract, but detected by Plaque Forming Unit (PFU) assay in the brain, liver and lung without degenerative change in these organs (in the group inoculated using eye drops. The detection results for mice inoculated using eye drops suggest that this virus might have a different tissue tropism from other influenza viruses mainly restricted to the respiratory tract in mice. All chicken samples tested positive for the virus, regardless of the method of inoculation. Avian influenza A H5N1 viruses are highly pathogenic to chickens, but its virulence in other animals is not yet known. To sum up, the results suggest that the virus replicates not only in different animal species but also through different routes of infection. In addition, the virus was detection not only in the respiratory tract but also in multiple extra‐respiratory tissues. This study demonstrates that H5N1 virus infection in mice can cause systemic disease and spread through potentially novel routes within and between mammalian hosts.  相似文献   

17.
Highly pathogenic avian influenza (HPAI) represents a severe form of generalized avian influenza which is characterized by a rapid and severe course of disease and a very high mortality. All poultry species are susceptible. Turkeys and chickens are most vulnerable. There are no pathognomonic symptoms or specific pathological alterations. The disease is caused by avian influenza virus strains of the subtypes H5 or H7. These viruses arise spontaneously from apathogenic progenitors by insertional mutation in the HA gene. Until recently, outbreaks of HPAI were rare events, however, they have been found to cause increasing losses over the past few years. Since 2003, a widespread occurrence of HPAI has been registered in southeast Asia, and some countries are endemically infected with HPAIV strain H5N1. In six countries this virus has also caused fatal human infections. This has sparked fears that this agent may be the progenitor of a new pandemic influenza virus. During summer 2005 the disease has slowly spread westward. Isolated outbreaks have been reported from Kazakhstan, Russia, Romania, Turkey, Croatia and Ukraine. Migratory birds have been tentatively accused for spreading the infection along their flyways.  相似文献   

18.
Direct bird-to-human transmission, with the production of severe respiratory disease and human mortality, is unique to the Hong Kong-origin H5N1 highly pathogenic avian influenza (HPAI) virus, which was originally isolated from a disease outbreak in chickens. The pathobiology of the A/chicken/Hong Kong/220/97 (H5N1) (HK/220) HPAI virus was investigated in chickens, turkeys, Japanese and Bobwhite quail, guinea fowl, pheasants, and partridges, where it produced 75-100% mortality within 10 days. Depression, mucoid diarrhea, and neurologic dysfunction were common clinical manifestations of disease. Grossly, the most severe and consistent lesions included splenomegaly, pulmonary edema and congestion, and hemorrhages in enteric lymphoid areas, on serosal surfaces, and in skeletal muscle. Histologic lesions were observed in multiple organs and were characterized by exudation, hemorrhage, necrosis, inflammation, or a combination of these features. The lung, heart, brain, spleen, and adrenal glands were the most consistently affected, and viral antigen was most often detected by immunohistochemistry in the parenchyma of these organs. The pathogenesis of infection with the HK/220 HPAI virus in these species was twofold. Early mortality occurring at 1-2 days postinoculation (DPI) corresponded to severe pulmonary edema and congestion and virus localization within the vascular endothelium. Mortality occurring after 2 DPI was related to systemic biochemical imbalance, multiorgan failure, or a combination of these factors. The pathobiologic features were analogous to those experimentally induced with other HPAI viruses in domestic poultry.  相似文献   

19.
The disease syndromes caused by avian influenza viruses are highly variable depending on the host species infected, its susceptibility and response to infection and the virulence of the infecting viral strain. Although avian influenza viruses have a broad host range in general, it is rare for an individual strain or subtype to infect more than one species. The H5N1 highly pathogenic avian influenza virus (HPAIV) lineages of viruses that descended from A/goose/Guandong/96 (H5N1 HPAIV) are unusual in the diversity of species they have infected worldwide. Although the species affected by H5N1 HPAI in the field and those that have been experimentally studied are diverse, their associated disease syndromes are remarkably similar across species. In some species, multi-organ failure and death are rapid and no signs of the disease are observed. Most prominently in this category are chickens and other avian species of the order Galliformes. In other species, neurologic signs develop resulting in the death of the host. This is what has been reported in domestic cats (Carnivora), geese (Anseriformes), ratites (Struthioniformes), pigeons inoculated with high doses (Columbiformes) and ducks infected with H5N1 HPAIV isolated since 2002 (Anseriformes). In some other species, the disease is more prolonged and although multi-organ failure and death are the eventual outcomes, the signs of disease are more extensive. Predominantly, these species include humans (Primates) and the laboratory models of human disease, the ferret (Carnivora), mouse (Rodentia) and cynamologous macaques (Primates). Finally, some species are more resistant to infection with H5N1 HPAIV and show few or no signs of disease. These species include pigeons in some studies (Columbiformes), ducks inoculated with pre-2002 isolates (Anseriformes), and pigs (Artiodactyla).  相似文献   

20.
Over the past two decades, the poultry sector in China went through a phase of tremendous growth as well as rapid intensification and concentration. Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 was first detected in 1996 in Guangdong province, South China and started spreading throughout Asia in early 2004. Since then, control of the disease in China has relied heavily on wide-scale preventive vaccination combined with movement control, quarantine and stamping out. This strategy has been successful in drastically reducing the number of outbreaks during the past 5years. However, HPAIV H5N1 is still circulating and is regularly isolated in traditional live bird markets (LBMs) where viral infection can persist, which represent a public health hazard for people visiting them. The use of social network analysis in combination with epidemiological surveillance in South China has identified areas where the success of current strategies for HPAI control in the poultry production sector may benefit from better knowledge of poultry trading patterns and the LBM network configuration as well as their capacity for maintaining HPAIV H5N1 infection. We produced a set of LBM network maps and estimated the associated risk of HPAIV H5N1 within LBMs and along poultry market chains, providing new insights into how live poultry trade and infection are intertwined. More specifically, our study provides evidence that several biosecurity factors such as daily cage cleaning, daily cage disinfection or manure processing contribute to a reduction in HPAIV H5N1 presence in LBMs. Of significant importance is that the results of our study also show the association between social network indicators and the presence of HPAIV H5N1 in specific network configurations such as the one represented by the counties of origin of the birds traded in LBMs. This new information could be used to develop more targeted and effective control interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号