首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bats have been demonstrated to be natural reservoirs of severe acute respiratory syndrome coronavirus (SARS CoV) and Middle East respiratory syndrome (MERS) CoV. Faecal samples from 248 individuals of 20 bat species were tested for partial RNA‐dependent RNA polymerase gene of CoV and 57 faecal samples from eight bat species were tested positive. The highest detection rate of 44% for Scotophilus kuhlii, followed by 30% for Rhinolophus monoceros. Significantly higher detection rates of coronaviral RNA were found in female bats and Scotophilus kuhlii roosting in palm trees. Phylogenetic analysis classified the positive samples into SARS‐related (SARSr) CoV, Scotophilus bat CoV 512 close to those from China and Philippines, and Miniopterus bat CoV 1A‐related lineages. Coronaviral RNA was also detected in bat guano from Scotophilus kuhlii and Myotis formosus flavus on the ground and had potential risk for human exposure. Diverse bat CoV with zoonotic potential could be introduced by migratory bats and maintained in the endemic bat population in Taiwan.  相似文献   

2.
Bats are considered as the reservoirs of several emerging infectious disease, and novel viruses are continually found in bats all around the world. Studies conducted in southern China found that bats carried a variety of viruses. However, few studies have been conducted on bats in northern China, which harbours a diversity of endemic insectivorous bats. It is important to understand the prevalence and diversity of viruses circulating in bats in northern China. In this study, a total of 145 insectivorous bats representing six species were collected from northern China and screened with degenerate primers for viruses belonging to six families, including coronaviruses, astroviruses, hantaviruses, paramyxoviruses, adenoviruses and circoviruses. Our study found that four of the viruses screened for were positive and the overall detection rates for astroviruses, coronaviruses, adenoviruses and circoviruses in bats were 21.4%, 15.9%, 20% and 37.2%, respectively. In addition, we found that bats in northern China harboured a diversity of novel viruses. Common Serotine (Eptesicus serotinu), Fringed long‐footed Myotis (Myotis fimriatus) and Peking Myotis (Myotis pequinius) were investigated in China for the first time. Our study provided new information on the ecology and phylogeny of bat‐borne viruses.  相似文献   

3.
Pigs can harbour a variety of viruses in their gastrointestinal tract. Some of them are closely related to human viruses and are therefore suspected to have a zoonotic potential. Only little is known about the presence of those viruses in pigs at slaughter. However, by contamination of meat with zoonotic viruses during the slaughtering process, food-borne transmission to humans may be possible. Here we analyzed 120 faecal samples of pigs at slaughter from 3 different geographical regions of Germany for the presence of astrovirus (AstV), encephalomyocarditis virus (EMCV), hepatitis E virus (HEV), norovirus genogroup II (NoV GII) and group A rotavirus (GARV). Using real-time RT-PCR, the most frequently detected virus was AstV, which was present in 20.8% of the samples, followed by NoV GII with a detection rate of 14.2%. EMCV, HEV and GARV were found only occasionally with detection rates of 4.2%, 2.5% and 0.8%, respectively. Analyses of partial genome sequences of the viruses indicated that the detected AstV and NoV GII mainly represented typical pig virus strains, which have not been detected in humans so far. However, the GARV and HEV strains were more closely related to human strains. The results indicate that enteric viruses, some of them with zoonotic potential, are present in pig faeces at slaughter. Application of good hygiene practice is necessary to minimize the risk of introducing these viruses into the food and to prevent virus transmission to highly exposed persons such as slaughterers and veterinarians.  相似文献   

4.
5.
Bats are an important reservoir of several zoonotic diseases. However, the circulation of bat coronaviruses (BatCoV) in live animal markets in Indonesia has not been reported. Genetic characterization of BatCoV was performed by sequencing partial RdRp genes. Real-time polymerase chain reaction based on nucleocapsid protein (N) gene and Enzyme-linked immunosorbent assay against the N protein were conducted to detect the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA and antibody, respectively. We identified the presence of BatCoV on Cynopterus brachyotis, Macroglossus minimus, and Rousettus amplexicaudatus. The results showed that the BatCoV included in this study are from an unclassified coronavirus group. Notably, SARS-CoV-2 viral RNA and antibodies were not detected in the sampled bats.  相似文献   

6.
Following the discovery of two new paramyxoviruses in the 1990s, much effort has been placed on rapidly finding the reservoir hosts, characterising the genomes, identifying the viral receptors and formulating potential vaccines and therapeutic options for these viruses, Hendra and Nipah viruses caused zoonotic disease on a scale not seen before with other paramyxoviruses. Nipah virus particularly caused high morbidity and mortality in humans and high morbidity in pig populations in the first outbreak in Malaysia. Both viruses continue to pose a threat with sporadic outbreaks continuing into the 21st century. Experimental and surveillance studies identified that pteropus bats are the reservoir hosts. Research continues in an attempt to understand events that precipitated spillover of these viruses. Discovered on the cusp of the molecular technology revolution, much progress has been made in understanding these new viruses. This review endeavours to capture the depth and breadth of these recent advances.  相似文献   

7.
Bats are hosts of diverse coronaviruses (CoVs) known to potentially cross the host–species barrier. For analysing coronavirus diversity in a bat species‐rich country, a total of 421 anal swabs/faecal samples from Costa Rican bats were screened for CoV RNA‐dependent RNA polymerase (RdRp) gene sequences by a pancoronavirus PCR. Six families, 24 genera and 41 species of bats were analysed. The detection rate for CoV was 1%. Individuals (n = 4) from four different species of frugivorous (Artibeus jamaicensis, Carollia perspicillata and Carollia castanea) and nectivorous (Glossophaga soricina) bats were positive for coronavirus‐derived nucleic acids. Analysis of 440 nt. RdRp sequences allocated all Costa Rican bat CoVs to the α‐CoV group. Several CoVs sequences clustered near previously described CoVs from the same species of bat, but were phylogenetically distant from the human CoV sequences identified to date, suggesting no recent spillover events. The Glossophaga soricina CoV sequence is sufficiently dissimilar (26% homology to the closest known bat CoVs) to represent a unique coronavirus not clustering near other CoVs found in the same bat species so far, implying an even higher CoV diversity than previously suspected.  相似文献   

8.
Noroviruses (NoVs) and sapoviruses (SaVs) of the family Caliciviridae are emerging enteric pathogens in humans and animals. Recent detection of genogroup II norovirus (GII NoV) RNA from swine raises public health concerns about zoonotic transmission of porcine NoVs to humans. However, few papers reported genotype distributions and epidemiological features in swine farms and their genetic relationship to human strains, which was the objective of our study. This study investigated the epidemiological features and genotypes of caliciviruses in swine farms using 533 pig faecal samples from six farms in central and southern Taiwan, tested for viral RNA using RT-PCR targeting the conserved polymerase gene. NoVs and SaVs were detected with a positive rate of 7.1% and 0.6%, respectively. To confirm the positive rate of NoVs, 255 pig faecal samples from two farms in central Taiwan were tested with primer pairs targeting the partial capsid gene of GII, and 32.3% of the positive rate was found. Furthermore, the results from the capsid region suggested a higher positive rate of 41.7% in winter than 26.4% in summer with statistical significance (P < 0.05). Sequence analysis showed 29 strains belonging to GII.4 (human) and nine strains belonging to GII.11 (swine) identified based on the partial polymerase gene. Additional genotypes clustered with GII.2 (human) and GII.18 (swine) were also characterized based on the partial capsid gene. SaVs detected in porcine faecal samples belonged to genogroup III (GIII), which clustered with the PEC-Cowden strain. Our study demonstrated the presence of multiple genotypes of both human and porcine NoVs infecting swine of various ages asymptomatically. Although the zoonotic potential of detected human NoVs in swine was not conclusive owing to the lack of local human faecal samples, our study revealed the importance of monitoring emerging strains in swine to mitigate the potential impact of recombinant NoVs infecting the human population.  相似文献   

9.
10.
European bat lyssavirus type 1 (EBLV-1, genotype 5) is known to endemically circulate in insectivorous bat populations in Germany. In August 2001, a rabies suspect stone marten (Martes foina) was found in the city of Burg (Saxony-Anhalt, Germany) and was sent to the regional veterinary laboratory for routine rabies diagnosis. Whereas brain samples repeatedly tested negative in the fluorescent antibody test for classical rabies virus (genotype 1), the mouse inoculation test and the rabies tissue culture inoculation test yielded positive results. Rabies viral RNA was also detected in the stone marten brain sample both by nested and heminested RT-PCR specific for the nucleoprotein gene and for the nucleoprotein phosphoprotein junction of rabies virus. The amplification products were sequenced to genotype the isolate. Sequence data obtained from the first-round RT-PCR products were analysed and the suspect stone marten isolate was confirmed as a rabies related virus (EBLV-1a). Phylogenetic comparison with sequences from recent genotype five isolates from Germany and Denmark showed that it was closely related to a previous isolate of EBLV-1 from a serotine bat in Saxony-Anhalt obtained in the same year in an area adjacent to the place where the EBLV-1 infected stone marten was found. Both EBLV-1 isolates share a 99.5% identity. This is the first report of an EBLV-1a spill-over from an insectivorous bat into wildlife in Europe.  相似文献   

11.
Rabies is caused by infection with a lyssavirus. Bat rabies is of concern for both public health and bat conservation. The current method for lyssavirus prevalence studies in bat populations is by oral swabbing, which is invasive for the bats, dangerous for handlers, time‐consuming and expensive. In many situations, such sampling is not feasible, and hence, our understanding of epidemiology of bat rabies is limited. Faeces are usually easy to collect from bat colonies without disturbing the bats and thus could be a practical and feasible material for lyssavirus prevalence studies. To further explore this idea, we performed virological analysis on faecal pellets and oral swabs of seven serotine bats (Eptesicus serotinus) that were positive for European bat 1 lyssavirus in the brain. We also performed immunohistochemical and virological analyses on digestive tract samples of these bats to determine potential sources of lyssavirus in the faeces. We found that lyssavirus detection by RT‐qPCR was nearly as sensitive in faecal pellets (6/7 bats positive, 86%) as in oral swabs (7/7 bats positive, 100%). The likely source of lyssavirus in the faeces was virus excreted into the oral cavity from the salivary glands (5/6 bats positive by immunohistochemistry and RT‐qPCR) or tongue (3/4 bats positive by immunohistochemistry) and swallowed with saliva. Virus could not be isolated from any of the seven faecal pellets, suggesting the lyssavirus detected in faeces is not infectious. Lyssavirus detection in the majority of faecal pellets of infected bats shows that this novel material should be further explored for lyssavirus prevalence studies in bats.  相似文献   

12.
We investigated the prevalence of Cryptosporidium infection in relation to age and clinical status in cattle in the central region of Viet Nam. A total of 266 fecal samples from diarrheic and non-diarrheic cattle were examined by the modified Ziehl-Neelsen staining method. Prevalence of Cryptosporidium parvum type infections, those of the Cryptosporidium andersoni type, and mixed infection of both types was 33.5% (89/266), 5.6% (15/266), and 3.4% (9/266), respectively. The infection rate of 44.3% (35/79) of C. parvum in calves less than 6 months old was significantly higher than that of 28.9% (54/187) in cattle greater than 6 months old (P < 0.01). Although no C. andersoni oocysts were detected in calves less than 3 months old, no significant difference was observed between the age groups in the prevalence of C. andersoni infection and mixed infection. The percentage of diarrheic and non-diarrheic cattle identified to be shedding C. parvum oocysts was 46.5% (74/159) and 14.0% (15/107), respectively (P < 0.0001). The risk of diarrhea was 1.7 times greater in C. parvum-infected calves than in their non-infected counterparts. DNA sequences of 18S rRNA genes of C. parvum type and C. andersoni type indicated that they were C. parvum bovine genotype and C. andersoni, respectively. This is the first genetic identification of C. parvum bovine genotype and C. andersoni from cattle in Viet Nam.  相似文献   

13.
Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed.  相似文献   

14.
In recent years, bats have been found to harbour many viruses, raising several questions about their role as reservoirs and potential disseminators of zoonotic viruses. We investigated the presence of six virus families in bats in three regions of Central‐Southern Italy. Astroviruses were identified in seven of 13 bat species. Sequence analysis revealed marked genetic heterogeneity among the astroviruses identified, with nucleotide identity ranging between 60.26% and 87.62%. Astrovirus diversity was not associated with the bat species, the geographic areas or the bat colony, suggesting the circulation of several astrovirus strains in Italian ecosystems. Genetic diversification and interspecies transmission appear common in bat astroviruses and could provide, potentially, the bases for transmission to humans and other mammals. Yet overemphasizing this risk might have detrimental consequences for bat conservation and preservation of the important ecosystem services bats provide.  相似文献   

15.
Hepatitis E virus (HEV) is currently considered as a global health concern due to the recognition of its zoonotic transmission to humans, mainly from swine, and its association with the development of severe cases of hepatitis in human risk populations. The lack of updated data on HEV state of infection in swineherds of Argentina, and the necessity of robust technologies for its detection in complex biological samples, positions HEV as an emerging issue in public health. Here, we have optimized a RT‐qPCR with internal control for a more precise and accurate HEV RNA detection in swine stool samples. We implemented this optimized molecular tool to analyse the current epidemiological scenario of HEV infection in swine from the core region of commercial activity of Argentina. A total of 135 stool samples were collected from 16 different farms and tested for HEV presence, resulting in 11 positive cases (8.1%). Phylogenetic analysis demonstrated that all of them correspond to HEV genotype 3 and that different subtypes circulate in the region. Moreover, two of the detected strains presented a high nucleotide similarity with a previously identified isolate from human sewage discharges, suggesting the zoonotic transmission of HEV to humans. Collectively, this work provides a better understanding of HEV epidemiology in Argentina while contributes to the improvement of HEV detection technologies.  相似文献   

16.
European bat lyssavirus type 1 (EBLV‐1, genotype 5) is known to endemically circulate in insectivorous bat populations in Germany. In August 2001, a rabies suspect stone marten (Martes foina) was found in the city of Burg (Saxony‐Anhalt, Germany) and was sent to the regional veterinary laboratory for routine rabies diagnosis. Whereas brain samples repeatedly tested negative in the fluorescent antibody test for classical rabies virus (genotype 1), the mouse inoculation test and the rabies tissue culture inoculation test yielded positive results. Rabies viral RNA was also detected in the stone marten brain sample both by nested and heminested RT‐PCR specific for the nucleoprotein gene and for the nucleoprotein phosphoprotein junction of rabies virus. The amplification products were sequenced to genotype the isolate. Sequence data obtained from the first‐round RT‐PCR products were analysed and the suspect stone marten isolate was confirmed as a rabies related virus (EBLV‐1a). Phylogenetic comparison with sequences from recent genotype five isolates from Germany and Denmark showed that it was closely related to a previous isolate of EBLV‐1 from a serotine bat in Saxony‐Anhalt obtained in the same year in an area adjacent to the place where the EBLV‐1 infected stone marten was found. Both EBLV‐1 isolates share a 99.5% identity. This is the first report of an EBLV‐1a spill‐over from an insectivorous bat into wildlife in Europe.  相似文献   

17.
18.
Bats and rodents are recognized to host a great diversity of viruses and several important viral zoonoses, but how this viral diversity is structured and how viruses are connected, shared and distributed among host networks is not well understood. To address this gap in knowledge, we compared the associative capacity of the host–virus networks in rodents and bats with the identification of those viruses with zoonotic potential. A virus database, detected by molecular methods, was constructed in the two taxonomic groups. We compiled 5,484 records: 825 in rodents and 4,659 in bats. We identified a total of 173 and 166 viruses, of which 53 and 40 are zoonotic viruses, in rodents and bats, respectively. Based on a network theory, a non‐directed bipartite host–virus network was built for each group. Subsequently, the networks were collapsed to represent the connections among hosts and viruses. We identified both discrete and connected communities. We observed a greater degree of connectivity in bat viruses and more discrete communities in rodents. The Coronaviridae recorded in bats have the highest values of degree, betweenness and closeness centralities. In rodents, higher degree positions were distributed homogeneously between viruses and hosts. At least in our database, a higher proportion of rodent viruses were zoonotic. Rodents should thus not be underestimated as important reservoirs of zoonotic disease. We found that viruses were more frequently shared among bats than in rodents. Network theory can reveal some macroecological patterns and identify risks that were previously unrecognized. For example, we found that parvovirus in megabats and Gbagroube virus in rodents may represent a zoonotic risk due to the proximity to humans and other zoonotic viruses. We propose that epidemiological surveillance programmes should consider the connectivity of network actors as a measure of the risks of dispersion and transmission.  相似文献   

19.
Viral pathogens account for a significant proportion of the burden of emerging infectious diseases in humans. The Wellcome Trust‐Vietnamese Initiative on Zoonotic Infections (WT‐VIZIONS) is aiming to understand the circulation of viral zoonotic pathogens in animals that pose a potential risk to human health. Evidence suggests that human exposure and infections with hepatitis E virus (HEV) genotypes (GT) 3 and 4 results from zoonotic transmission. Hypothesising that HEV GT3 and GT4 are circulating in the Vietnamese pig population and can be transmitted to humans, we aimed to estimate the seroprevalence of HEV exposure in a population of farmers and the general population. We additionally performed sequence analysis of HEV in pig populations in the same region to address knowledge gaps regarding HEV circulation and to evaluate if pigs were a potential source of HEV exposure. We found a high prevalence of HEV GT3 viral RNA in pigs (19.1% in faecal samples and 8.2% in rectal swabs) and a high HEV seroprevalence in pig farmers (16.0%) and a hospital‐attending population (31.7%) in southern Vietnam. The hospital population was recruited as a general‐population proxy even though this particular population subgroup may introduce bias. The detection of HEV RNA in pigs indicates that HEV may be a zoonotic disease risk in this location, although a larger sample size is required to infer an association between HEV positivity in pigs and seroprevalence in humans.  相似文献   

20.
AIMS: To determine which viruses circulate among selected populations of New Zealand horses and whether or not viral infections were associated with development of respiratory disease.

METHODS: Nasal swabs were collected from 33 healthy horses and 52 horses with respiratory disease and tested by virus isolation and/or PCR for the presence of equine herpesviruses (EHV) and equine rhinitis viruses.

RESULTS: Herpesviruses were the only viruses detected in nasal swab samples. When both the results of nasal swab PCR and virus isolation were considered together, a total of 41/52 (79%) horses with respiratory disease and 2/32 (6%) healthy horses were positive for at least one virus. As such, rates of virus detection were significantly higher (p<0.001) in samples from horses with respiratory disease than from healthy horses. More than half of the virus-positive horses were infected with multiple viruses. Infection with EHV-5 was most common (28 horses), followed by EHV-2 (27 horses), EHV-4 (21 horses) and EHV-1 (3 horses).

CONCLUSIONS: Herpesviruses were more commonly detected in nasal swabs from horses with respiratory disease than from healthy horses suggesting their aetiological involvement in the development of clinical signs among sampled horses. Further investigation to elucidate the exact relationships between these viruses and respiratory disease in horses is warranted.

CLINICAL RELEVANCE: Equine respiratory disease has been recognised as an important cause of wastage for the equine industry worldwide. It is likely multifactorial, involving complex interactions between different microorganisms, the environment and the host. Ability to control, or minimise, the adverse effects of equine respiratory disease is critically dependent on our understanding of microbial agents involved in these interactions. The results of the present study update our knowledge on the equine respiratory viruses currently circulating among selected populations of horses in New Zealand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号