首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively.  相似文献   

2.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

3.
Predicting the growth and competitive effects of annual weeds in wheat   总被引:1,自引:0,他引:1  
The growth and competitiveness of 12 annual weed species were studied in crops of winter wheat, in which weeds were sown to give a wide range of plant densities. Weed growth patterns were identified; early species which senesced in mid-summer were less competitive than those with a growth pattern similar to that of the crop. Most species had little effect on crop yield in 1987, and this was attributed to a high crop den sity. Crop yield-weed density relationships for all species in 1988 and for Galium aparine in 1987 were well described by a rectangular hyperbola. Species were listed in the following competitive order based on the percentage yield loss per weed m?2: Avena fatua > Matricaria perforata > Galium aparine > Myosotis arvenis > Poa trivialis > Alopecurus myosuroides > Stellaria media > Papaver rhoeas > Lamiumpur-pureum > Veronica persica > Veronica hederi-folia > Viola arvensis. Prediction of yield loss is discussed. The assumptions inherent in using Crop Equivalents (based on relative weights of weed and crop plants), are challenged; with intense competition, weed biomass at harvest failed to replace lost crop biomass, and harvest index was reduced. It is concluded that a competi tive index, derived from yield density relation ships, and expressed as the percentage yield loss per weed m?2, is more likely to reflect the com petitive ability of a species than an index obtained from plant weights in the growing crop.  相似文献   

4.
The effects of a range of herbicide doses on crop–multiple weed competition were investigated. Competitivity of Galium aparine was approximately six times greater than that of Matricaria perforata with no herbicide treatment. Competitivities of both weeds decreased with increasing herbicide dose, being well described by the standard dose–response curve with the competitivity of M. perforata being more sensitive than that of G. aparine to a herbicide mixture, metsulfuron‐methyl and fluroxypyr. A combined model was then developed by incorporating the standard dose–response curve into the multivariate rectangular hyperbola competition model to describe the effects of multiple infestation of G. aparine and M. perforata and the herbicide mixture on crop yield. The model developed in this study was used to predict crop yield and to estimate the herbicide dose required to restrict crop yield loss caused by weeds to an acceptable level. At the acceptable yield loss of 5% and the weed combination of 120 M. perforata plants m?2 and 20 G. aparine plants m?2, the model recommends a mixture of 1.2 g a.i. ha?1 of metsulfuron‐methyl and 120 g a.i. ha?1 of fluroxypyr.  相似文献   

5.
Most herbicide applications to sugar beet (Beta vulgaris L.) are made to the whole crop area, but there is the opportunity to restrict applications to the crop row, decreasing the usage of herbicide by up to 70%. However, this would require greater use of mechanical weed control between rows. Experiments were performed in two seasons to evaluate the weed control performance of a novel, vision‐guided, inter‐row hoe in sugar beet crops grown on a peat fen soil. Hoe lateral placement was within ±30 mm. A precise hoeing and band spraying treatment was compared with overall herbicide use, and with treatments in which the herbicide applications were replaced by hand weeding to minimize competition between crop and weeds. Two hoe passes were made in each season, at crop growth stages of two and 10–12 true leaves in the first season and four and eight true leaves in the second season. Plant population density was not affected by treatment, indicating that none of the treatments caused crop plant loss. Use of the guided hoe controlled weeds better than overall spraying. Crop yields were not significantly different between treatments, indicating that weed control prevented competition with the crop in all treatments.  相似文献   

6.
In Northern Europe, inter-row hoeing has become a popular tactic for controlling weeds in organic cereals. Hoeing is highly effective and can be implemented from crop emergence until stem elongation to maintain a nearly weed-free inter-row zone. However, hoeing has a lesser effect on weeds growing in the intra-row zone, where crop–weed proximity results in heightened competition. In the hoed cereal system, it is investigated whether tall-growing, competitive, cruciferous weeds in the intra-row zone affect crop biomass, yield and thousand kernel weight (TKW). An additive experimental design is employed to enable the fitting of rectangular hyperbolas, describing and quantifying the effects of increasing intra-row surrogate weed density on crop growth parameters. Regressions were studied under the influence of crop (spring barley and spring wheat), row spacing (narrow [12.5 or 15.0 cm] and wide [25.0 cm]) and nitrogen rate (50 and 100 kg NH4-N/ha). Cruciferous surrogate weeds were found to impact crop yield and quality severely. For example, ten intra-row plants/m2 of surrogate weed Sinapis alba reduced grains yields by 7%–14% in spring barley and by 7%–32% in spring wheat with yield losses becoming markedly greater in wheat compared to barley as weed density increases. Compared to wheat, barley limited yield and quality losses and suppressed intra-row weed growth more. Row spacing did not have a consistent effect on crop or weed parameters; in one of six experiments, the 25 cm row spacing reduced yields and increased intra-row weed biomass in wheat. Nitrogen rate did not affect crop or weed parameters. Results warrant the implementation of additional tactics to control intra-row weeds and limit crop losses.  相似文献   

7.
Field studies were conducted at two locations in southern Queensland, Australia during the 2003–2004 and 2004–2005 growing seasons to determine the differential competitiveness of sorghum (Sorghum bicolor L. Moench) cultivars and crop densities against weeds and the sorghum yield loss due to weeds. Weed competition was investigated by growing sorghum in the presence or absence of a model grass weed, Japanese millet (Echinochloa esculenta). The correlation analyses showed that the early growth traits (height, shoot biomass, and daily growth rate of the shoot biomass) of sorghum adversely affected the height, biomass, and seed production of millet, as measured at maturity. “MR Goldrush” and “Bonus MR” were the most competitive cultivars, resulting in reduced weed biomass, weed density, and weed seed production. The density of sorghum also had a significant effect on the crop's ability to compete with millet. When compared to the density of 4.5 plants per m2, sorghum that was planted at 7.5 plants per m2 suppressed the density, biomass, and seed production of millet by 22%, 27% and 38%, respectively. Millet caused a significant yield loss in comparison with the weed‐free plots. The combined weed‐suppressive effects of the competitive cultivars, such as MR Goldrush, and high crop densities minimized the yield losses from the weeds. These results indicate that sorghum competition against grass weeds can be improved by choosing competitive cultivars and by using a high crop density of >7.5 plants per m2. These non‐chemical options should be included in an integrated weed management program for better weed management, particularly where the control options are limited by the evolution of herbicide resistance.  相似文献   

8.
Growing chick‐pea in sustainable systems requires the use and development of more competitive genotypes which can complement the effects of reduced input weed control. A 2‐year study assessed the competitive ability of 13 genotypes grown in either the presence or absence of weeds, in a split‐plot design including the weeds in pure stands. Crop and weed density, phenology, relative biomass of crop (RBc) and weeds (RBw), crop yield characters, crop biometric traits in the absence of weeds, relative biomass total of mixtures (RBT) and crop competitive ability (Cb = ln RBc/RBw) were recorded. Lines C136, C120, C101 and C106, and cultivars Pascià, Visir and Sultano gave the best seed yield in the absence of weeds (1.8–2.0 t ha?1 DM). Weeds reduced yield by 75% and 83% in C136 and C133 and by 87–97% in the other genotypes. Weed biomass in mixture (mainly Chenopodium album) averaged 4.42 t ha?1 DM. Chick‐pea genotypes C136 and C133 were the most competitive, but weeds were more competitive than any of the chick‐peas. Cb was correlated directly to the height of first fertile pod (r2 = 0.84) and inversely to the insertion angle of primary branches to the vertical (r2 = 0.77). Intergenotypic variation for competitive ability could be exploited in integrated weed control using more competitive genotypes, or used in breeding programmes aimed to develop highly competitive cultivars on the basis of easily screenable characters.  相似文献   

9.
Lutman  Bowerman  Palmer  Whytock 《Weed Research》2000,40(3):255-269
Ten experiments have investigated competition between winter oilseed rape and Stellaria media (common chickweed). Yield losses caused by this weed were often high, but differed greatly between experiments, 5% yield loss being calculated to be caused by 1.4–328 plants m?2. Predictions of yield loss based on relative weed dry weights [weed dry weights/(crop + weed dry weights)] in December were somewhat less variable than those based on weed density, 5% yield loss being caused by 1.4–10.6% relative weed dry weight. The variations in yield loss were related to variations in the competitiveness of the oilseed rape and the S. media, caused by weather differences between years and sites, and the long period between weed assessment and harvest (8–10 months). However, despite the lack of precise relationships, there were indications that the greater the crop dry weights in December, the lower the final yield loss. Delayed sowing of oilseed rape until late September did not clearly increase the competitive effects of the weed compared with late August/early September sowings. Weed competition was not clearly affected by reduced crop density (44–113 plants m?2), because of the compensatory ability of the lowest density. The results of the experiments are discussed in relation to the prediction of yield loss and, thus, possible adjustment of weed control strategies to meet expected crop losses.  相似文献   

10.
Weed competition and nutrient scarcity often restrict organic cereal production, especially where the availability of livestock manure is limited. While harrowing of annual weeds and legume cover crops can be used, these methods are both executed in early spring and may hinder each other. Two cycles of a 2‐year crop rotation were carried out in south‐east Norway (60°42′N, 10°51′E, altitude 250 m) with weed harrowing and undersown cover crops (WHCC) at two fertiliser rates (40 and 100 kg nitrogen ha?1). The effect of the WHCC treatments was measured by weed density and species, weed biomass, changes in weed seedbank and grain yield. The weed density depended on the interaction between WHCC, fertiliser and year. On average, pre‐emergence weed harrowing reduced weed density by 32% and weed biomass by 49%, while pre‐ and post‐emergence weed harrowing reduced weed density by 59% and weed biomass by 67% compared with the untreated control. Spergula arvensis became more abundant at low rather than at high fertiliser rates. On average, white clover cover crop sown after pre‐emergence weed harrowing resulted in the highest yields for both oat (+12.1%) and wheat (+16.4%) compared with the untreated control. Despite differences in weed population density and biomass among WHCC treatments within years, the weed biomass, weed density and seedbank increased for all WHCC treatments over the 4‐year period. More research is required into improving the efficacy of mechanical and cultural weed suppression methods that organic systems rely on.  相似文献   

11.
Variations in climate are widely recognized as central factors governing the competitive balance in mixed‐species plant communities. In agricultural systems, highly variable patterns of crop yield reduction as a function of weed density have been documented across sites and among years at the same site for several crop–weed combinations. This variation is typically attributed to contrasting environmental conditions. Despite broad acknowledgement of their importance, experimental and temporal limitations have constrained the investigation and systematic understanding of environmental controls on the dynamics of competition. For several well‐studied crop–weed associations, aggregating historical data from similar competition experiments provides an opportunity to explore interference relationships over an array of conditions. In this study, 19 site‐years of maize –Abutilon theophrasti (velvetleaf) data were compiled and the weather characterized (i.e. average ambient temperature and moisture regime) for discrete portions of each growing season. These features were then related to patterns of maize yield loss from A. theophrasti interference at high weed densities. Results of this analysis suggest that temperatures following establishment, together with the presence or absence of water stress during the maize crop's exponential growth phase, account for over 60% of the observed variation in relative yield loss.  相似文献   

12.
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70–95% of weeds and volunteer crops in the fall‐to‐spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble‐tillage operations and non‐selective chemical weed control in the fall‐to‐spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry  相似文献   

13.
Enhanced crop competition could aid in the management of annual sowthistle (Sonchus oleraceus L.), a dominant weed of Australian cropping systems. A two‐year pot study was conducted to evaluate the effect of wheat (Triticum aestivum L.) planting densities (0, 82, and 164 wheat plants/m2) on growth and seed production of glyphosate‐resistant (GR) and glyphosate‐susceptible (GS) biotypes of annual sowthistle. Without competition, both biotypes produced a similar number of leaves and biomass, but the GS biotype produced 80% more seeds (46,050 per plant) than the GR biotype. In competition with 164 wheat plants/m2, the number of leaves in the GR and GS biotypes was reduced by 62 and 61%, respectively, in comparison with the no‐competition treatment, and similarly, weed biomass was reduced by 78 and 77%, respectively. Compared to no‐competition treatment, the seed production of GR and GS biotypes was reduced by 33 and 69%, respectively, when grown with 82 wheat plants/m2, but increasing wheat density from 82 to 164 plants/m2 reduced the number of seeds only in the GS biotype (81%). Both biotypes produced greater than 6,000 seeds per plant when grown in competition with 164 plants/m2, suggesting that increased crop density should be integrated with other weed management strategies for efficient control of annual sowthistle.  相似文献   

14.
Plants alter soil biota which subsequently modifies plant growth, plant–plant interactions and plant community dynamics. While much research has been conducted on the magnitude and importance of soil biota effects (SBEs) in natural systems, little is known in agro‐ecosystems. We investigated whether agricultural management systems could affect SBEs impacts on crop growth and crop–weed competition. Utilising soil collected from eight paired farms, we evaluated the extent to which SBEs differed between conventional and organic farming systems. Soils were conditioned by growing two common annual weeds: Amaranthus retroflexus (redroot pigweed) or Avena fatua (wild oat). Soil biota effects were measured in wheat (Triticum aestivum) growth and crop–weed competition, with SBEs calculated as the natural log of plant biomass in pots inoculated with living soil divided by the plant biomass in pots inoculated with sterilised soil. SBEs were generally more positive when soil inoculum was collected from organic farms compared with conventional farms, suggesting that cropping systems modify the relative abundance of mutualistic and pathogenic organisms responsible for the observed SBEs. Also, as feedbacks became more positive, crop–weed competition decreased and facilitation increased. In annual cropping systems, SBEs can alter plant growth and crop–weed competition. By identifying the management practices that promote positive SBEs, producers can minimise the impacts of crop–weed competition and decrease their reliance on off‐farm chemical and mechanical inputs to control weeds, enhancing agroecosystem sustainability.  相似文献   

15.
As herbicides have limited effect in controlling Bromus diandrus in no‐till dryland cereal fields, the integration of chemical and cultural methods needs to be investigated. A field study was carried out in Lleida (Spain) during 2008–09, 2009–10 and 2010–11 seasons, in a no‐till winter cereal field integrating delayed crop sowing with herbicides in a barley–wheat–wheat rotation. Three crop sowing dates were considered: D1, mid‐October; D2, mid‐November; and D3, early December, and the herbicides mesosulfuron‐methyl plus iodosulfuron‐methyl‐sodium were applied in wheat. Weed density, cumulative emergence and fecundity were estimated for each sowing date. In all three seasons, a significant reduction in the cumulative emergence of B. diandrus as compared to D1 was observed in D2 (82.0, 97.5 and 98.1%) and D3 (80.8, 98.7 and 97.2%). In addition, a significant decrease in weed density and seed rain was observed across all sowing dates and seasons. The herbicide used in wheat was more effective under delayed sowing, due to lower weed density and presence of less developed weed seedlings. After three seasons, the populations of B. diandrus were completely depleted in D2 and D3. This study demonstrates the possibility of eliminating brome infestations in dryland cereal fields in no‐till systems through the integration of cultural and chemical strategies.  相似文献   

16.
Competition between winter-sown wheat and Viola arvensis Murray or Papaver rhoeas L. was studied in two experiments in two successive years. The effects of varying crop and weed density were modelled in terms of weed biomass over time, weed seed production and crop yield. Biomass model parameters, representing maximum weed biomass and intra- and interspecific competition, were obtained for different assessment dates, enabling biomass levels to be predicted during the two growing seasons. Weed biomass declined, and its maximum level was reached earlier, with increasing crop density. Intraspecific competition was higher in the absence than in the presence of crop, increasing with time and with weed density. Halving the wheat population increased June biomass of V. arvensis by 74% and of P. rhoeas by 63%. Crop yield losses with increasing weed density were greater with low than with medium and high crop populations. P. rhoeas was significantly more competitive than V. arvensis in both years. Weed biomass in 1989 responded more to reductions in crop density following the milder winter of 1988/89 than in the previous year; however crop yields were less affected in 1989 due to summer drought, restricting late weed growth and competition. Weed seed production was related to weed biomass; the progressive lowering of crop density increased seed production, and both species were very prolific in the absence of crop. By combining models, seed production could be derived for a given competitive effect on the crop. Threshold weed populations, based on low weed levels that are not economic to control, could then be equated with the accompanying weed seed production.  相似文献   

17.
Crop residue retention could affect the emergence and biomass of weeds in different ways. A summer and winter pot study was conducted to evaluate the effect of different amounts of sorghum and wheat residue on the emergence and biomass of 12 summer and winter Australian weeds. The equivalent amount of sorghum residue to 0, 1, 2, 4 and 6 t/ha was used in the summer study and winter weed seeds were covered with wheat residue equivalent to the amount of 0, 1, 2, 4 and 8 t/ha in the winter study. The emergence and biomass of Amaranthus retroflexus and Echinochloa colona was not affected by sorghum residue treatment. For other summer weeds, the use of the 6 t/ha sorghum residue treatment resulted in 59–94% reductions in biomass compared to no‐sorghum residue retention. Similarly, the application of 8 t/ha wheat residue in the winter study resulted in a reduced biomass of 15–100% compared to no‐crop residue treatment. The results demonstrated the high potential of using crop residues in eco‐friendly weed management strategies, such as harvest weed seed control tactics.  相似文献   

18.
Echinochloa colona and Trianthema portulacastrum are weeds of maize that cause significant yield losses in the Indo‐Gangetic Plains. Field experiments were conducted in 2009 and 2010 to determine the influence of row spacing (15, 25 and 35 cm) and emergence time of E. colona and T. portulacastrum (0, 15, 25, 35, 45 and 55 days after maize emergence; DAME) on weed growth and productivity of maize. A season‐long weed‐free treatment and a weedy control were also used to estimate maize yield and weed seed production. Crop row spacing as well as weed emergence time had a significant influence on plant height, shoot biomass and seed production of both weed species and grain yield of maize in both years. Delay in emergence of weeds resulted in less plant height, shoot biomass and seed production. However, increase in productivity of maize was observed by delay in weed emergence. Likewise, growth of both weed species was less in narrow row spacing (15 cm) of maize, as compared with wider rows (25 and 35 cm). Maximum seed production of both weeds was observed in weedy control plots, where there was no competition with maize crop and weeds were in rows 35 cm apart. Nevertheless, maximum plant height, shoot biomass and seed production of both weed species were observed in 35 cm rows, when weeds emerged simultaneously with maize. Both weed species produced only 3–5 seeds per plant, when they were emerged at 55 DAME in crop rows spaced at 15 cm. Infestation of both weeds at every stage of crop led to significant crop yield loss in maize. Our results suggested that narrow row spacing and delay in weed emergence led to reduced weed growth and seed production and enhanced maize grain yield and therefore could be significant constituents of integrated weed management strategies in maize.  相似文献   

19.
Although we know that alterations in crop density, crop spatial pattern and inclusion of more selective weed control can improve weed suppression for organic growers, it is unknown whether these result in changes to the weed seedbank that increase cropping system profitability over time. Data collected from field trials conducted in 2009 and 2010 in Maine, USA, comparing regional grower practices (Standard) with management that aimed to (i) facilitate better physical weed control through the use of wide row spacing and inter‐row cultivation (Wide) or (ii) enhance crop–weed competition through increased seeding rate and narrow inter‐row spacing (Narrow HD), were used to construct a matrix population model with an economic sub‐model. Using field measurements of grain yield and weed survival and fecundity, we investigated the lasting implications of employing alternative organic spring wheat (Triticum aestivum) production practices on Sinapis arvensis population dynamics. In most scenarios, the model indicated that regional production practices were not sufficient to prevent an increase in the weed seedbank, even with excellent weed control. The two alternative methods, on the other hand, were able to limit weed population growth when initial densities were low or cultivation efficacy was >80%. Due to higher seed costs in the Narrow HD system, net returns were still lower after 10 years of simulation in this system compared with wide rows with cultivation, despite a lower weed seedbank.  相似文献   

20.
Crop variety effects on herbicide performance is not well characterised, particularly for sweet corn, a crop that varies greatly among hybrids in competitive ability with weeds. Field studies were used to determine the effects of crop competitive ability on season‐long herbicide performance in sweet corn. Two sethoxydim‐tolerant sweet corn hybrids were grown in the presence of Panicum miliaceum and plots were treated post‐emergence with a range of sethoxydim doses. Significant differences in height, leaf area index and intercepted light were observed between hybrids near anthesis. Across a range of sub‐lethal herbicide doses, the denser canopy hybrid Rocker suppressed P. miliaceum shoot biomass and fecundity to a greater extent than the hybrid Cahill. Yield of sweet corn improved to the level of the weed‐free control with increasing sethoxydim dose. The indirect effect of herbicide dose on crop yield, mediated through P. miliaceum biomass reduction, was significant for all of the Cahill’s yield traits but not Rocker. These results indicate that a less competitive hybrid requires relatively more weed suppression by the herbicide to not only reduce weed growth and seed production, but also to maintain yield. Sweet corn competitive ability consistently influences season‐long herbicide performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号