首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Barley is rich in nutritionally positive compounds, but the quality of bread made of wheat–barley composite flours is impaired when a high percentage of barley is used in the mixture. A number of enzymes have been reported to be useful additives in breadmaking. However, the effect of β‐glucanase on breadmaking has scarcely been investigated. In this paper, the influence of different levels (0.02, 0.04, 0.06, and 0.08%, based on composite flour) of β‐glucanase (100,000 U/g) on the properties of dough and bread from 70% wheat, 30% barley composite flour were studied. Although dough development time, dough stability, and protein weakening value decreased after β‐glucanase addition, dough properties such as softness and elasticity as well as bread microstructure were improved compared with the control dough. β‐Glucanase also significantly improved the volume, texture, and shelf life of wheat–barley composite breads. The use of an optimal enzyme concentration (0.04%) increased specific volume (57.5%) and springiness (21%), and it reduced crumb firmness (74%) and staling rate. Bread with added β‐glucanase had a better taste, softness, and overall acceptability of sensory characteristics compared with the control bread. Moreover, the quality of wheat–barley composite bread after addition of 0.04% β‐glucanase was nearly equal to the quality of pure wheat bread. These results indicate that dough rheological characteristics and bread quality of wheat–barley composite flour can be improved by adding a distinct level of β‐glucanase.  相似文献   

2.
A microassay was developed for measuring the activity of alpha-amylases in the nanogram enzyme concentration range, based on the use of dye-labeled cross-linked starch as the substrate, and the release of soluble colored fragments formed in enzyme hydrolysis. Reaction conditions were optimized to generate a linear correlation between the increase in absorbance and a reaction time of 0-10 min, as well as enzyme concentrations in the range of 0-50 ng. A standard curve for the conversion of absorbance to enzyme activity units was constructed. The protocol developed was applied to monitoring the production of ultralow concentrations of recombinant barley alpha-amylase in yeast cells.  相似文献   

3.
The possible use of phytase as a breadmaking improver has been tested in whole wheat breads by adding different amounts of fungal phytase. The effect of phytase addition on the fermentation stage and the final bread quality was analyzed. The phytase addition shortened the fermentation period, without affecting the bread dough pH. Regarding the whole wheat bread, a considerable increase of the specific bread volume, an improvement of the crumb texture, and the width/height ratio of the bread slice were obtained. An in vitro assay revealed that the improving effect of phytase on breadmaking might be associated with the activation of alpha-amylase, due to the release of calcium ions from calcium-phytate complexes promoted by phytase activity. As a conclusion, phytase offers excellent possibilities as a breadmaking improver, with two main advantages: first, the nutritional improvement produced by decreasing phytate content, and second, all the benefits produced by alpha-amylase addition can be obtained by adding phytase, which promotes the activation of endogenous alpha-amylase.  相似文献   

4.
Wheat alpha-amylase inhibitors represent an important tool in engineering crop plants against bean bruchids. Because Acanthoscelides obtectus is a devastating storage bean insect-pest, we attempted to purify and characterize its gut alpha-amylases, to study their interaction with active proteinaceous inhibitors. Two digestives alpha-amylases (AoA1 and AoA2) were purified from gut larvae, showing molecular masses of 30 and 45 kDa for each one, respectively. The stoichiometry interaction between these alpha-amylases with two wheat inhibitors (0.19 and 0.53) showed a binding complex of 1:1 enzyme:inhibitor. In vivo activities of these inhibitors against A. obtectus were also evaluated using a rich ammonium sulfate inhibitor fraction (F(20)(-)(40)) and purified inhibitors after reversed phase high-performance liquid chromatography columns. Incorporation of three different inhibitor concentrations (0.25, 0.5, and 1.0% w/w) into artificial seeds showed that addition of the purified 0.19 inhibitor at the highest concentration (1.0%) reduced the larval weight by 80%. Similar data were observed when 0.53 inhibitor was incorporated at 0.5%. When the concentration of purified 0.53 was enhanced to 1.0%, no larvae or adult emergence were observed. Our data suggest that these alpha-amylase inhibitors present great potential for use in Phaseolus genetic improvement programs.  相似文献   

5.
Malted cereals are rich sources of alpha-amylase, which catalyzes the random hydrolysis of internal alpha-(1-4)-glycosidic bonds of starch, leading to liquefaction. Amylases play a role in the predigestion of starch, leading to a reduction in the water absorption capacity of the cereal. Among the three cereal amylases (barley, ragi, and jowar), jowar amylase is found to be the most thermostable. The major amylase from malted jowar, a 47 kDa alpha-amylase, purified to homogeneity, is rich in beta structure ( approximately 60%) like other cereal amylases. T(m), the midpoint of thermal inactivation, is found to be 69.6 +/- 0.3 degrees C. Thermal inactivation is found to follow first-order kinetics at pH 4.8, the pH optimum of the enzyme. Activation energy, E(a), is found to be 45.3 +/- 0.2 kcal mol(-)(1). The activation enthalpy (DeltaH), entropy (DeltaS*), and free energy change (DeltaG) are calculated to be 44.6 +/- 0.2 kcal mol(-)(1), 57.1 +/- 0.3 cal mol(-)(1) K(-)(1), and 25.2 +/- 0.2 kcal mol(-)(1), respectively. The thermal stability of the enzyme in the presence of the commonly used food additives NaCl and sucrose has been studied. T(m) is found to decrease to 66.3 +/- 0.3, 58.1 +/- 0.2, and 48.1 +/- 0.5 degrees C, corresponding to the presence of 0.1, 0.5, and 1 M NaCl, respectively. Sucrose acts as a stabilizer; the T(m) value is found to be 77.3 +/- 0.3 degrees C compared to 69.6 +/- 0.3 degrees C in the control.  相似文献   

6.
Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with alpha-amylase from Bacillus licheniformis were compared. Suspensions of native starch or starch gelatinized at different conditions either with or without enzyme were hydrolyzed. During hydrolysis, the oligosaccharide concentration, the dextrose equivalent, and the enzyme activity were determined. We found that the hydrolyzate composition was affected by the type of starch pretreatment and the enzyme addition point but that it was just minimally affected by the pressure applied during hydrolysis, as long as gelatinization was complete. The differences between hydrolysis of thermally gelatinized, high-pressure gelatinized, and native starch were explained by considering the granule structure and the specific surface area of the granules. These results show that the hydrolyzate composition can be influenced by choosing different process sequences and conditions.  相似文献   

7.
Two barley varieties, Gan4 and Hamelin, were malted to investigate the evolution of phenolic compounds and antioxidant activity during malting. The antioxidant activity was evaluated with DPPH radical scavenging activity, ABTS radical cation scavenging activity, reducing power, and metal chelating activity. Results showed that malting had significant influences on individual and total phenolic contents as well as antioxidant activities of two barley varieties. The contents of some phenolic compounds and the antioxidant activities decreased significantly during steeping and the early stages of germination and then increased remarkably during the later stages of germination and subsequent kilning. The most phenolic compounds identified in barley were (+)-catechin and ferulic acid, which both changed significantly during malting. Moreover, results from the Pearson correlation analysis showed that there were good correlations among DPPH radical scavenging activity, ABTS radical cation scavenging activity, reducing power, total phenolic content and sum of individual phenolic contents during malting.  相似文献   

8.
Wheat kernel associated endoxylanases consist of a majority of microbial endoxylanases and a minority of endogenous endoxylanases. At least part of these enzymes can be expected to end up in wheat flour upon milling. In this study, the contribution of both types of these endoxylanases to changes in the arabinoxylan (AX) population during wheat flour breadmaking was assessed. To this end, wheat flour produced from two wheat varieties with different endoxylanase activity levels, both before and after sodium hypochlorite surface treatment of the wheat kernels, was used in a straight dough breadmaking procedure. Monitoring of the AX population during the breadmaking process showed that changes in AX are to a large extent caused by endogenous endoxylanases, whereas the contribution of microbial endoxylanases to these changes was generally very low. The latter points to a limited contamination of wheat flour with microbial enzymes during milling or to an extensive inactivation of these wheat flour associated microbial endoxylanases by endoxylanase inhibitors, present in wheat flour. When all wheat kernel associated microbial endoxylanases were first washed from the kernels and then added to the bread recipe, they drastically affected the AX population, suggesting that they can have a large impact on whole meal breadmaking.  相似文献   

9.
The proteins belonging to the cereal trypsin/alpha-amylase inhibitor family are abundant water/salt-soluble flour proteins active against alpha-amylases from several seed parasites and pests and inactive against endogenous alpha-amylases. Three alpha-amylase inhibitor families have been described in cereals that vary in size and are differently expressed among Triticeae seeds. The present work investigates the presence of human salivary alpha-amylase inhibitors in emmer (Triticum dicoccon Schrank) flour. The isolation was obtained by a series of chromatography steps, and the purification progress was monitored through the inhibition of human salivary alpha-amylase activity. The purified fraction was subjected to protein sequencing by tandem mass spectrometry (MSMS) of the tryptic digests obtained after the sample separation on 2-DE. MSMS data indicated that the emmer alpha-amylase inhibitory fraction was composed of two newly identified proteins [emmer dimeric inhibitor 1 (EDI-1) and emmer dimeric inhibitor 2 (EDI-2)] sharing very high identity levels with related proteins from Triticum aestivum.  相似文献   

10.
Detailed studies were carried out on the influence of corn size distribution on the values obtained for diastatic power (DP) of commercially malted barley. Malted barley was screened using a screening box, and the DP activities of the different corns retained on the different compartments of the screening box were determined. The malt samples retained on the 2.8 mm screen had the highest DP activity, whereas the small corns (相似文献   

11.
In 2009 a greenhouse experiment was conducted to determine the effects of boron (B) and plant growth-promoting rhizobacteria (PGPR) on wheat (Triticum aestivum spp. vulgare cv ‘Bezostiya’) and barley (Hordeum vulgare cv ‘Tokak’) on plant growth, freezing injury, and antioxidant enzyme capacity. Results showed that boron (0, 1, 3, 6, 9 kg B ha?1) and PGPR application (Bacillus megaterium M3, Bacillus subtilis OSU142, Azospirillum brasilense Sp245 and Raoultella terrigena) at which 50% of leaves were injured (LT50) values and ice nucleation activities in both plants were found statistically significant. Boron application with all PGPR strains decreased LT50 values in wheat and barley plants under noncold stress (NCS) and cold stress conditions (CS). There were statistically significant differences between bacterial inoculation and B fertilizer in terms of root and shoot dry weight under NCS and CS conditions. Reactive oxidative oxygen species (ROS) and antioxidant enzyme activities (SOD, POD, CAT) were negatively affected CS conditions and decreased with reduced temperatures of media, but B and PGPR applications alleviated the low-temperature deleterious effects in both plants species tested. The lowest ROS and antioxidant enzyme (SOD, POD, CAT) of wheat and barley were observed with 6 kg B ha?1 with R. terrigena.  相似文献   

12.
Alpha-amylases (EC 3.2.1.1) are glycosyl hydrolases with endoglycolytic activity on the alpha-1,4-d-glucosidic linkages in starch. In bananas, the mobilization of starch accounts for sugar accumulation during ripening, and among several hydrolytic enzymes, alpha-amylase is the only enzyme argued to be able to attack the intact granules, indicating a pivotal role for this enzyme. A 1953 bp full-length banana alpha-amylase cDNA (MAmy), encoded for a sequence of 416 amino acids, was cloned and used for heterologous expression in Pichia pastoris. The cloned MAmy presented the highly conserved motifs common to alpha-amylases, and the amylolytic activity of the extracts from yeast transformed with MAmy demonstrated that it encodes for a functional alpha-amylase, suggesting a putative role for this gene in starch degradation during fruit ripening.  相似文献   

13.
Bread made partially with soy may represent a viable alternative for increasing soy consumption in populations consuming Western diets. The potential health‐promoting activity of soy isoflavones may depend on their abundance and chemical form. The objective of this study was to characterize the changes in isoflavone distribution and β‐glucosidase activity during the soy breadmaking process. Soy bread ingredients were combined and mixed to form a dough that was subsequently proofed at 48°C for 1–4 hr and baked at 165°C for 50 min to produce breads. The isoflavone composition and β‐glucosidase activity in bread ingredients, doughs, and breads were monitored. Soy ingredients and wheat flour (not bread yeast) were the major contributors of the β‐glucosidase activity in bread. No degradation of isoflavones was observed during breadmaking but the isoflavone distribution was largely altered. Proofing and baking have important but different roles in changing the isoflavone distribution. Proofing converted isoflavone β‐glucosides to aglycones by highly specific β‐glucosidase activity. Thermal treatment during baking significantly decreased the isoflavone malonylglucosides and increased isoflavone β‐glucosides. Enzyme activity during proofing and the balance between formation and deconjugation of isoflavones during baking determine the isoflavone content and composition in the final product.  相似文献   

14.
The nicotinamide adenine dinucleotide coenzymes [NAD(P)(H)] are strong redox agents naturally present in wheat flour, and are indispensable cofactors in many redox reactions. Hence, it is not inconceivable that they affect gluten cross‐linking during breadmaking. We investigated the effect of increasing concentrations of NAD(P)(H) on gluten cross‐linking, dough properties, and bread volume using two flours of different breadmaking quality. Separate addition of the four nicotinamide coenzymes did not significantly affect mixograph properties. While addition of NAD+ hardly affected bread volume, supplementation with NADP(H) and NADH significantly decreased loaf volumes of breads made using flour of high breadmaking quality. Wheat flour incubation with NAD(P)H under anaerobic conditions increased wheat flour thiol content, while NAD(P)+ increased the extractability in SDS‐containing medium of the protein of the strong breadmaking flour. Based on the results, it was hypothesized that at least three reactions, competing for NAD(P)(H), occur during breadmaking that determine the final effect on protein, dough, and loaf properties. Next to coenzyme hydrolysis, the experiments pointed to coenzyme oxidation and NAD(P)(H) dependent redox reactions affecting protein properties.  相似文献   

15.
Fruits of Capsicum species such as paprika (Capsicum annuum cv.), Tomapi (Capsicum annuum subsup. annuum var pomiferum), pimento (Capsicum annuum var. angulosum), and cayenne (Capsicum annuum L.) were blended with wheat flour for breadmaking. Breadmaking properties such as the bread height (mm) and specific volume (cm3/g) are improved by the addition (8%) of any mature fruit of Capsicum species. Among these species, paprika at different growth and maturity stages was used for breadmaking. Breadmaking was enhanced with increasing fruit maturity. Bread height and specific volume on baking with green paprika‐wheat flour were lower than those of controls. When green paprika was heated in an autoclave, the breadmaking properties matched those of controls, which suggested that the impaired breadmaking properties caused by green paprika were due to protease. Size‐exclusion high‐performance liquid chromatography (SE‐HPLC) of flour proteins extracted from wheat flour mixed with heated and unheated paprika also suggested the presence of protease in green paprika. When red paprika was heated under the same conditions, the color changed to brown, and the breadmaking properties did not decrease but increased only slightly. This suggested that carotenoids were not related to the breadmaking properties. A suspension of the heated red paprika was dialyzed against water; after dialysis, the water was concentrated to syrup. The concentrated syrup and dialyzed suspension in the dialysis tube were blended with wheat flour and breadmaking was performed. The results indicated that the improvement of breadmaking properties was due to the dialyzed outer solution, which was heat‐stable and contained LMW materials derived from red paprika.  相似文献   

16.
A barley mutant with high‐amylose starch, Himalaya 292, combines the potential cholesterol reducing effects of barley with the gastrointestinal benefits of high‐amylose resistant starches. Himalaya 292 has alterations in the content and composition of a range of grain constituents, thus conditions for successful addition to foods need to be defined. In this study, the rheological and breadmaking properties of doughs prepared by combining wheat flours (with various gluten protein compositions) with various barley genotypes (Himalaya 292 and the control cultivars Himalaya and Torrens) have been determined. The effects of barley addition on the rheological properties of the admixtures differed. While addition of Himalaya 292 increased the strength and reduced the extensibility of admixture doughs, addition of the Himalaya and Torrens barley flours to the wheat flours reduced both strength and extensibility. The addition of Himalaya and Torrens barley flour reduced water absorption levels. However, addition of Himalaya 292 whole grain flour increased the water absorption of the admixtures significantly (P < 0.01). The baking data showed that selection of an appropriate wheat flour with a combination of strength and extensibility allows higher levels of incorporation of barley, facilitating an increased delivery per serving of constituents with positive health attributes in β‐glucan and resistant starch.  相似文献   

17.
J. Zhu  K. Khan 《Cereal Chemistry》2004,81(6):681-685
Gluten proteins from two cultivars of hard red spring (HRS) wheat with good and poor breadmaking quality were fractionated into 13 fractions by sequential extraction with dilute hydrochloric acid. Each subfraction was characterized by multistacking (MS) SDS‐PAGE under nonreducing conditions, followed by imaging densitometry. The glutenin polymers from the origins of MS‐SDS‐PAGE were analyzed by SDSP‐PAGE under reducing conditions to determine the composition of high and low molecular weight subunits. The results showed that fractions differed significantly in glutenin‐to‐gliadin ratios and in the size distribution of glutenin polymers. The earlier precipitated fractions were composed of more gliadins but fewer glutenin polymers. However, the glutenin polymers gradually increased in their relative quantities with the residue having the largest glutenin‐to‐gliadin ratio. The size distribution of glutenin polymers differed significantly from early precipitated to later fractions. The relative quantities of glutenin aggregates at the 4% origins increased significantly. The ratio of high molecular weight (HMW) to low molecular weight (LMW) glutenin subunits increased significantly from early to intermediate fractions. Between the two cultivars, significant differences were found in the ratio of HMW to LMW glutenin subunits and quantity of SDS insoluble glutenin polymers in the residue fraction with the better breadmaking quality cultivar ND706 having a greater ratio than the cultivar Sharp. It was concluded that the size distribution of glutenin polymers played an important role in determining the differences in breadmaking quality between the good and poor HRS wheat cultivars.  相似文献   

18.
The steep water is generally aerated in industrial barley malting. However, it is questionable whether oxygen actually reaches the embryo, which remains entrapped under the husk, testa, and pericarp until chitting occurs. The aim of our study was to investigate whether barley embryos experience oxygen deficiency during steeping, and whether various steeping conditions affect the oxygen deficiency. Alcohol dehydrogenase Adh2 was induced in all steeping conditions studied. Therefore, oxygen deficiency occurred regardless of the steeping conditions. However, steeping conditions affected the rate of recovery from oxygen deficiency, germination rate, and onset of alpha-amylase production. When barley was subjected to oxygen deficiency by applying N(2) gas during steeping, the timing of the treatment determined its effects. The importance of aeration increased as the process proceeded. Oxygen deprivation at the beginning of the process had little effect on malt quality. Therefore, the timing of aeration is important in the optimization of germination during the steeping stage of malting.  相似文献   

19.
Two‐dimensional isoelectric focusing (IEF) × PAGE gels were used to compare the endoproteolytic (gelatinase) activities of germinated barley with those of bread and durum wheat, rye, triticale, oat, rice, buckwheat, and sorghum. Barley was used as the standard of comparison because its endoproteinase complement has been studied previously in the greatest detail. The characteristics of the grain proteases were appraised from their migration patterns and by how they were affected by pH levels. All of the germinated grains contained multiple enzyme activities and their separation patterns and pH levels were at least similar to those of barley. The proteinases of the bread and durum wheats, rye, oat, and sorghum were most similar to those of barley, whereas the other grains provided more varied patterns. The rice and buckwheat proteinases developed much more slowly than those of the other grains. The activity patterns of the triticale resembled those of the parents, wheat and rye, but the triticale contained many more activities and higher overall proteolytic activities than any of the other species. These results should be applied to scientific or commercial procedures with caution because grains contain potent endogenous proteinase inhibitors that could inactivate some of these enzymes in various tissues or germination stages.  相似文献   

20.
重金属对土壤微生物酶活性的影响   总被引:16,自引:0,他引:16  
本文通过含有不同浓度的铜、铅、砷、镉 4种重金属的大豆、小麦盆栽试验 ,采用气相色谱方法测定土壤微生物酶活性 .结果表明 :低浓度的重金属能够提高固氮酶和反硝化酶的活性 ,而高浓度的重金属对上述二种酶有强烈的抑制作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号