首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
基于SNP标记的玉米株高及穗位高QTL定位   总被引:11,自引:3,他引:8  
为进一步弄清玉米株高和穗位高的遗传机理,为育种生产提供服务,本研究以K22×CI7、K22×Dan3402个F2群体为作图群体,利用覆盖玉米10条染色体的SNP标记构建了2个连锁图谱。并将这2个F2群体衍生的分别含237和218个家系的F2:3群体用于田间性状的鉴定。用复合区间作图模型对2个群体的株高、穗位高表型进行QTL定位分析,结果显示,在武汉和南宁两种环境条件下共定位到21个株高QTL和27个穗位高QTL;单个QTL表型变异贡献率的变幅为4.9%~17.9%;株高和穗位高QTL的作用方式以加性和部分显性为主;第7染色体上可能存在控制株高和穗位高的主效QTL。  相似文献   

2.
周菊红  李轲  何蓓如  胡银岗 《作物学报》2010,36(12):2045-2054
YM型小麦温敏雄性不育系的不育基因被定位在1Bs染色体片段上, 但已发现的相邻分子标记与该基因的遗传距离较大, 达10 cM以上。为寻找与该基因连锁更紧密的分子标记, 以YM型温敏雄性不育系ATM3314与恢复系中国春杂交的F2代200株为作图群体, 从1Bs的22个SSR引物中筛选出5个在亲本和F2代中分离的SSR引物, 构建了1个包含5个标记的1Bs局部遗传连锁图谱。结合F2代个体的育性调查, 采用复合区间作图法在YM型温敏雄性不育系的1Bs染色体上检测到不育基因的1个主效QTLrfv1-1和1个微效QTLrfv1-2。rfv1-1位于SSR标记Xgwm18和Xwmc406之间, 与两标记的遗传距离分别为6.0 cM和4.6 cM, LOD值为8.80, 加性效应23.87, 显性效应10.44, 可解释表型变异的23.91%; rfv1-2位于Xwmc406和Xbarc8之间, 与两标记的遗传距离分别为4.0 cM和3.4 cM, LOD值为3.10, 加性效应17.59, 显性效应5.99, 可解释表型变异的7.78%。本研究初步定位了YM型小麦温敏雄性不育系1Bs染色体片段上不育基因的QTL, 为进一步准确定位该基因奠定了基础。  相似文献   

3.
基于QTL定位分析小麦株高的杂种优势   总被引:6,自引:2,他引:4  
为探讨小麦株高杂种优势的分子遗传基础,以小麦品种花培3号和豫麦57杂交F1经染色体加倍获得的DH群体168个株系为材料,构建了一套含168个杂交组合的"永久F2"群体。利用复合区间作图法,在3个环境中进行了基于QTL定位的株高杂种优势分析,共检测到3个加性效应位点、2个显性效应位点、4对上位效应位点(包括加性×加性、加性×显性、显性×加性和显性×显性)和20个杂种优势位点。位于2D、4D和5B2染色体上的QPh2D、QPh4D和QPh5B2在3个环境中同时被检验到,受环境影响小,表达稳定。在2D染色体上相近的区域定位出多个杂种优势位点,其中QPh2D-2和QPh2D-7可解释杂种优势表型变异的29.77%和55.77%。在7D染色体的Xwmc273.2-Xcfd175之间定位出同一个杂种优势位点Qph7D-2。结果表明,在2D、4D和7D染色体上这些区域存在一些对小麦株高的杂种优势起重要作用的位点。  相似文献   

4.
人工合成小麦拥有丰富的有利遗传变异,可用于普通小麦的遗改良。本研究选用两个人工合成小麦改良品系构建了由284个单株组成的F2群体,基于1 671具有染色体位置信息的多态性DAr Tseq标记构建遗传图谱,并结合该群体农艺性状(株高,穗长,穗颈节长,小穗数,穗粒数,单株有效穗数,千粒重,单株重)的表现型,利用QTL作图软件ICIMapping 4.1进行了QTL定位。结果表明,共检测到20个QTL,其中4个为株高QTL,分布于2A、3B、5B染色体上,可解释表型变异的5.4%~10.8%;4个为穗长QTL,分布于2D、3B、5B染色体上,可解释表型变异的1.4%-8.8%;3个为穗颈节长QTL,分布于1A和5A染色体上,可解释表型变异的4.6%~12.2%;2个为穗粒数QTL,分布于3D和5A染色体上,可解释表型变异的18.9%~29.8%;1个为单株有效穗数QTL,分布于2A染色体上,可解释表型变异10.2%;5个为千粒重QTL,分布于1B、5A、5B、5D和7B染色体上,可解释表型变异的8.9%~10.9%;1个为位于7B染色体上的单株重QTL,可解释表型变异的6.1%。同时,在5B和7B染色体上存在控制多个性状的同一QTL位点。利用生物信息学的方法,筛选到1个千粒重相关的候选基因。以上结果可为人工合成小麦农艺性状QTL精细定位、分子标记辅助选择育种和基因克隆奠定基础。  相似文献   

5.
玉米株高、穗位高和雄穗分枝数是影响玉米抗倒伏性、耐密性、植株透光率及生产潜力的重要株型性状。因此,本研究以自交系T32和黄C为亲本组配了F2和F2:3群体,利用完备区间作图法对株高、穗位高和雄穗分枝数进行QTL检测和效应值分析。结果表明,F2:3家系在三个环境中共检测到10个QTL位点,单一环境下单个QTL的表型贡献率介于5.84%~11.03%之间。其中,株高受部分加性效应(A)、显性效应(D)、部分显性效应(PD)和超显性效应(OD)的调控;穗位高受到部分显性效应(PD)、显性效应(D)和超显性效应(OD)的调控;雄穗分枝数受到加性效应(A)、部分显性效应(PD)和超显性效应(OD)的调控。两个环境条件下调控株高和穗位高表达的QTL,分别位于Bin3.06(bnlg1350~phi102228)和Bin4.05~Bin4.06(umc2391~umc2283)同时调控株高和穗位高。三个环境条件下调控穗位高和雄穗分枝数表达的QTL,分别位于Bin8.05(umc1121~bnlg1782)调控穗位高、Bin8.07(bnlg1065~bnlg1823)调控雄穗分枝数。通过在不同环境条件下稳定检测到的株高、穗位高和雄穗分枝数QTL位点,以期为玉米相关性状的遗传研究、精细定位及基因克隆提供有益参考。  相似文献   

6.
大豆籽粒硬实加性和上位性QTL定位   总被引:2,自引:0,他引:2  
硬实是植物种子的普遍特性, 是影响大豆种子发芽率、生存能力及储存期的重要数量性状, 同时影响着大豆的加工品质。本实验通过对大豆籽粒硬实性状的加性和上位性互作QTL (quantitative trait locus)分析, 明确控制大豆籽粒硬实的重要位点及效应, 旨在为进一步解析硬实性状复杂的遗传机制提供理论依据。以冀豆12和地方品种黑豆(ZDD03651)杂交构建的包含186个家系的F6:8和F6:9重组自交系群体为材料, 采用WinQTL Cartographer V. 2.5的复合区间作图法(composite interval mapping, CIM)定位不同年份的籽粒硬实性状相关的加性QTL, 同时采用IciMapping 4.1软件中的完备区间作图法(inclusive composite interval mapping, ICIM)检测籽粒硬实性状的加性及上位性QTL。共检测到3个籽粒硬实性状相关的加性QTL, 分别位于第2、第6和第14染色体, 遗传贡献率范围为5.54%~12.94%。同时检测到4对上位性互作QTL, 分别位于第2、第6、第9、第12和第14染色体, 可解释的表型变异率为2.53%~3.47%。同时检测到籽粒硬实性状加性及上位性互作QTL, 且上位性互作多发生在主效QTL间或主效QTL与非主效QTL间, 表明上位性互作效应在大豆籽粒硬实性状的遗传基础中具有重要的作用。  相似文献   

7.
定位棉花种子性状的基因对揭示棉花种子性状的遗传规律,以及明确棉花种子、产量、纤维品质等性状间的遗传关系具有重要意义。以(渝棉1号×T586) F2:7重组近交系群体构建的遗传连锁图谱,在鉴定270个家系3个环境种子物理性状的基础上,利用MQM作图方法,共检测到34个种子物理性状QTL,包括9个种子重(qSW)、5个短绒重(qFW)、3个短绒率(qFP)、8个种仁重(qKW)、6个种子壳重(qHW)和3个种仁率(qKP)QTL,它们可解释4.6%~80.1%的性状表型变异。9个QTL在2个或3个环境中被检测到,其中包括第12染色体显性光子位点的短绒重与短绒率QTL,以及另外7个微效应QTL。34个QTL分布于15条染色体,其中A染色体组20个,D染色体组14个。有12个染色体区段分布有2个或2个以上的QTL,而且同一染色体区域同一亲本所具有的不同性状QTL的方向大多数与性状表型相关系数的正负一致。  相似文献   

8.
为了研究多个印迹QTL(iQTL)定位方法,本研究采用随机交配策略对纯系自然群体构建可追溯亲本的永久F2作图群体,基于模拟SNP基因型数据与真实水稻SNP基因型数据生成表型性状数据,并应用混合线性模型进行多个iQTL定位和遗传效应的参数估计。模拟研究表明,在不考虑群体结构与亲缘关系造成的干扰时,基于纯系自然群体产生的永久F2作图群体可利用混合线性模型定位到小效应、低遗传率的iQTL,并能估计出iQTL的遗传效应,是一种行之有效的多iQTL定位方法。  相似文献   

9.
氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位   总被引:4,自引:0,他引:4  
以玉米杂交种农大108的203个F2:3家系为材料,在施氮(N+)和不施氮(N-)2种条件下对拔节期到灌浆期的株高变化进行了动态QTL分析。结果表明,N胁迫条件对亲本许178影响较小,而对亲本黄C的影响较大,F2:3群体在不同时期的株高均值在2种施肥水平下没有显著差异,但变异范围存在一定的差异。利用包含199个SSR标记的遗传连锁图谱与复合区间作图法,在N-条件下,拔节期、小喇叭口期、大喇叭口期、灌浆期分别定位1、1、2和2个非条件QTL,可分别解释各时期株高表型变异的8.42%、13.86%、24.33%和22.66%;在N+条件下,相应时期分别定位1、1、2和4个非条件QTL,可分别解释各时期株高表型变异的8.10%、12.92%、21.30%和44.41%。在N-条件下,拔节期至喇叭口期、开花期至灌浆期分别定位了1和5个条件QTL,可分别解释该时期株高动态变异的9.14%和50.98%;在N+条件下,相应时期分别定位1和4个条件QTL,可分别解释该时期株高动态变异的13.33%和44.47%。这些非条件QTL和条件QTL多数表现以显性和部分显性为主。  相似文献   

10.
玉米株高主效QTL qPH3.2精细定位及遗传效应分析   总被引:1,自引:0,他引:1  
株高是影响玉米产量的重要因子之一, 节间数目和节间长度是导致株高差异的主要因素。本研究发现2个高代回交重组自交系W1和W2株高差异显著(P<0.001), 二者穗上部和穗下部节间数目都相同, 细胞形态分析发现节间细胞长度是引起二者株高差异的主要原因; 外源GA试验结果表明控制株高差异的QTL/基因是GA途径之外的新基因。因此, 利用来源于W1和W2的F2及F2:3家系群体在2年3个环境中将控制株高的主效QTL qPH3.2共定位在第3染色体标记C42-P17之间20 Mb范围内, 最高可解释22.22%的表型变异。进一步利用目标区段重组交换单株及自交后代家系将qPH3.2分解为2个主效QTL qPH3.2.1qPH3.2.2; 随后利用目标区段的跨叠系将qPH3.2.1qPH3.2.2分别精细定位在YH305-Y72 (2 Mb)及YH112-Y150 (1.6 Mb)之间。本研究的结果为玉米株高的遗传改良提供了真实可靠的遗传位点, 也为后续株高QTL的克隆奠定了良好的工作基础。  相似文献   

11.
小麦白粉病成株抗性和抗倒伏性及穗下节长度的QTL定位   总被引:8,自引:3,他引:5  
张坤普  赵亮  海燕  陈广凤  田纪春 《作物学报》2008,34(8):1350-1357
由小麦品种花培3号和豫麦57杂交获得了DH群体168个株系, 利用305个SSR标记对白粉病成株抗性、抗倒伏性和穗下节长度进行了QTL定位研究。DH群体及两亲本于2005年和2006年种植于山东泰安, 2006年种于安徽宿州。利用基于混合线性模型的QTLNetwork 2.0软件, 共检测到12个加性效应位点和10对上位效应位点。在4D染色体上控制白粉病成株抗性的qApr4D, 贡献率为20.0%, 在各环境中稳定表达, 其抗病等位基因来源于抗病亲本豫麦57; 在7D染色体上控制小麦穗下节长度的qIlbs7D, 贡献率为12.9%, 在各环境中稳定表达。加性效应和上位效应对小麦白粉病成株抗性、抗倒伏性和穗下节长度的遗传起重要作用, 并且基因与环境常常具有互作效应。以上两个QTL可分别用于小麦白粉病成株抗性和穗下节长度的分子标记辅助选择。  相似文献   

12.
不同水分胁迫下小麦胚芽鞘和胚根长度的QTL分析   总被引:2,自引:0,他引:2  
小麦胚芽鞘和胚根在不同渗透溶液下的长度变化是鉴评小麦幼苗抗逆性的重要指标。以小麦花培3号×豫麦57的DH株系衍生的含168个组合的永久F2 (immortalized F2, IF2)群体为材料,在蒸馏水(正常条件)以及10%、20%和30%聚乙二醇(PEG-6000)模拟水分胁迫处理下,进行胚芽鞘长和胚根长度的数量性状基因(QTL)定位分析。利用完备区间作图法,共检测到影响胚芽鞘和胚根长度的23个QTL,单个QTL对表型的贡献率为4.93%~35.37%。位于4B染色体区间Xcfd39.2–Xcfd22.2上影响胚芽鞘长度的位点QCl4B,具有最大的遗传效应,贡献率为35.37%;在3D染色体Xcfd223–Xbarc323区段,正常条件和20% PEG-6000处理下同时检测到影响胚芽鞘长度的QTL,QCl3D-a,其贡献率分别为7.83%和11.74%。另外,在10% PEG-6000处理下,3D染色体上的相近区域还定位出了影响胚芽鞘长度的QCl3D-b位点;在染色体1A和染色体5A1上各检测出与胚根长度有关的2个和3个不同的QTL;在6D染色体Xswes679.1–Xcfa2129和Xwmc412.1–Xcfd49区间分别检测到2个影响胚芽鞘长度和胚根长度的QTL。这些主效QTL可用于胚芽鞘和根系的分子标记辅助选择。  相似文献   

13.
不同盐浓度胁迫下小麦苗期苗高和主根长的QTL分析   总被引:3,自引:0,他引:3  
小麦苗期苗高和主根长是鉴定小麦苗期耐盐性的重要指标。利用小麦品种花培3号×豫麦57获得的DH群体168个株系,在去离子水(对照)以及50,100,200 mmol/L NaCl溶液处理下,进行苗高和主根长的数量性状基因(QTL)定位分析。利用完备区间作图法,共检测到影响苗高和主根长的25个QTL,单个QTL对表型的贡献率为4.19%~23.72%。位于3D染色体区间Xgdm72-Xbarc1119上影响主根长的QTL位点具有最大的遗传效应,贡献率为23.72%;在100 mmol/L和50 mmol/L NaCl处理下,在2D染色体Xwmc170.2-Xgwm539区段,同时检测到影响苗高的2个QTL位点,其贡献率分别为12.59%和8.40%;在100 mmol/L和200 mmol/L NaCl处理下,在4D染色体Xc-fa2173-Xcfe188区段,同时检测到影响主根长的2个QTL位点,其贡献率分别为8.77%和5.70%;在对照和100mmol/L NaCl溶液处理下,在5BL染色体Xgwm213-Xswes861.2区段,同时检测到影响苗高的QTL位点,其贡献率分别为17.49%和6.28%。另外,在50 mmol/L NaCl溶液处理下,4B染色体Xwmc657-Xwmc48区段还定位了1个影响苗高的QTL位点,其贡献率为12.59%;在染色体3A和染色体7D上各检测出与主根长有关的1个不同的QTL;在5A染色体Xbarc358.2-Xgwm186和Xcwem40-Xbarc358.2区间分别检测到1个影响苗高的QTL。这些主效QTL可用于苗高和主根长的分子标记辅助选择。  相似文献   

14.
Increasing sugar content in silage maize stalk improves its forage quality and palatability. The genetic mapping and characterization of quantitative trait loci (QTLs) is considered a valuable tool for trait enhancement, yet little information on QTL for stalk sugar content in maize has been reported. To this end, we investigated QTLs associated with stalk sugar traits including Brix, plant height (PHT), three ear leaves area (TELA), and days to silking (DTS) in two environments using a population of 202 recombinant inbred lines from a cross between YXD053, which has a high stalk sugar content, and Y6-1, which has a low stalk sugar content. A genetic map with 180 SSR and 10 AFLP markers was constructed, which spanned 1,648.6 cM of the maize genome with an average marker distance of 8.68 cM, and QTLs were detected using composite interval mapping. Seven QTLs controlling Brix were mapped on chromosomes 1, 2, 6 and 9 in the combined environments. These QTLs could explain 2.69–13.08 % of the phenotypic variance. One major QTL for Brix on chromosome 2 located between the markers bnlg1909 and umc1635 explained 13.08 % of the phenotypic variance. Y6-1 also contributed QTL allele for increased Brix on chromosome 6. One major QTLs controlling PHT on chromosome 1 and TELA on chromosome 4 were also identified and accounted for 13.68 and 12.49 % of the phenotypic variance, respectively. QTL alleles for increased DTS were located on chromosomes 1 and 5 of YXD053. Significant epistatic effects were identified in four traits, but no significant QTL × environment interactions were observed. The information presented here may be valuable for stalk sugar content improvement via marker-assisted selection in silage maize breeding programs.  相似文献   

15.
小麦DH群体穗下节间直径、茎壁厚及茎壁面积的QTL定位   总被引:3,自引:0,他引:3  
由小麦品种花培3号和豫麦57杂交获得168个DH株系,连续两年在山东泰安种植,利用324个SSR标记构建遗传连锁图谱,并基于混合线性模型对控制穗下节间直径、茎壁厚及茎壁面积的QTL遗传效应和环境互作效应进行分析。共检测到10个加性效应位点和6对上位效应位点,其中3个加性位点参与环境互作效应。检测到位于染色体2D、3D和5D(2个)控制穗下节间直径的4个加性QTLs,与控制茎壁厚的3个加性位点相同或相邻,表现出一因多效或紧密连锁效应。两个位于染色体2D和5D控制茎壁厚和茎壁面积QTL有较大遗传贡献率,分别为11.37%和10.98%,适用于分子标记辅助育种和聚合育种。6对上位性效应遗传贡献率较小、无环境互作效应。  相似文献   

16.
Genetic maps are useful for analysis of quantitative trait loci (QTLs) and for marker-assisted selection (MAS) in breeding. A simple sequence repeat (SSR) marker linkage map of common wheat was constructed based on recombination inbred lines (RILs) derived from a cross between Chinese Spring and spelt wheat. The map included 264 loci on all wheat chromosomes covering 2,345.2 cM with 962, 794.6, and 588.6 cM for the A, B, and D genomes, respectively. Using the RILs and the map, we detected 42 putative QTLs on 15 chromosomes for ear length, spikelet number, spike compactness, kernel length, kernel width, kernel height and β-glucan content. Each QTL explained 4–45% of the phenotypic variation. Five QTL cluster regions were detected on chromosomes 1A, 5AL, 2B, 2D, and 4D. The first QTLs for β-glucan content in wheat were identified on chromosomes 3A, 1B, 5B, and 6D.  相似文献   

17.
玉米幼胚愈伤组织的诱导和植株再生的QTL分析   总被引:4,自引:0,他引:4  
以黄早四和Mo17为亲本组配的239个RIL群体,构建了101个SSR标记的遗传图谱,覆盖玉米基因组1 422.7 cM,标记间的平均距离为15.6 cM。以玉米幼胚为外植体、改良N6为基本培养基,对亲本及RIL群体的组培性状进行了评价。采用复合区间作图法在第2、3、5、6、8和9染色体上定位了控制出愈率、Ⅱ型愈伤组织诱导率、绿点及绿苗分化率的8个QTL,并对其遗传效应进行了分析,其基因加性效应能解释相应性状表型方差的4.78%~14.02%。  相似文献   

18.
陆地棉衣分差异群体产量及产量构成因素   总被引:14,自引:5,他引:9  
 以衣分差异较大的陆地棉品种为材料,构建了包含188个F2单株的作图群体,应用6111对SSR引物对亲本进行了分子标记筛选,结果仅获得了123个多态性位点,其中88个位点构建了总长为666.7 cM、平均距离为7.57 cM的遗传图谱,覆盖棉花基因组的14.9%。通过复合区间作图法对F2单株和F2∶3家系进行QTL检测,共鉴定出了18个控制产量及产量构成因素变异的QTLs,包括2个衣分QTLs、4个子棉产量QTLs、4个皮棉产量QTLs、2个衣指QTLs、3个单株铃数QTLs、2个铃重QTLs和1个子指QTL。 解释的表型变异分别为\{6.9%\}~16.9%、5.6%~16.2%、4.8%~15.6%、7.7%~13.3%、8.2%~11.6%、6.1%~7%和6.6%。不同QTLs在相同染色体区段上的成簇分布表明与产量性状相关的基因可能紧密连锁或一因多效。产量及产量构成因素QTLs的遗传方式主要以显性和超显性效应为主。检测到的主效QTLs可以用于棉花产量及产量构成因素的分子标记辅助选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号