首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New methodological approaches and an algorithm for the quantitative assessment of accumulating a substance by a plant (C p ) with due regard for its concentration in the soil (C n ) are proposed. The first approach is the approximation of concentration curves by the functions C p = f(C n ) and their parameters. The second one is the standardization of the coefficients of biological sorption (K b ) of a substance upon its stable concentration in the soil using the function K b = f(C n ). As compared to the variation-statistical values of the mean and extreme concentrations, or the coefficients K b , the proposed parameters are characterized by a higher accuracy and sensitivity. They may be successfully used for quantitative studies of the mechanism and the intensity of the absorption of substances by plants, for the prediction of the accumulation of substances in the trophic chain, and the assessment of soil self-purification (detoxification) and comparative ratings.  相似文献   

2.
Native grasses that have acceptable forage yield and quality can play an important role in the sustainable development and protection of soil ecosystem. In this study, we investigate a native grass of northern China, Cleistogenes songorica, showing promise for erosion control. We used a rainfall simulation method to compare the effects of C. songorica roots and tall fescue roots (Festuca arundinacea) on soil erosion in sandy loam field plots with irrigation during establishment in 2011 and under mild or severe drought treatments in 2012 and 2013. Root length (RL), root diameter (RD), soil bulk density (SBD), soil field capacity (FC), sediment yield (SY), and root biomass (RB) of each soil monolith were sampled in the topsoil layer (0–10 cm) with a rectangular geotome. The proportion of stable aggregates in soil and the soil anti-scouring properties were also evaluated. C. songorica had higher RD than tall fescue throughout the experiment and evolved higher RL and RB by 2013. Both C. songorica and tall fescue enhanced the erosion resistance of soil, but C. songorica stabilized soil more effectively than did tall fescue. The proportion of stable soil aggregates was greater in C. songorica plots than in tall fescue grassland under mild drought. The present study shows that C. songorica has great potential to be one of the biological resources for soil erosion resistance, water and soil conservation in arid and semi-arid areas.  相似文献   

3.
Because soil hydraulic properties are indispensable for determining soil water retention and soil solute movement, their input for simulation models is essential. Many of these parameters cannot be estimated directly at the scale of interest, but can only be derived through inverse modeling. During this process, the parameters are generally adjusted using least-squares approach with Levenberg–Marquardt (LM) algorithms in which numerically simulated models are fitted to measured data. In this study we used a new inverse method to estimate the unsaturated soil hydro-dispersive properties from in-situ experiments. The method employs complex-variable-differentiation method (CVDM) to accurately predict of the hydraulic properties of the van Genuchten–Mualem models (θr, θs, α, ks, n). To the knowledge of the authors, it is first study use CVDM in soil physics. The optimization procedure was performed by using a continuous data set of daily in situ soil water content and bromide concentration measurements. Estimated parameters during the inversion showed high correlation (R2 = 0.88, RMSE = 0.013 and the model efficiency CE = 0.77) by using the CVDM-methods with the actual field measurements, compared with the traditional LM-algorithm (R2 = 0.81, RMSE = 0.021 and CE = 0.626). The results show that the new inverse analysis in the present work has the high accuracy, validity, uniqueness, and higher inversion efficiency. Meanwhile, the convergence and stability of the modified LM-algorithm are improved. Overall, it was concluded that the CVDM is promising method to estimate hydro-dispersive parameters in soil physics.  相似文献   

4.

Purpose

We examined the effects of vermicompost application as a basal fertilizer on the properties of a sandy loam soil used for growing cucumbers under continuous cropping conditions when compared to inorganic or organic fertilizers.

Materials and methods

A commercial cucumber (Cucumis sativus L.) variety was grown on sandy loam soil under four soil amendment conditions: inorganic compound fertilizer (750 kg/ha,), replacement of 150 kg/ha of inorganic compound fertilizer with 3000 kg/ha of organic fertilizer or vermicompost, and untreated control. Experiments were conducted in a greenhouse for 4 years, and continuous planting resulted in seven cucumber crops. The yield and quality of cucumber fruits, basic physical and chemical properties of soil, soil nutrient characteristics, and the soil fungal community structure were measured and evaluated.

Results and discussion

Continuous cucumber cropping decreased soil pH and increased electrical conductivity. However, application of vermicompost significantly improved several soil characteristics and induced a significant change in the rhizosphere soil fungal community compared to the other treatments. Notably, the vermicompost amendments resulted in an increase in the relative abundance of Ascomycota, Chytridiomycota, Sordariomycetes, Eurotiomycetes, and Saccharomycetes, and a decrease in Glomeromycota, Zygomycota, Dothideomycetes, Agaricomycetes, and Incertae sedis. Compared to the organic fertilizer treatment, vermicompost amendment increased the relative abundance of beneficial fungi and decreased those of pathogenic fungi. Cucumber fruit yield decreased yearly under continuous cropping conditions, but both inorganic and organic fertilizer amendments increased yields. Vermicompost amendment maintained higher fruit yield and quality under continuous cropping conditions.

Conclusions

Continuous cropping decreased cucumber yield in a greenhouse, but basic fertilizer amendment reduced this decline. Moreover, basal fertilizer amendment decreased beneficial and pathogenic fungi, and the use of vermicompost amendment in the basic fertilizer had a positive effect on the health of the soil fungal community.
  相似文献   

5.

Purpose

The purpose of this study was to determine the first-order rate constants and half-lives of aerobic and anaerobic biomineralization of atrazine in soil samples from an agricultural farm site that had been previously used for mixing pesticide formulations and washing application equipment. Atrazine catabolic genes and atrazine-degrading bacteria in the soil samples were analyzed by molecular methods.

Materials and methods

Biomineralization of atrazine was measured in soil samples with a [U-ring-14C]-atrazine biometer technique in soil samples. Enrichment cultures growing with atrazine were derived from soil samples and they were analyzed for bacterial diversity by constructing 16S rDNA clone libraries and sequencing. Bacterial isolates were also obtained and they were screened for atrazine catabolic genes.

Results and discussion

The soils contained active atrazine-metabolizing microbial communities and both aerobic and anaerobic biomineralization of [U-ring-14C]-atrazine to 14CO2 was demonstrated. In contrast to aerobic incubations, anaerobic biometers displayed considerable differences in the kinetics of atrazine mineralization between duplicates. Sequence analysis of 16S rDNA clone libraries constructed from the enrichment cultures revealed a preponderance of Variovorax spp. (51 %) and Schlesneria (16 %). Analysis of 16S rRNA gene sequences from pure cultures (n?=?12) isolated from enrichment cultures yielded almost exclusively Arthrobacter spp. (83 %; 10/12 isolates). PCR screening of pure culture isolates for atrazine catabolic genes detected atzB, atzC, trzD, trzN, and possibly atzA. The presence of a complete metabolic pathway was not demonstrated by the amplification of catabolic genes among these isolates.

Conclusions

The soils contained active atrazine-metabolizing microbial communities. The anaerobic biometer data showed variable response of atrazine biomineralization to external electron acceptor conditions. Partial pathways are inevitable in soil microbial communities, with metabolites linking into other catabolic and assimilative pathways of carbon and nitrogen. There was no evidence for the complete set of functional genes of the known pathways of atrazine biomineralization among the isolates.
  相似文献   

6.
The population density of actinomycetes in the samples of light sierozem from the Kopet Dag piedmont plain (75 km from Ashkhabad, Turkmenistan) reaches hundreds of thousand CFU/g soil. The actinomycetal complex is represented by two genera: Streptomyces and Micromonospora. Representatives of the Streptomyces genus predominate and comprise 73 to 87% of the actinomycetal complex. In one sample, representatives of the Micromonospora genus predominated in the complex (75%). The Streptomyces genus in the studied soil samples is represented by the species from several sections and series: the species of section Helvolo-Flavus series Helvolus represent the dominant component of the streptomycetal complex; their portion is up to 77% of all isolated actinomycetes. The species of other sections and series are much less abundant. Thus, the percentage of the Cinereus Achromogenes section in the actinomycetal complex does not exceed 28%; representatives of the Albus section Albus series, Roseus section Lavendulae-Roseus series, and Imperfectus section belong to rare species; they have been isolated not from all the studied samples of light sierozem, and their portion does not exceed 10% of the actinomycetal complex.  相似文献   

7.
Subsurface-banding manure and winter cover cropping are farming techniques designed to reduce N loss. Little is known, however, about the effects of these management tools on denitrifying microbial communities and the greenhouse gases they produce. Abundances of bacterial (16S), fungal (ITS), and denitrification genes (nirK, nirS, nosZ-I, and nosZ-II) were measured in soil samples collected from a field experiment testing the combination of cereal rye and hairy vetch cover cropping with either surface-broadcasted or subsurface-banded poultry litter. The spatial distribution of genes was mapped to identify potential denitrifier hotspots. Spatial distribution maps showed increased 16S rRNA genes around the manure band, but no denitrifier hotspots. Soil depth and nitrate concentration were the strongest drivers of gene abundance, but bacterial gene abundance also differed by gene, soil characteristics, and management methods. Gene copy number of nirK was higher under cereal rye than hairy vetch and positively associated with soil moisture, while nirS gene copies did not differ between cover crop species. The nirS gene copies increased when manure was surface broadcasted compared to subsurface banded and was positively associated with pH. Soil moisture and pH were positively correlated to nosZ-II but not to nosZ-I gene copy numbers. We observed stronger correlations between nosZ-I and nirS, and nosZ-II and nirK gene copies compared to the reverse pairings. Agricultural management practices differentially affect spatial distributions of genes coding for denitrification enzymes, leading to changes in the composition of the denitrifying community.  相似文献   

8.

Purpose

Fruiting vegetables are generally considered to be safer than other vegetables for planting on cadmium (Cd)-contaminated farms. However, the risk of transferring Cd that has accumulated in the stems and leaves of fruiting vegetables is a major issue encountered with the usage of such non-edible parts. The objective of this study was to resolve the contribution of arbuscular mycorrhizal (AM) fungi to the production of low-Cd fruiting vegetables (focusing on the non-edible parts) on Cd-contaminated fields.

Materials and methods

An 8-week pot experiment was conducted to investigate the acquisition and translocation of Cd by cucumber (Cucumis sativus L.) plants on an unsterilized Cd-contaminated (1.6 mg kg?1) soil in response to inoculation with the AM fungus, Funneliformis caledonium (Fc) or Glomus versiforme (Gv). Mycorrhizal colonization rates of cucumber roots were assessed. Dry biomass and Cd and phosphorus (P) concentrations in the cucumber shoots and roots were all measured. Soil pH, EC, total Cd, phytoavailable (DTPA-extractable) Cd, available P, and acid phosphatase activity were also tested.

Results and discussion

Both Fc and Gv significantly increased (P?<?0.05) root mycorrhizal colonization rates and P acquisition efficiencies, and thus the total P acquisition and biomass of cucumber plants, whereas only Fc significantly increased (P?<?0.05) soil acid phosphatase activity and the available P concentration. Both Fc and Gv significantly increased (P?<?0.05) root to shoot P translocation factors, inducing significantly higher (P?<?0.05) shoot P concentrations and shoot/root biomass ratios. In contrast, both Fc and Gv significantly decreased (P?<?0.05) root and shoot Cd concentrations, resulting in significantly increased (P?<?0.05) P/Cd concentration ratios, whereas only Gv significantly decreased (P?<?0.05) the root Cd acquisition efficiency and increased (P?<?0.05) the root to shoot Cd translocation factor. Additionally, AM fungi also tended to decrease soil total and phytoavailable Cd concentrations by elevating plant total Cd acquisition and soil pH, respectively.

Conclusions

Inoculation with AM fungi increased the P acquisition and biomass of cucumber plants, but decreased plant Cd concentrations by reducing the root Cd acquisition efficiency, and resulted in a tendency toward decreases in soil phytoavailable and total Cd concentrations via increases in soil pH and total Cd acquisition by cucumber plants, respectively. These results demonstrate the potential application of AM fungi for the production of fruiting vegetables with non-edible parts that contain low Cd levels on Cd-contaminated soils.
  相似文献   

9.
An experiment was conducted with tobacco (Nicotiana tabacum L.) grown in a Cd- and Pb-contaminated calcareous soil amended with 0.0, 1.0, 2.5, and 5.0% (w/w) tobacco stalk biochar (BC). The BC amendment significantly increased organic matter, total C, N, P, and K contents of soil, and the C/N ratio. Bioavailable metal concentrations (DTPA extraction) decreased by increasing BC application rate. The 5.0% BC amendment significantly decreased the DTPA-extractable Cd and Pb by 10.4 and 13.6%, respectively. Correspondingly, the bioaccumulation and translocation factors of Cd and Pb also decreased by increasing the BC addition rates and this indicated that BC inhibited the uptake and transfer of both Cd and Pb by tobacco plants. Moreover, high-throughput sequencing revealed that BC increased Chao1 richness, Shannon’s diversity and Simpson’s diversity of bacterial communities of soil. The relative abundance and genera composition of Adhaeribacter, Rhodoplanes, Pseudoxanthomonas, and Candidatus Xiphinematobacter increased under BC treatments, while those of Kaistobacter, Lacibacter, and Pirellula decreased. Overall, BC increased soil nutrients (C, N, P, and K contents), enhanced bacterial diversity indexes and richness, and changed the bacterial community composition, which may all have contributed to reduce the mobility and bioavailability of both Cd and Pb in a calcareous soil.  相似文献   

10.

Purpose

The subjects of this study were to investigate the remediating potential of the co-cultivation of Pleurotus eryngii and Coprinus comatus on soil that is co-contaminated with heavy metal (cadmium (Cd)) and organic pollutant (endosulfan), and the effects of the co-cultivated mushrooms on soil biochemical indicators, such as laccase enzyme activity and bacterial counts.

Materials and methods

A pot experiment was conducted to investigate the combined bioremediation effects on co-contaminated soil. After the mature fruiting bodies were harvested from each pot, the biomass of mushrooms was recorded. In addition, bacterial counts and laccase enzyme activity in soil were determined. The content of Cd in mushrooms and soil was detected by the flame atomic absorption spectrometry (FAAS), and the variations of Cd fractions in soil were determined following the modified BCR sequential extraction procedure. Besides, the residual endosulfan in soil was detected by gas chromatography-mass spectrometry (GC-MS).

Results and discussion

The results indicated that co-cultivation of P. eryngii and C. comatus exerted the best remediation effect on the co-contaminated soil. The biomass of mushroom in the co-cultivated group (T group) was 1.57–13.20 and 19.75–56.64% higher than the group individually cultivated with P. eryngii (P group) or C. comatus (C group), respectively. The concentrations of Cd in the fruiting bodies of mushrooms were 1.83–3.06, 1.04–2.28, and 0.67–2.60 mg/kg in T, P, and C groups, respectively. Besides, the removal rates of endosulfan in all treatments exceeded 87%. The best bioremediation effect in T group might be caused by the mutual promotion of these two kinds of mushrooms.

Conclusions

The biomass of mushroom, laccase activity, bacterial counts, and Cd content in mushrooms were significantly enhanced, and the dissipation effect of endosulfan was slightly higher in the co-cultivated group than in the individually cultivated groups. In this study, the effect of co-cultivated macro fungi P. eryngii and C. comatus on the remediation of Cd and endosulfan co-contaminated soil was firstly reported, and the results are important for a better understanding of the co-remediation for co-contaminated soil.
  相似文献   

11.

Purpose

Developing routine methods that accurately predict soil nitrogen (N) mineralization is essential for fertilization recommendation; thus, chemical soil testing has received worldwide attention. However, the optimal chemical soil test for predicting soil N mineralization is region specific. This study aimed to determine suitable chemical soil tests for predicting N mineralization in paddy soils of the Dongting Lake region, China.

Materials and methods

Composite surface samples (0–20 cm) of soils (n?=?30) with diverse inherent properties were collected from representative paddy fields across the region. The benchmark indices for soil N mineralization were the net mineralization rate of soil N in a 112-day anaerobic incubation under waterlogged conditions (NMRN112) and N mineralization potential (N o ) estimated using a modified double exponential model. Laboratory-based measurements of soil labile organic N (SLON) were conducted using chemical fractionation methods including 0.01 M NaHCO3 extraction, hot 2 M KCl hydrolysis, phosphate-borate (PB) buffer hydrolysis, acidic KMnO4 oxidation, and alkaline KMnO4 oxidation. These were compared with the benchmark indices to assess their suitability for use as indicators for N mineralization.

Results and discussion

Acidic KMnO4-oxidative organic N (acidic KMnO4-N) and PB buffer-hydrolysable organic N (PBHYDR-N) correlated strongly with NMRN112 and N o (r?=?0.825–0.884, P?<?0.001, n?=?30). Grouping of soils based on soil texture generally provided no improvement in the relationships of chemical soil tests with NMRN112 and N o . Multiple stepwise regression analysis indicated that combining acidic KMnO4-N and PBHYDR-N yielded the best prediction of soil N mineralization, explaining 86.1 and 85.5 % of the variation in NMRN112 and N o , respectively, of the 30 tested paddy soils.

Conclusions

The results of acidic KMnO4-N and PBHYDR-N as indicators for soil N mineralization were promising, and the operations of acidic KMnO4 oxidation and PB buffer hydrolysis procedures are simple and cost-effective. Therefore, a combination of acidic KMnO4-N and PBHYDR-N shows promise in predicting N mineralization in paddy soils of the Dongting Lake region. However, further calibration through field studies is required and the chemical characteristics of acidic KMnO4-N and PBHYDR-N needs to be further clarified.
  相似文献   

12.
Two seasonal pot experiments were conducted to investigate the effect of biofertilizer application after mixture of lime and ammonium bicarbonate (LA) fumigation, on banana Fusarium wilt disease suppression and soil microbial community composition. Biofertilizer application after LA fumigation decreased 80% of disease incidence compared to control of biofertilizer application to non-fumigated soil. Biofertilizer application after fumigation clearly manipulated soil microbial community composition as revealed by non-metric multidimensional scaling and Venn diagram. LA fumigation significantly reduced the abundance of F. oxysporum while biofertilizer application after fumigation could further decrease it. Furthermore, indigenous microbes, e.g., Bacillus, Pseudomonas, and Mortierella, were associated with disease suppression. Biofertilizer application after fumigation significantly (p?<?0.05) increased the soil pH and content of soil total C and available P and K, and this probably reshaped soil microbial community as revealed by redundancy analysis and variance partitioning analysis. The observed disease suppression due to biofertilizer application after soil fumigation can be attributed to the reduced abundance of F. oxysporum by general suppression resulting from manipulated soil properties and recovered soil microbiome.  相似文献   

13.
A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying (T): Ψ = Q ? aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water (W) and the Ψ value, Polyanyi potential curves (W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.  相似文献   

14.
The concept of soil line can be to describe the temporal distribution of spectral characteristics of the bare soil surface. In this case, the soil line can be referred to as the multi-temporal soil line, or simply temporal soil line (TSL). In order to create TSL for 8000 regular lattice points for the territory of three regions of Tula oblast, we used 34 Landsat images obtained in the period from 1985 to 2014 after their certain transformation. As Landsat images are the matrices of the values of spectral brightness, this transformation is the normalization of matrices. There are several methods of normalization that move, rotate, and scale the spectral plane. In our study, we applied the method of piecewise linear approximation to the spectral neighborhood of soil line in order to assess the quality of normalization mathematically. This approach allowed us to range normalization methods according to their quality as follows: classic normalization > successive application of the turn and shift > successive application of the atmospheric correction and shift > atmospheric correction > shift > turn > raw data. The normalized data allowed us to create the maps of the distribution of a and b coefficients of the TSL. The map of b coefficient is characterized by the high correlation with the ground-truth data obtained from 1899 soil pits described during the soil surveys performed by the local institute for land management (GIPROZEM).  相似文献   

15.
A field experiment investigating the phytoremediation potential of six plant species—Goosegrass (Eleusine indica), Bermuda grass (Cynodon dactylon), Sessile joyweed (Alternanthera sessilis), Benghal dayflower (Commelina benghalensis), Lovanga (Cleome ciliata), and Chinese violet (Asystasia gangetica)—on soil contaminated with fuel oil (82.5 ml/kg of soil) have been conducted from March to August 2016. The experiments consider three modalities—Tn: unpolluted planted soils, To: unplanted polluted soils, and Tp: polluted planted soil—randomized arranged. Only three (E. indica, C. dactylon, and A. sessilis) of the six species survived while the others died 1 month after the beginning of experimentations. The relative growth indexes showed a strong similarity between the growth parameters of E. indica and C. dactylon, each on polluted and control soils, unlike A. sessilis. Total petroleum hydrocarbons (TPHs) removal efficiency were 82.56, 80.69, and 77% on soil planted with E. indica, C. dactylon, and A. sessilis, respectively; and 57.25% on non-planted soil. According to the bioconcentration and translocation factors, E. indica and A. sessilis are involved on rhizodegradation and phytoextraction of hydrocarbons whereas C. dactylon is only involved into rhizodegradation. Overall, E. indica and C. dactylon out-yielded A. sessilis in the phytoremediation capacity of fuel oil-contaminated soils.  相似文献   

16.
The structure of algological and mycological complexes in Al–Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpinа, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria–algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest  相似文献   

17.
A conceptually new instrumental method has been proposed for the determination of the sorption fragment of the soil water retention curve and the specific surface area of soils and sediments by drying samples at different temperatures, which is based on fundamental models for relative air humidity and thermodynamic water potential (Ψ) as functions of temperature (T). The basic equation for the calculation of water potential in the first (linear) approximation is as follows: Ψ = Q–аТ, where Q is the specific heat of evaporation, and a is the physically substantiated parameter related to the initial relative air humidity in the laboratory. The setting of model parameters necessary for quantitative calculations has been performed from tabulated data for the saturated water vapor pressure as a function of temperature and results of an independent experiment with gradual air heating and synchronous automated control of air humidity and temperature with DS 1923 hydrochrons. The potentialities of the method have been demonstrated using literature data on the dehydration of soil colloids and our own results on the drying of a silty sandy soil (Arenosol) from Dubai, a light loamy soddy-podzolic soil (Albic Retisol) and a low-moor peat soil (Histosol) from Moscow oblast, and a loamy ordinary chernozem (Haplic Chernozem) from Krasnodar region.  相似文献   

18.
Pedotransfer functions (PTFs) are widely used for hydrological calculations based on the known basic properties of soils and sediments. The choice of predictors and the mathematical calculus are of particular importance for the accuracy of calculations. The aim of this study is to compare PTFs with the use of the nonlinear regression (NLR) and support vector machine (SVM) methods, as well as to choose predictor properties for estimating saturated hydraulic conductivity (Ks). Ks was determined in direct laboratory experiments on monoliths of agrosoddy-podzolic soil (Umbric Albeluvisol Abruptic, WRB, 2006) and calculated using PTFs based on the NLR and SVM methods. Six classes of predictor properties were tested for the calculated prognosis: Ks-1 (predictors: the sand, silt, and clay contents); Ks-2 (sand, silt, clay, and soil density); Ks-3 (sand, silt, clay, soil organic matter); Ks-4 (sand, silt, clay, soil density, organic matter); Ks-5 (clay, soil density, organic matter); and Ks-6 (sand, clay, soil density, organic matter). The efficiency of PTFs was determined by comparison with experimental values using the root mean square error (RMSE) and determination coefficient (R2). The results showed that the RMSE for SVM is smaller than the RMSE for NLR in predicting Ks for all classes of PTFs. The SVM method has advantages over the NLR method in terms of simplicity and range of application for predicting Ks using PTFs.  相似文献   

19.
Actinomycetes in the rhizosphere of semidesert soils of Mongolia   总被引:1,自引:0,他引:1  
The population density of actinomycetes in the desert-steppe soil, rhizosphere, and the above-ground parts of plants varies from tens to hundreds of thousands of colony-forming units (CFU) per gram of substrate. The actinomycetal complexes of the brown desert-steppe soil without plant roots are more diverse in their taxonomic composition than the actinomycetal complexes in the rhizosphere and the aboveground parts of plants. Additionally to representatives of the Streptomyces and Micromonospora genera, actinomycetes from the Nocardia, Saccharopolyspora, Thermomonospora, and Actinomadura genera were identified in the soil. The population density of actinomycetes in the rhizosphere and in the soil reached hundreds of thousand CFU/g; it considerably exceeded the population density of actinomycetes in the aboveground parts of plants. The maximum population density of actinomycetes was determined in the rhizosphere of Asparagus gobicus, Salsola pestifera, and Cleistogenes songorica.  相似文献   

20.
Alkaline phosphomonoesterase (ALP) mainly originates from soil microbial secretion and plays a crucial role in the turnover of soil phosphorus (P). To examine the response of ALP-encoding microbial communities (analysed for the biomarker of the ALP gene, phoD) of soils and derivative soil fractions to different fertilisation regimes, soil samples were collected from a long-term experimental field (over 35 years). The different organic P (Po) pools of soil fractions and the ALP activity of soil were also determined. Compared with chemical-only fertilised soils, the ALP activity was 232–815% higher in organic-amended soils, and the highest enzyme activity was observed in the organic-only fertilised treatment. The abundance of the phoD gene harbouring in soil fractions, determined by quantitative PCR (qPCR), was affected by different fertilisations. The highest abundance of the phoD gene was generally detected in the 2–63-μm-sized fraction (silt), but most phoD-encoding microbial species were associated to the 0.1–2-μm-sized fraction (clay) in the chemical-only fertilised soil. The contents of labile Po (LPo), moderately labile Po (MLPo) and fulvic acid-associated Po (FAPo) were significantly correlated with the phoD gene abundance, whereas only LPo content was significantly correlated with the ALP activity. The dominant phoD-encoding phylas were Actinobacteria and Proteobacteria, according to a high-throughput sequencing. Bradyrhizobium, a N2-fixer identified as a phoD-encoding genus, showed the highest abundance in fertilised soils. The abundance of Bradyrhizobium, Streptomyces, Modestobacter, Lysobacter, Frankia and Burkholderia increased with the organic-only amendment and was significantly correlated with the ALP activity. According to structure equation models (SEM), pH and LPo content significantly and directly affected the ALP activity; the soil organic C (Corg) content was related to composition and abundances of phoD-harbouring microbial communities; since both microbial properties were correlated to the ALP activity, the Corg content was indirectly related to the ALP activity. In conclusion, soil management practices can be used to optimise the contents of soil available P and the organic P with regulation of soil ALP activity and the community composition of corresponding microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号