首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All of steady and non-steady subsurface drainage equations were developed mostly based on water flow pattern in an ordinary field conditions. However, subsurface drainage in a paddy field is quite different from subsurface drainage in an ordinary field. Thus, it is necessary to develop new equations and mathematical models to design subsurface drainage system in a paddy field. The objective of this study was to apply the HYDRUS-2D model, based on the Richard’s equation, to simulate water flow under subsurface drainage in a paddy field for various drain depths (0.5, 0.75 and 1.0 m) and spacings (7.5 and 15.0 m), surface soil textures (clay loam and silty clay loam) and crack conditions. Simulation results were compared with two well-known drainage equations. The maximum drainage rate was obtained under 7.5-m spacings and 1-m depth. With increasing drain spacings, the drainage rate decreased. Drain spacings had more effect on drainage rate and water pressure head as compared to drain depth. Drainage rates calculated by the Hooghoudt’s and Murashima and Ogino’s equations were much lower than those calculated by the Richard’s equation. The Hooghoudt’s equation, developed for ordinary fields, did not perform well for paddy fields. This study also proved the importance of cracks in subsurface drainage system of paddy fields. HYDRUS-2D stands as a robust tool for designing subsurface drainage in a paddy field.  相似文献   

2.
A field experiment was performed at two Korean research sites to evaluate water and nutrient behavior in paddy rice culture operations for 2 years. One site was irrigated with groundwater, whereas the other site was irrigated with surface water. Both sites received average annual rainfall of about 1,300 mm, and about 70–80% of it was concentrated during July–September coinciding with rice growing season. Although most of the nutrient outflow was attributed to plant uptake, nutrient loss by surface drainage was substantial. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient behaviors in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and practical planning model that could be used to evaluate nutrient loading from paddy rice fields alone or in combination with other complex watershed models. Further validation might be required for general application of the PADDIMOD to the simulation of paddy rice fields with various agricultural environments.  相似文献   

3.
Pesticides are very important in European rice production. For appropriate environmental protection, it is useful to predict the potential impact of pesticides after application, in paddy fields, in paddy runoff, and in the surrounding water, by calculating predicted environmental concentrations (PECs). In this paper, a joint simulation is described, coupling a field-scale pesticide fate model (RICEWQ) and a transportation model (RIVWQ) to evaluate the potential for predicting environmental concentrations of pesticides in the paddy field and adjacent surface water bodies and comparing the predicted values with the monitoring data. The results demonstrate that the application of the calibrated field-scale RICEWQ model is a conservative method to predict the PEC at the watershed level, overestimating the observed data; the coupled RICEWQ and RIVWQ models could be adequately used to predict PECs in the surrounding water at watershed level and in the higher tier risk assessment procedure.  相似文献   

4.
Japanese farmers manage their irrigation water based on their past experiences and preferences, considering such factors as weather and available water (hereafter defined as empirical water management). They elaborately control the intake and drainage rates of their own paddy fields to maintain optimal ponding depths. But these well-managed systems will drastically change because of the decreasing number of farmers. Therefore, it is necessary to clarify if the optimal ponding depth will be maintained within the limits of traditionally-allowed water intake rate from the main river. The first objective of this study was the quantification of actual water use in the paddy fields, resulting from the farmers water management on the basis of their experience. The significance of the present water intake rate under empirical water management was studied for a paddy field command area of about 230 ha. Water intake rates and the water requirements of the whole area were investigated by measuring the flow rate at 17 points of irrigation and drainage canals. Characteristics of the farmers empirical water management were investigated by measuring the hourly changes in inflow and outflow rates for a sub-area using an automatic measurement system, and an inferential method of determining water management patterns for the paddy fields was proposed. The newly-proposed inferential method was introduced in the tank model, which expresses the characteristics of water management in the command area. The Shuffled Complex Evolution Algorithm (SCE-UA) method was used for optimizing the model parameters. It was proven that the model accuracy improved when the farmers empirical water management was taken into account. The optimal amount of water to be applied to the command area was quantified by the simulation. The second objective was to predict the effect of the decreasing number of farmers on future water use conditions. The simulated result indicates the difficulty of maintaining optimal ponding depth for the whole command area when the farmers empirical water management is not maintained. In other words, results indicated that efficient water use requires an automatic water management system or a new pipeline system to replace the farmers present empirical water management.  相似文献   

5.
Rice productivity in rainfed paddy fields varies with seasonal changes of water availability in which the conditions of flooding are affected by the water balance. Hydrometeorological measurements were performed in a rainfed paddy field in Northeast Thailand from July 2004 to December 2006 to analyze the water balance. As a result of our measurements, climatologically conditions were classified as semi-humid with an annual precipitation of 1,100 mm/year and annual potential evaporation of 1,660 mm/year in both the year. The surface layer of the paddy soil was clayey and the hydraulic conductivity was very low, so groundwater levels remained below the soil surface even under flooded conditions during the rainy season. Seasonal changes in the amount of soil water were very small, comprising only less than 16% of the total precipitation during the rainy season. Consequently, an effective precipitation of less than 180 mm was enough to establish standing water in the rainfed paddy field. Shinkichi Goto, Tsuneo Kuwagata and Pisarn Konghakote contributed equally to the paper.  相似文献   

6.
This experimental study assesses the effects of event rainfall on soil erosion characteristics in terraced rice paddy fields. A 0.75-ha terraced paddy field located in Northern Taiwan was used to investigate the soil erosion under the regular cultivation of rice during two crop seasons. The environmental changes were investigated in the neighboring areas in which terraced paddy fields have been converted to other land usages. The annual rate of soil erosion calculated from the observed rainfall runoff and suspended solid contained was 0.77 ton/ha, which is significantly less than the erosion rate associated with upland crop cultivation reported by other research conducted in Taiwan. Experimental results also showed that the terraced paddy field retained the highest percentages of clay, silt, and organic matter's content, as compared to those of other upland crops, indicating that the topsoil was less susceptible to rainfall erosion under flooded conditions of rice-cultivation. The results of this study show that the rice-planted terraced paddy offers the highest level of soil conservation. The function of soil and water conservation in terraced paddy fields could be further increased by effective maintenance of embankment and to raise the height of the bund. Poor management, abandoned cultivation, and converse to other upland crops of terraced paddy fields are regarded as major contributors to increased soil erosion in mountainous areas. The government in Taiwan should formulate effective measures and maintain sustainable rice cultivation in the terraced paddies.  相似文献   

7.
Water shortage has become an important issue for Korean agriculture. Korea suffers from a limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution. This study examined the concentrations of toxic heavy metals and Escherichia coli in a paddy rice field irrigated with reclaimed wastewater to evaluate the risk to farmers. Most epidemiological studies have been based on upland fields, and therefore may not be directly applicable to paddy fields. In this study, a Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. The risk value increased significantly after irrigation and precipitation. The results of the microbial risk assessment showed that risk values of groundwater and reclaimed wastewater irrigation were lower than the values of effluent directly from wastewater treatment plants. The monitoring results of heavy metals for each irrigated paddy fields did not show specific tendency. A risk assessment for toxic heavy metals was performed according to various exposure pathways; however, the results of the carcinogenic and noncarcinogenic risk estimation showed that the risk from reclaimed wastewater-irrigated paddy fields was the lowest.  相似文献   

8.
Promoting biomass utilization, the objectives of this study were to clarify the spatial distribution of nitrogen, one of the most important fertilizer components in the methane fermentation digested slurry (i.e., the digested slurry), and to establish an effective method to apply spatial-uniformly digested slurry with irrigation water in the rice paddy field. A numerical model describing the unsteady two-dimensional flow and solution transport of paddy irrigation water was introduced. The accuracy of this model was verified with a field observation. The tendencies of the TN simulated in inlet and outlet portions had good agreement with the measured data and the accuracy of the numerical model could be verified. Using the numerical model, scenario analyses were conducted to determine the method for spatial-uniform application of the digested slurry with irrigation water. The simulated results indicated that drainage of the surface water and trenches at the soil surface were effective for spatial-uniform application of the digested slurry with irrigation water in the rice paddy fields. The effect of the trenches was maximized when the surface water of the rice paddy field was drained adequately.  相似文献   

9.
Water management is an important factor in regulating soil respiration and the net ecosystem exchange of CO2 (NEE) between croplands and atmosphere. However, how water management affects soil respiration and the NEE of paddy fields remains unexplored. Thus, a 2-year field experiment was carried out to study the effects of controlled irrigation (CI) during the rice season on the variation of soil respiration and NEE, with flooding irrigation (FI) as the control. A decrease of irrigation water input by 46.39% did not significantly affect rice yield but significantly increased irrigation water use efficiency by 0.99 kg m?3. The soil respiration rate of CI paddy fields was larger than that of FI paddy fields except during the ripening stage. Natural drying management during the ripening stage resulted in a significant increase of the soil respiration rate of the FI paddy fields. Variations of NEE with different water managements were opposite to soil respiration rates during the whole rice growth stages. Total CO2 emission of CI paddy fields through soil respiration (total R soil) increased by 11.66% compared with FI paddy fields. The increase of total R soil resulted in the significant decrease of total net CO2 absorption of CI paddy fields by 11.57% compared with FI paddy fields (p < 0.05). There were inter-annual differences of soil respiration and the NEE of paddy fields. Frequent alternate wetting and drying processes in the CI paddy fields were the main factors influencing soil respiration and NEE. CI management slightly enhanced the rice dry matter amount but accelerated the consumption and decomposition of soil organic carbon and significantly increased soil respiration, which led to the decrease of net CO2 absorption. CI management and organic carbon input technologies should be combined in applications to achieve sustainable use of water and soil resources in paddy fields.  相似文献   

10.
There are many paddy fields and large amounts of groundwater in the Tedori River Alluvial Fan in Ishikawa Prefecture, Japan. Water infiltration from paddy fields during irrigation may significantly contribute to groundwater recharge. Groundwater recharge is known to be one outcome of paddy farming, and in general is usually related to land use. However, a decreased area of paddy fields because of socioeconomic factors such as urbanization and increasing area of fallow fields has possibly affected the groundwater environment. Evaluation of the quantitative effect of paddy fields on groundwater is necessary for groundwater conservation. This study examined the relationship between differences in the depth of groundwater from just before the irrigation period to just after the first irrigation of paddy fields (increments of groundwater levels) in observation wells and the area of paddy fields around each well. The paddy areas within circular buffer zones, which were delineated at 0.2 km intervals between 0.2 and 2.0 km centered on each observation well, were calculated. A positive relationship was found between the rise in groundwater and the area of paddy field within different buffer zones at most wells. In addition, in the middle or upper part of the fan, the effect of changes in the area of paddy fields surrounding the well on the groundwater level rise was greater than that on the lower part of the fan.  相似文献   

11.
The purpose of the article is to investigate the effects of water-saving irrigation on weed infestation and diversity in paddy fields; a two-year field experiment was conducted in Gaoyou Irrigation District, China. The responses of two irrigation treatments, controlled irrigation (CI) and traditional irrigation (TI), were observed and compared. The irrigation water use, yield, weed density, coverage ratio, height, species richness, density, dominant species, Shannon–Wiener index, and Pielou index were examined to analyze the water productivity, weed infestation, and diversity in paddy fields under the two treatments. The results showed that the water conditions were similar before the late tillering stage, and thereafter the CI fields were alternatively dry and wet with shallow standing water and low soil water content, while the TI fields were mostly continuously flooded by deep standing water and high soil water content. Irrigation water use for CI was 46.8% lower than TI. The CI treatment reduced weed density by 38.0%, decreased coverage ratio by 13.8%, and resulted in a 39.0% increase in weed height. Fewer species were found in CI fields than TI fields. The Shannon–Wiener index decreased by 11.5%, and the Pielou index increased by 3.2%. The changed water regime under CI not only impeded the growth of dominant species but also placed the whole weed community at a relatively stable level with reduced weed density. Meanwhile, aquatic weeds were well controlled; however, semi-aquatic weeds became the dominant species. In general, CI effectively reduced the risk of weed outbreaks, and weed diversity also decreased when it reduced irrigation water use.  相似文献   

12.
River water and groundwater are used to irrigate paddy fields and are also principal sources of drinking water for humans. It is important to understand the transport characteristics of water (e.g., direction and intensity of water flow), when grasping a pollution situation in the soil. Endo and Hara (Soc Inst Contr Eng Trans Ind App 2:88–95, 2003) developed the Quintuple-Probe Heat-Pulse (QPHP) sensor to identify water flux density vectors and thermal properties under saturated and steady state conditions. However, there has not yet been any investigation of moisture transfer under transient conditions such as during internal drainage and mid-summer drainage of paddy fields. Only Sand has been used in previous experiments, and examinations with Loamy and Clayey soils have not yet led to done. Simultaneous measurements of the water flux density vectors and thermal properties of soil texture of three types under drainage conditions as well as the soil moisture transfer analysis with Finite Element Method (FEM), were done. The representative drainage flow was indicated as downward, except in the Sandy-Clayey Loam, in which the rightward flux exceeded the downward flux owing to anisotropy of the soil-pore structure and hydraulic conductivity. The apparent horizontal/vertical advanced distance was introduced in order to know about how water moved through the soil column. The estimated volumetric water content was in good agreement with the measured value. Thus, this measurement method was shown to be valid under transient water flow conditions.  相似文献   

13.
In the large-scale irrigation schemes of the lower Ili River Basin of Kazakhstan, crop rotation combines paddy rice and non-rice crops. Continuous irrigation is practiced in paddy fields, whereas other crops are sustained from groundwater after only limited early irrigation. The water table in non-rice crops is raised by seepage from canals and the flooded paddy fields. We investigated the areal extent to which the groundwater level of non-irrigated fields is influenced by seepage from canals and paddy fields by examining the relationship between distance (from canal and paddy field) and groundwater level in upland fields. The groundwater level was influenced for up to 300 and 400 m from the canals and paddy fields, respectively. Geographic information system analysis of crop and canal patterns in the 11 selected years showed that if the zone of influence is 300 and 400 m from the canals and paddy fields, respectively, the groundwater level of most of the area of upland fields was raised by seepage. We conclude that the water supply to cropping fields by seepage from irrigation canals and paddy fields is adequate, but the spatial distribution of the paddy fields may be an important factor that needs more attention to help improve water use efficiency in this irrigation district.  相似文献   

14.
为了揭示覆膜滴灌对稻田CH_4综合排放的影响,采用比较分析法分析了覆膜滴管条件下稻田甲烷的排放变化。试验采用覆膜滴灌Ⅰ、覆膜滴灌Ⅱ和漫灌3个处理,分别对当地高产主栽品种吉旱1号进行CH_4排放通量的测定。结果表明,覆膜滴灌稻田CH_4排放通量显著高于漫灌稻田;覆膜滴灌处理条件下,土壤含水率高的覆膜滴灌Ⅰ稻田CH_4排放通量高于覆膜滴灌Ⅱ,说明土壤水分是稻田CH_4排放的主要影响因素之一;3个处理下CH_4的排放趋势大体一致,排放高峰均出现在水稻分蘖的前中期和拔节孕穗期,说明覆膜滴灌未改变稻田CH_4排放的进程。  相似文献   

15.

Water management methods regulate water temperature in paddy fields, which affects rice growth and the environment. To understand the effect of irrigation conditions on water temperature in a paddy field, water temperature distribution under 42 different irrigation models including the use of ICT water management, which enables remote and automatic irrigation, was simulated using a physical model of heat balance. The following results were obtained: (1) Irrigation water temperature had a more significant effect on paddy water temperature close to the inlet. As the distance from the inlet increased, the water temperature converged to an equilibrium, which was determined by meteorological conditions and changes in water depth. (2) Increasing the irrigation rate with higher irrigation water amount increased the extent and magnitude of the effects of the irrigation water temperature. (3) When total irrigation water amount was the same, increasing the irrigation rate decreased the time-averaged temperature gradient effect over time across the paddy field. (4) Irrigation during the lowest and highest paddy water temperatures effectively decreased and increased the equilibrium water temperature, respectively. The results indicate that irrigation management can be used to alter and control water temperature in paddy fields, and showed the potential of ICT water management in enhancing the effect of water management in paddy fields. Our results demonstrated that a numerical simulation using a physical model for water temperature distribution is useful for revealing effective water management techniques under various irrigation methods and meteorological conditions.

  相似文献   

16.
To valuate the multifunctionality economically is effective to make it possible to realize the value for the nation and to compare functionalities among countries of the world. In this paper, the external economies of paddy fields and fallow paddy fields including wetlands as N removal function sites, and of upland fields and orchards as pollution sites are valuated by the newly proposed replacement cost method, by replacing them with construction costs of water quality improvement facilities. In addition, we discuss an agricultural land-use scenario in which cultivated land has no net negative economic effect on the water environment. The results showed that (1) paddy fields and fallow paddy fields including wetlands were respectively valued at 1.2×103 and 2.81×103 JPY m−2 on average as the N removal sites, (2) upland fields had 0.32×103 JPY m−2 on average of economic value, and suggested that paddy fields have an external economic value that compensates for the negative external economic value of upland fields 3.65 times their size.  相似文献   

17.
The groundwater recharge function, one example of the multifunctionality of agriculture, is closely related to hydrogeological phenomena and socioeconomic factors such as pumpage and land use. A long-term evaluation of the groundwater recharge function is necessary to understand its role among the multiple functions of agriculture. The Nobi Plain, one of the largest coastal plains in Japan, was selected as the study area because it has experienced typical socioeconomic changes. We conducted a long-term evaluation of the groundwater recharge function based on simple water-balance equations using long-term data on groundwater levels and river flows. Leakage recharge from paddy fields in 1975 was about 2.8×108 m3/year, decreased to 0.6×108 m3/year in 1984, and ceased in 1985. Its monetary value of the function in 1975 was estimated by the replacement cost method, was about $56 million for 20 ha×103 ha of paddy fields. The value per unit area of paddy fields was calculated as $2820/ha and that in Japan was calculated as $400/ha. Paddy fields in suburbs of big cities have a higher value than the average paddy field in Japan. However, this recharge value is no longer produced because no leakage recharge occurs at present owing to socioeconomic changes.  相似文献   

18.
The multi-functionality of paddy farming in Korea   总被引:3,自引:3,他引:0  
The multi-functionality of paddy field and irrigation water has become a hot issue recently in Asian monsoon regions. Asian people know why they have to conserve the paddy farm where the sustainable functions have been historically inherited and maintain the rural community where the unique cultures have been traditionally created. But, the real value of multi-functionality has not been clearly highlighted as much worthy as it has. We should evaluate the characteristics of multi-functionality of paddy farming correctly and transmit them to the people of Western countries under quite different conditions of upland fields. In Korea, several studies on the multi-functionality of paddy farming have been performed with positive and negative viewpoints. This paper shows the results and the discussion of the researches to get global recognition on the multi-functionality of paddy farming.
Tai-Cheol KimEmail:
  相似文献   

19.
《Plant Production Science》2013,16(3):226-237
Abstract

Growth, yield and quality of sunflower (Helianthus annuus L.) in a rotational paddy field were compared with those in an upland field. In the rotational paddy field the growth was significantly suppressed and the seed and oil yields were significantly lower than those in the upland field. In the maturing period, oil accumulated in seeds until about 25 d after flowering (DAF) in both fields, but less in the rotational paddy field than in the upland field. Differences in oil contents (per seed) between the fields were seen from about 25 DAF onward. The fatty acid in seeds changed with maturing of plants. In mid-oleic hybrids, oleic acid increased remarkably until about 25 DAF and then decreased slightly; linoleic acid content decreased until about 14 DAF and then tended to increase. In linoleic acid hybrids, oleic acid increased until about 14 DAF and then decreased; the linoleic acid content tended to be low until about 14 DAF and then increased. Although the temporal patterns of fatty acid compositions during seed maturation were similar in both fields, the oleic acid content tended to be lower in the rotational paddy field even under the same climatic conditions and ripening periods. The differences between the fields were seen clearly from around 25 DAF. We discuss our findings with regard to physiological changes in developing seeds and the effects of high or changeable soil moisture content on sunflower growth and quality.  相似文献   

20.
In Taiwan, Camellia seed meal is often sprayed on rice paddies during rice transplantation season to stop the growth of Pomacea canaliculata. However, the application of camellia seed meal endangers muciferous mollusks and fishes in paddy fields. Though researchers have examined the effects of the saponin in the camellia seed meal on Pomacea canaliculata, previous studies ignore the effects of saponin on fish. Loaches often inhabit the rivers, lakes, ponds, paddy fields, and canals of low elevation where there have muddy layer with plant chips. This study uses vanillin-sulfuric acid method and field tests on loaches in paddy fields to determine the duration of camellia seed meal’s effect on loaches (Misgurnue Angullicaudatus). Results indicated that the best application to stop the growth of Pomacea canaliculata is to seal the rice field immediately after transplantation, apply the camellia seed meal, and then irrigate the field 2?days after camellia seed meal application for the summer transplantation, and 3?days for the spring transplantation. Water should not be drained from the paddy field after the application of camellia seed meal to reduce the chance of endangering loaches in irrigation canals. Field Tests show that high water temperature during summer also has a negative effect on loaches in paddy fields and irrigation canals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号