首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
以SSR标记对普通菜豆抗炭疽病基因定位   总被引:7,自引:1,他引:6  
由菜豆炭疽菌引起的菜豆炭疽病是危害我国菜豆生产的主要病害之一, 鉴定和发掘新的抗病基因对于菜豆抗病育种具有十分重要的意义。以来自安第斯基因库的我国菜豆抗炭疽病地方品种红花芸豆与感病地方品种京豆杂交的F2群体为试验材料, 通过人工接种菜豆炭疽菌81号小种进行抗病性鉴定, 发现该分离群体中抗病植株数与感病植株数符合3∶1的分离比例, 确定红花芸豆对菜豆炭疽菌81号小种的抗性由显性单基因控制, 将此基因命名为Co-F2533。用分离群体分组分析法(BSA)和微卫星多态性分析(SSR)技术对红花芸豆中的抗炭疽病基因进行分子标记鉴定, 用Mapmaker3.0计算标记与目的基因间的遗传距离, 发现B6连锁群上的4个SSR标记BM170、Clon1429、BMD37、Clon410与抗炭疽病基因Co-F2533连锁, 遗传距离分别为6.6、18.4、20.9和30.9 cM, 这些SSR标记与Co-F2533基因在B6连锁群上的排列顺序为Clon1429-Co-F2533- BM170-BMD37-Clon410。根据基因所在连锁群的位置、抗病基因的基因库来源可知Co-F2533是一个新的来源于安第斯基因库的抗炭疽病基因。  相似文献   

2.
由菜豆炭疽菌引起的菜豆炭疽病是危害我国菜豆生产的主要病害之一, 鉴定和发掘新的抗病基因对于菜豆抗病育种具有十分重要的意义。以来自安第斯基因库的我国菜豆抗炭疽病地方品种红花芸豆与感病地方品种京豆杂交的F2群体为试验材料, 通过人工接种菜豆炭疽菌81号小种进行抗病性鉴定, 发现该分离群体中抗病植株数与感病植株数符合3∶1的分离比例, 确定红花芸豆对菜豆炭疽菌81号小种的抗性由显性单基因控制, 将此基因命名为Co-F2533。用分离群体分组分析法(BSA)和微卫星多态性分析(SSR)技术对红花芸豆中的抗炭疽病基因进行分子标记鉴定, 用Mapmaker3.0计算标记与目的基因间的遗传距离, 发现B6连锁群上的4个SSR标记BM170、Clon1429、BMD37、Clon410与抗炭疽病基因Co-F2533连锁, 遗传距离分别为6.6、18.4、20.9和30.9 cM, 这些SSR标记与Co-F2533基因在B6连锁群上的排列顺序为Clon1429-Co-F2533- BM170-BMD37-Clon410。根据基因所在连锁群的位置、抗病基因的基因库来源可知Co-F2533是一个新的来源于安第斯基因库的抗炭疽病基因。  相似文献   

3.
导读     
<正>郝俊杰等"利用分子标记选择普通菜豆抗角斑病基因聚合体",对来自国内外的常见菜豆品种和资源进行了抗角斑病基因聚合体的选择,明确了7 8份参试菜豆资源所含的抗角斑病基因类型,筛选出一批含有抗角斑病的多基因聚合体菜豆资源,筛选  相似文献   

4.
分子标记具种属间通用性可提高其利用效率,并降低标记开发成本。本研究基于Roche 454超高通量测序技术获得普通菜豆基因组测序结果,共开发了560个普通菜豆基因组SSR标记。利用2份普通菜豆品种对标记进行初步筛选,有421个标记能够有效扩增。用新开发的标记分析16份豇豆和16份小豆的通用性。结果显示,185个普通菜豆基因组SSR标记在豇豆中能有效扩增,通用性比率为43.9%;161个SSR标记在小豆中能有效扩增,通用性比率为38.2%;在豇豆和小豆中都能获得有效扩增条带的标记共138个;并且普通菜豆基因序列SSR标记在豇豆和小豆中的通用性比率高于基因间序列SSR标记。通用性标记的多态性分析表明,豇豆和小豆的多态性比率分别为34.0%和24.8%;且豇豆和小豆中基因间标记的多态性都比基因内标记的多态性高。上述通用性标记为豇豆属作物的多样性评价、连锁图谱的构建及基因定位等方面的研究提供了便利。  相似文献   

5.
利用来自于普通菜豆11个SCAR标记对54份来源于贵州省11个县的普通菜豆资源的Ur-3、Ur-4、Ur-5、Ur-6、Ur-7、Ur-11、Ur-13和Ouro Negro等8个抗锈病基因以及SAU5、SS18、SF6Em3等3个抗白粉病基因进行了分子标记鉴定。结果表明:参试材料一般携带其中1~11个抗性基因,品种间差异较大;各基因频率存在较大差异(频率0~100%),抗锈病基因Ur-5 (88.59%)、Ur-7 (72.22%)、Ur-11 (75.93%)和抗白粉病基因SF6Em3 (64.81%)、S18 (100.00%)在参试材料中携带频率高,为优势基因。Ur-5、Ur-7、Ur-11和S18的在贵州不同地区分布较为均衡,而其余基因具有较为明显的区域特性。在54份材料中,11个测试基因标记组合形成了46种基因型,多样性较丰富。本研究明确了54份参试菜豆资源所含的抗锈病及抗白粉病基因型,分析了不同抗病基因在贵州各地的分布规律,筛选出了抗锈病及抗白粉病基因聚合体的菜豆资源,为贵州菜豆资源在育种中的应用奠定了基础。  相似文献   

6.
明确菜豆杭角斑病基因在中国普通菜豆中的分布,有助于改良普通菜豆杭病性和提高产量潜力。利用普通菜豆杭角斑病基因H13,N02,E-ACA,AA19,BA16及M02的特异PCR标记,对78份普通菜豆资源进行杭角斑病基因聚合体的选择,从中选择到含2个杭角斑病基因聚合体的菜豆资源10份,含3个杭角斑病基因聚合体的菜豆资源30份,含4个杭角斑病基因聚合体的菜豆资源34份,含5个杭角斑病基因聚合体的菜豆资源3份。该研究明确了78份参试菜豆资源所含的杭角斑病基因类型,筛选出了杭角斑病基因聚合体的菜豆资源。  相似文献   

7.
为了定位中国普通菜豆的抗炭疽病基因, 选取抗炭疽病地方品种红芸豆(国家库编号F2322)与高感菜豆品种京豆(国家库编号F0777)配制杂交组合, 构建F2抗感分离群体和F2:3家系, 用菜豆炭疽菌81号生理小种鉴定抗病性并分析遗传性。结果表明, 红芸豆对菜豆炭疽菌81号小种的抗性是由一显性单基因控制的, 暂将该基因命名为Co-F2322。用分离群体分组分析法(BSA)和SSR、CAPs分子标记技术, 将该基因定位在B1连锁群上, 利用软件Mapmaker 3.0和Mapchart 3.0计算标记与目的基因间的遗传距离, 检测到3个SSR标记BMc32、C871、Pvm98和2个CAPs标记g1224、g683与抗炭疽病基因连锁, 遗传距离分别为26.06、3.58、13.56、3.81和12.75 cM。  相似文献   

8.
一个水稻落粒性基因SH1的SSR标记定位   总被引:2,自引:0,他引:2  
以籼稻品种93-11为轮回亲本,与粳稻品种日本晴杂交并回交的高世代分离群体为研究材料,选用104个多态性的SSR标记对水稻的落粒性基因进行定位。结果表明,在BC4F2群体中,6个标记的基因型来自于日本晴;在BC4F3定位群体中,难落粒植株数与易落粒植株数的分离比例为3:1,落粒性受1对显性基因控制,命名为SH1;分子标记与落粒性共分离分析将SH1定位在SSR标记RM5389和RM1068、RM1387之间,与3个标记的遗传距离分别为0.7cM、5.5cM和13.1cM,此结果为该基因的分子标记辅助选择奠定了基础。  相似文献   

9.
利用我国流行的小麦条锈菌生理小种CY28、CY29、CY30、CY31、CY32和水源11致病型4对102份硬粒小麦-粗山羊草人工合成小麦材料进行抗病鉴定,其中CI108(组合为GAN/Aegilops squarrosa 201)对上述6个流行生理小种均表现免疫。利用CY31对杂交组合CI108/铭贤169正交、反交的F1材料以及F2代群体进行抗病鉴定,结果表明其抗性受细胞核显性单基因控制。基因推导表明,CI108对30个条锈菌生理小种均表现抗性,其抗谱与23份已知抗条锈病基因品种(系)不同,与K733(含有Yr24)和洛夫林13(含Yr9+未知基因)相似,但CI108与洛夫林13、K733对多个条锈菌生理小种的抗性程度不同,洛夫林13、K733与CI108系谱不同,且缺乏CI108特异的SSR标记Xgwm456的抗病特异带。所以,CI108中抗条锈基因应该是不同于其他基因的抗条锈病新基因,暂命名为YrC108。进一步利用CI108/铭贤169的F2群体、抗感分离分析池(BSA)筛选YrC108的SSR分子标记,找到了3个紧密连锁的标记,其中Xgwm456和Wmc419位于YrC108的一侧,与YrC108间遗传距离分别为0.6 cM和1.8 cM,Wmc413位于YrC108的另一侧,遗传距离为0.6 cM。本研究为小麦抗条锈病育种提供了高抗、广谱的新抗源和进行高效检测的分子标记。  相似文献   

10.
采用喷雾接种法对139份籽用菜豆种质资源进行了炭疽病(Colletotrichum lindemuthianum)抗病性的鉴定,提出了新的病情分级标准和抗性评价标准,依此鉴定出12份中抗种质材料,其中G0220、G0451抗性较好。  相似文献   

11.
Common bean (Phaseolus vulgaris L.) is one of the most important legume crops for human consumption. However, its grain yield can be reduced by up to 90% by the seedborne disease, anthracnose. Fungicide treatment is costly and time‐consuming. The introduction of host plant resistance against this disease appears, therefore, to be crucial for enhancing the productivity of this crop in Kyrgyzstan. The use of DNA‐based markers in backcrossing programmes may help speed up the breeding for resistance. In this study, we used a combination of inoculation tests and a DNA marker (SCAreoli marker) to track the transfer of host‐plant resistance (Co‐2 gene) from two donor cultivars, ‘Vaillant’ and ‘Flagrano’, to susceptible Kyrgyz cultivars ‘Ryabaya’, ‘Kytayanka’ and ‘Lopatka’, which are widely grown in the country. The segregating offspring were evaluated to test the reliability of the SCAreoli marker as selection aid for host‐plant resistance to anthracnose. Our study showed that a co‐dominant DNA marker can successfully be used in backcross breeding to distinguish segregating material in different market classes of common bean.  相似文献   

12.
In this study, we characterized the genetic resistance of the Andean bean cultivars Kaboon and Perry Marrow and their relation to other sources of anthracnose resistance in common bean. Based on the segregation ratio (3R:1S) observed in two F2 populations we demonstrated that Kaboon carries one major dominant gene conferring resistance to races 7 and 73 of Colletotrichum lindemuthianum. This gene in Kaboon is independent from the Co-2 gene and is an allele of the Co-1 gene present in Michigan Dark Red Kidney (MDRK) cultivar. Therefore, we propose the symbol CO-1 2 for the major dominant gene in Kaboon. The Co-1 is the only gene of Andean origin among the Co anthracnose resistance genes characterized in common bean. When inoculated with the less virulent Andean race 5, the segregation ratio in the F2 progeny of Cardinal and Kaboon was 57R:7S (p = 0.38). These data indicate that Kaboon must possess other weaker dominant resistance genes with a complementary mode of action, since Cardinal is not known to possess genes for anthracnose resistance. Perry Marrow, a second Andean cultivar with resistance to a different group of races, was shown to possess another resistant allele at the Co-1 locus and the gene symbol Co-1 3 was assigned. In R × R crosses between Perry Marrow and MDRK or Kaboon, no susceptible F2 plants were found when inoculated with race 73. These findings support the presence of a multiple allelic series at the Andean Co-1 locus, and have major implications in breeding for durable anthracnose resistance in common bean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Evaluation of 397 common bean accessions of diverse origin revealed the presence of effective sources of resistance against bean common mosaic potyvirus strains prevalent in Himachal Pradesh, a north-western Himalayan state of India. 21 accessions viz., KR 7, KR 225, KR 295, KRC 4, KRC 7, KRC 11, KRC 12, KRC 13, KRC 16, KRC 22, Amanda, Black Turtle Soup, Contender, Hans, Great Northern UI 123, Improved Tender Green 40031, Jubila, Kentucky wonder, Monroe, Premier and Sanilac, were found resistant to NL-1n and NL-7n strains. Some of the genotypes showed strain specific resistance. Pattern of inheritance studied in Hans, Contender, KRC 4 and KRC 22 of Indian origin against strain NL-1n revealed that single dominant gene governed the resistance in Hans and Contender whereas single recessive gene determined the resistance in KRC 22 and KRC 4. SCAR marker SW13690 amplified a product of 690 bp in Hans and Contender, confirmed the presence of I gene in these cultivars. The implications of above genes in breeding for programme for BCMV resistance are discussed.  相似文献   

14.
Tlalnepantla 64 (PI 207262) is an important source of genes for resistance to common bean anthracnose, caused by Colletotrichum lindemuthianum. However, these genes have not been fully characterized. Inheritance studies using crosses involving PI 207262 show that two independent genes confer resistance to anthracnose. Allelism tests showed that the genes are located at distinct loci from the previously identified resistance genes Co-1, Co-2, Co-3, Co-5, Co-6, and Co-10. Also, no segregation was observed in relation to Co-4, Co-4 2, Co-9, and to the gene present in cultivar Widusa, indicating that PI 207262 harbors alleles of these genes. We conclude that PI 207262 harbors two anthracnose resistance genes, Co-4 and Co-9. The Co-4 allele of PI 207262 would be different from Co-4 and Co-4 2 and it is proposed Co-4 3 as the genetic symbol for this resistance allele. As PI 207262 is the parent of BAT 93, the Co-9 symbol represents the gene of both cultivars. Also, one allele of Co-9 gene was detected in cultivar Widusa.  相似文献   

15.
豌豆抗白粉病资源筛选及分子鉴定   总被引:1,自引:0,他引:1  
由豌豆白粉菌引起的白粉病是豌豆生产上的重要病害,利用抗病品种是防治该病害最经济有效的方法。本研究在控制条件下苗期接种鉴定了396份豌豆资源对2个不同地理来源的豌豆白粉病菌分离物EPBJ和EPYN的抗性,用4个与豌豆抗白粉病基因er1连锁的SCAR标记对66份免疫或抗病资源进行标记基因型鉴定。结果表明,在鉴定的396份资源中,有101份资源表现免疫或抗病,其中对分离物EPBJ和EPYN免疫的资源分别为59份(14.9%)和60份(15.2%),对2个分离物均免疫的资源有54份(13.6%);在鉴定的82份中国资源中,有8份对2个分离物均表现免疫。分子标记将66份免疫或抗病资源鉴定为13个标记基因型,同一地理来源的抗性资源分属不同的标记基因型,其中8份来自中国云南的抗性资源分属7个标记基因型。研究表明,中国存在有效的豌豆白粉病抗源,抗性资源具有丰富的遗传多样性。  相似文献   

16.
Portugal has a diverse common bean germplasm, which is still grown in farmers' fields. In this work, we searched for resistance to rust (Uromyces appendiculatus) and powdery mildew (Erysiphe diffusa) in a representative collection of the Portuguese common bean germplasm. Despite many accessions depicting intermediate levels of resistance when compared to the susceptible check, 24 and 13 accessions showed low levels of infection, in spite of a compatible interaction (disease severity (DS) values lower than 5% and infection type (IT) of 4), to rust and powdery mildew, respectively, indicative of partial resistance. Moreover, a resistant reaction was observed in 11 accessions when inoculated with powdery mildew (IT = 0–1) and in additional 11 accessions (one in common) when inoculated with rust (IT = 0–2). The levels of resistance found in this report anticipate great potential of the Portuguese national germplasm, recently reported as genetically closer to the Andean common bean gene pool, for disease resistance breeding of this important crop.  相似文献   

17.
Anthracnose, one of the destructive foliar diseases of sorghum growing in warm humid regions, is incited by the fungus Colletotrichum graminicola.The inheritance of anthracnose resistance was studied using the parental cultivars of Sorghum bicolor (L.) Moench, HC 136 (susceptible to anthracnose) and G 73 (anthracnose resistant). The F1 and F2 plants were inoculated with the local isolates of C. graminicola cultures. The F2 plants showed a segregation ratio of 3 (susceptible): 1(resistant) indicating that the locus for resistance to anthracnose in sorghum accession G 73 segregates as a recessive trait in a cross to susceptible cultivar HC 136. RAPD (random amplified polymorphic DNA) marker OPJ 011437 was identified as marker closely linked to anthracnose resistance gene in sorghum by bulked segregant analysis of HC 136 × G73 derived recombinant inbred lines (RILs) of sorghum. A total of 84 random decamer primers were used to screen polymorphism among the parental genotypes. Among these, only 24 primers were polymorphic. On bulked segregant analysis, primer OPJ 01 amplified a 1437 bp fragment only in resistant parent G 73 and resistant bulk. The marker OPJ 011437 was cloned and sequenced. The sequence of RAPD marker OPJ 011437 was used to generate specific markers called sequence characterized amplified regions (SCARs). A pair of SCAR markers SCJ 01-1 and SCJ 01-2 was developed using Mac Vector program. SCAR amplification of resistant and susceptible parents along with their respective bulks and RILs confirmed that SCAR marker SCJ 01 is at the same loci as that of RAPD marker OPJ 011437 and hence, is linked to anthracnose resistance gene. Resistant parent G 73 and resistant bulk amplified single specific band on PCR amplification using SCAR primer pairs. The RAPD marker OPJ 011437 was mapped at a distance of 3.26 cM apart from the locus governing anthracnose resistance on the sorghum genetic map by the segregation analysis of the RILs. Using BLAST program, it was found that the marker showed 100 per cent alignment with the contig{_}3966 located on the longer arm of chromosome 8 of sorghum genome. Therefore, these identified RAPD and SCAR markers can be used in the resistance-breeding program of sorghum anthracnose by marker-assisted selection.An erratum to this article can be found at  相似文献   

18.
Snap bean (Phaseolus vulgaris L.) cultivar, Widusa, was crossed to Michigan Dark Red Kidney (MDRK), Michelite, BAT 93, Mexico 222, Cornell 49–242, and TO cultivars to study the inheritance of resistance to anthracnose in Widusa. The segregation patterns observed in six F2 populations supported an expected 3R:1S ratio suggesting that Widusa carries a single dominant gene conditioning resistance to races 7, 65, 73, and 453 of Colletotrichum lindemuthianum, the causal organism of bean anthracnose. Allelism tests conducted with F2 populations derived from crosses between Widusa and Cornell 49–242 (Co-2), Mexico 222 (Co-3), TO (Co-4), TU (Co-5), AB 136 (Co-6), BAT 93 (Co-9), and Ouro Negro (Co-10), inoculated with races 7, 9, 65 and 73, showed a segregation ratio of 15R:1S. These results suggest that the anthracnose resistance gene in Widusa is independent from the Co-2, Co-3, Co-4,Co-5, Co-6, Co-9, and Co-10 genes. A lack of segregation was observed among 200 F2 individuals from the cross Widusa/MDRK, and among 138 F2 individuals from the cross Widusa/Kaboon inoculated with race 65, suggesting that Widusa carries an allele at the Co-1 locus. We propose that the anthracnose resistance allele in Widusa be named Co-1 5 as Widusa exhibits a unique reaction to race 89 compared to other alleles at the Co-1 locus. RAPD marker A181500 co-segregated in repulsion-phase linkage with the Co-1 5 gene at a distance of 1.2 cM and will provide bean breeders with a ready tool to enhance the use of the Co-1 5 gene in future bean cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号