首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetics, metabolism, excretion and tissue residues of phenylbutazone (PBZ) in the horse were studied following both intravenous and oral administration of the drug at a dose rate of 4.4 mg/kg. A 72-hour blood sampling schedule failed to demonstrate a third exponential phase; the plasma disposition following intravenous injection being described by a two compartment open model, with the following elimination phase parameters: beta = 0.13h-1, t1/2 beta = 5.46h, Vdarea = 0.141 1/kg and C1B = 17.9 ml/kg/h. The hydroxylated metabolites oxyphenbutazone (OPBZ) and gamma-hydroxyphenylbutazone (OHPBZ) were present in detectable concentrations in plasma for 72 and 24 h, respectively. After 36 h OPBZ concentrations exceeded plasma PBZ concentrations. In urine the principal metabolites were OPBZ and OHPBZ but smaller concentrations of another compound, probably gamma-hydroxyoxyphenbutazone (OHOPBZ), were also detected. The percentages of the administered dose recovered from urine were 30.7, 39.0 and 40.3 after 24, 48 and 72 h from the time of injection. Recovery of PBZ and its metabolites from urine was significantly reduced in the first 24 h after oral dosing when the horses had free access to hay, probably as a result of markedly delayed absorption, but this did not occur in animals deprived of food for a few hours before and after dosing. Determination of approximate values of urine/plasma (U/P) concentration ratios for PBZ and its metabolites relative to endogenous creatinine U/P concentration ratio suggested that PBZ was filtered in small amounts only because of the high degree of plasma protein binding and then excreted by diffusion trapping in the alkaline urine. Much higher U/P ratios were obtained for the hydroxylated derivatives, and one at least (OHPBZ) was secreted into urine.  相似文献   

2.
Landuyt, J., Delbeke, F.T. & Debackere, M. The intramuscular bioavailability of a phenylbutazone preparation in the horse.J vet. Pharmacol. Therap. 16, 494– 500.
The plasma concentrations of phenylbutazone (PBZ) and its major metabolites, oxyphenbutazone (OPBZ) and γ-OH-phenylbutazone (OHPBZ) were determined for up to 72 h in six horses, following intravenous (i.v.) and intramuscular (i.m.) administration of 4 g phenylbutazone, 20 ml Phenylarthrite® Ventoquinol (Vetoquinol Specialites Pharmaceutiques Veterinaires, Magny-Vernois, 70200 Lure, France). After i.v. dosing the plasma disposition was best described by a two-compartment open model. The hydroxylated metabolites OPBZ and OHPBZ were present in detectable concentrations for 72 h and 48 h, respectively. After 36 h the OPBZ concentrations exceeded plasma PBZ concentrations. The plasma disposition following i.m. injection could be described by a one-compartment open model. The hydroxylated metabolites OPBZ and OHPBZ were present in detectable concentrations for 72 h and 36 h, respectively. Only after 72 h was the concentration of OPBZ in plasma higher than the concentration of PBZ. The mean i.m. bioavailability of phenylbutazone was calculated to be 91.7 ± 10.1%.  相似文献   

3.
The effect of inflammation on the disposition of phenylbutazone (PBZ) was investigated in Thoroughbred horses. An initial study ( n = 5) in which PBZ (8.8 mg/kg) was injected intravenously twice, 5 weeks apart, suggested that the administration of PBZ would not affect the plasma kinetics of a subsequent dose. Two other groups of horses were given PBZ at either 8.8 mg/kg ( n = 5) or 4.4 mg/kg ( n = 4). Soft tissue inflammation was then induced by the injection of Freud's adjuvant and the administration of PBZ was repeated at a dose level equivalent to, but five weeks later than, the initial dose. Inflammation did not appear to affect the plasma kinetics or the urinary excretion of PBZ and its metabolites, oxyphenbutazone (OPBZ) or hydroxyphenylbutazone (OHPBZ) when PBZ was administered at 8.8 mg/kg. However, small but significant increases ( P <0.05) in total body clearance ( CL B; 29.2 ± 3.9 vs. 43.8 ± 8.1 mL/ h-kg) and the volume of distribution, calculated by area ( V d(area); 0.18 ± 0.05 vs. 0.25 ± 0.03 L/kg) or at steady-state ( V d(SS); 0.17±0.04 vs. 0.25 ± 0.03 L/ kg), were obtained in horses after adjuvant injection, compared to controls, when PBZ was administered at 4.4 mg/kg which corresponded to relatively higher tissues concentrations and lower plasma concentrations (calculated) at the time of maximum peripheral PBZ concentration. Soft tissue inflammation also induced a significantly ( P <0.05) higher amount of OPBZ in the urine 18 h after PBZ administration but the total urinary excretion of analytes over 48 h was unchanged. These results have possible implications regarding the administration of PBZ to the horse close to race-day.  相似文献   

4.
A disposition and bioequivalence study with a suxibuzone granulated and a suxibuzone paste oral formulation was performed in horses. Suxibuzone (SBZ) is a nonsteroidal anti-inflammatory drug, which was administered to horses (n = 6) at a dosage of 19 mg/kg bwt by the oral route (p.o.) in a two period cross-over design. Suxibuzone is very rapidly transformed into its main active metabolites, phenylbutazone (PBZ) and oxyphenbutazone (OPBZ). Therefore plasma and synovial fluid concentrations of SBZ, PBZ and OPBZ were simultaneously measured by a sensitive and specific high-performance liquid chromatographic method. The pharmacokinetic parameters were determined by noncompartmental analysis. Suxibuzone could not be detected in any plasma and synovial fluid samples (< 0.04 microgram/mL). Plasma PBZ and OPBZ concentrations were detected between 30 min and 72 h after granulate and paste administration. Mean plasma concentration of PBZ peaked at 5 h (34.5 +/- 6.7 micrograms/mL) and at 7 h (38.8 +/- 8.4 micrograms/mL), and mean area under the concentration-time curve (AUC0-->LOQ) was 608.0 +/- 162.2 micrograms.h/mL and 656.6 +/- 149.7 micrograms.h/mL after granulate and paste administration, respectively. Mean plasma concentration of OPBZ increased to 5-6.7 micrograms/mL, with the maximum concentration (Cmax) appearing between 9 and 12 h after administration of both formulations. The AUCs0-->LOQ for OPBZ were also similar (141.8 +/- 48.3 micrograms.h/mL granulate vs. 171.4 +/- 45.0 micrograms.h/mL paste). It was concluded that the suxibuzone products were bioequivalent with respect to PBZ. For OPBZ, the 95% confidence intervals of the pharmacokinetic parameters were within the acceptable range of 80-125%. The paste formulation provided greater bioavailability of PBZ and OPBZ.  相似文献   

5.
Suxibuzone (SBZ), a nonsteroidal anti-inflammatory drug, was administered to 6 horses at a dose rate of 7.5 mg/kg bwt by intravenous (i.v.) route. Plasma and synovial fluid concentrations of suxibuzone and its main active metabolites, phenylbutazone (PBZ) and oxyphenbutazone (OPBZ), were measured simultaneously by a sensitive and specific high-performance liquid chromatographic method. The pharmacokinetic parameters were determined by noncompartmental analysis. Plasma SBZ concentrations rapidly decreased and were not detectable beyond 20 min after treatment. The parent drug was not detected in any synovial fluid samples. Average maximum plasma concentrations of PBZ (16.43 microg/ml) and OPBZ (2.37 microg/ml) were attained at 0.76 and 7.17 h, respectively. The mean residence time (MRT) of PBZ was 6.96 h in plasma. Oxyphenbutazone plasma concentrations were below those reached by phenylbutazone during the first 12 h after suxibuzone administration, even though its values were detectable for at least 24 h (MRT = 10.65 h). Plasma concentrations of PBZ and OPBZ exceeding EC50 and IC50 of TXB2 and PGE2 were reached by at least 12 h. Synovial fluid concentrations of PBZ and OPBZ were 2.87+/-0.37 microg/ml and 0.97+/-0.08 microg/ml at 9 h after suxibuzone administration and exceeded IC50 of PGE2 for at least this time. In the present study, suxibuzone was well tolerated following i.v. injection.  相似文献   

6.
A high performance liquid chromatographic method is described to determine the anti-inflammatory drug suxibuzone (SXB) and its major metabolites phenylbutazone (PBZ) and oxyphenbutazone (OPBZ) in equine plasma and urine. When suxibuzone (6 mg/kg) was administered intravenously (i.v.) or orally (p.o.) no parent drug was detected in plasma or in urine. The disposition of the metabolite PBZ (i.v.) could be described by a 2 compartment model with a P half-life varying from 7.40 to 8.35 h. Due to severe side effects the use of i.v. suxibuzone should not be encouraged in the horse. PBZ and OPBZ were detected in plasma and urine after p.o. SXB administration. Peak plasma PBZ concentrations (8.8 ± 3.0 μg/ml) occurred 6 h after oral dosing and the terminal exponential constant was 0.11 ± 0.01 h-1. Phenylbutazone and oxyphenbutazone were detectable in urine (> 1 μg/ml) for at least 36 h, after p.o. administration.
SXB was not hydrolyzed in vitro by horse plasma. Equine liver homogenates however appeared to have a very high capacity for hydrolysing SXB, indicating that first-pass effect could be responsible for the rapid disappearance of this NSAID in the horse.  相似文献   

7.
The plasma and serum concentrations of phenylbutazone (PBZ) and oxyphenbutazone were measured in 158 Thoroughbred horses after various doses of PBZ wer given. All horses were competing or training at racetracks in various parts of the country. All horses used in the study had not been given PBZ 24 hours before they were placed on a specific dosage schedule. Samples were collected 24 hours after the last PBZ administration. Four grams of PBZ were given daily by stomach tube, paste, or tablet for 3 days. On day 4, 24 hours before sample collection, an IV dose of 2 g of PBZ was given, regardless of the dose and method of administration. The 24-hour PBZ plasma concentrations were 3.51, 6.13, and 6.40 micrograms/ml, respectively. After 2 g of PBZ was administered IV daily for 4 days, the plasma PBZ concentration was 4.16 g/ml; after a single 2-g IV administration, the serum concentration was 0.87 g/ml. Concentrations of oxyphenbutazone were 3.35 (stomach tube), 4.29 (paste), 3.60 (tablet), 3.65 (4-day IV), and 1.11 g/ml (single IV). A significant relationship was not found between the serum and the urinary concentrations at this 24-hour measurement. Split samples sent to various laboratories confirmed the stability of high-performance liquid chromatography as a method of analysis.  相似文献   

8.
Phenylbutazone (PBZ) was administered to six calves intravenously (i.v.) and orally at a dose rate of 4.4 mg/kg in a three-period cross-over study incorporating a placebo treatment to establish its pharmacokinetic and pharmacodynamic properties. Extravascular distribution was determined by measuring penetration into tissue chamber fluid in the absence of stimulation (transudate) and after stimulation of chamber tissue with the mild irritant carrageenan (exudate). PBZ pharmacokinetics after i.v. dosage was characterized by slow clearance (1.29 mL/kg/h), long-terminal half-life (53.4 h), low distribution volume (0.09 L/kg) and low concentrations in plasma of the metabolite oxyphenbutazone (OPBZ), confirming previously published data for adult cattle. After oral dosage bioavailability (F) was 66%. Passage into exudate was slow and limited, and penetration into transudate was even slower and more limited; area under curve values for plasma, exudate and transudate after i.v. dosage were 3604, 1117 and 766 microg h/mL and corresponding values after oral dosage were 2435, 647 and 486 microg h/mL. These concentrations were approximately 15-20 (plasma) and nine (exudate) times greater than those previously reported in horses (receiving the same dose rate of PBZ). In the horse, the lower concentrations had produced marked inhibition of eicosanoid synthesis and suppressed the inflammatory response. The higher concentrations in calves were insufficient to inhibit significantly exudate prostaglandin E2 (PGE2), leukotriene B4 (LTB4) and beta-glucuronidase concentrations and exudate leucocyte numbers, serum thromboxane B2 (TxB2), and bradykinin-induced skin swelling. These differences from the horse might be the result of: (a) the presence in equine biological fluids of higher concentrations than in calves of the active PBZ metabolite, OPBZ; (b) a greater degree of binding of PBZ to plasma protein in calves; (c) species differences in the sensitivity to PBZ of the cyclo-oxygenase (COX) isoenzymes, COX-1 and COX-2 or; (d) a combination of these factors. To achieve clinical efficacy with single doses of PBZ in calves, higher dosages than 4.4 mg/kg will be probably required.  相似文献   

9.
Flunixin meglumine (FM, 1.1 mg/kg) and phenylbutazone (PBZ, 4.4 mg/kg) were administered intravenously (i.v.) as a single dose to eight sheep prepared with subcutaneous (s.c.) tissue-cages in which an acute inflammatory reaction was stimulated with carrageenan. Pharmacokinetics of FM, PBZ and its active metabolite oxyphenbutazone (OPBZ) in plasma, exudate and transudate were investigated. Plasma kinetics showed that FM had an elimination half-life (t½β) of 2.48 ± 0.12 h and an area under the concentration – time curve (AUC) of 30.61 ± 3.41 μg/mL.h. Elimination of PBZ from plasma was slow (t½β = 17.92 ± 1.74 h, AUC = 968.04 ± μg/mL.h.). Both FM and PBZ distributed well into exudate and transudate although penetration was slow, indicated by maximal drug concentration (Cmax) for FM of 1.82 ± 0.22 μg/mL at 5.50 ± 0.73 h (exudate) and 1.58 ± 0.30 μg/mL at 8.00 h (transudate), and Cmax for PBZ of 22.32 ± 1.29 μg/mL at 9.50 ± 0.73 h (exudate) and 22.07 ± 1.57 μg/mL at 11.50 ± 1.92 h (transudate), and a high mean tissue-cage fluids:plasma AUClast ratio obtained in the FM and PBZ groups (80–98%). These values are higher than previous reports in horses and calves using the same or higher dose rates. Elimination of FM and PBZ from exudate and transudate was slower than from plasma. Consequently the drug concentrations in plasma were initially higher and subsequently lower than in exudate and transudate.  相似文献   

10.
Six mature Holstein bulls were given an 8-day course of phenylbutazone (PBZ) orally (loading dose, 12 mg of PBZ/kg of body weight and 7 maintenance doses of 6 mg of PBZ/kg, q 24 h). Plasma concentration-vs-time data were analyzed, using nonlinear regression modeling. The harmonic mean +/- pseudo-SD of the biologic half-life of PBZ was 61.8 +/- 12.8 hours. The arithmetic mean +/- SEM of the total body clearance and apparent volume of distribution were 0.0021 +/- 0.0001 L/h/kg and 0.201 +/- 0.009 L/kg, respectively. The predicted mean minimal plasma concentration of PBZ with this dosage regimen was 75.06 +/- 4.05 micrograms/ml. The predicted minimal plasma drug concentration was compared with the observed minimal plasma drug concentration in another group of bulls treated with PBZ for at least 60 days. Sixteen mature Holstein bulls were given approximately 6 mg of PBZ/kg, PO, daily for various musculoskeletal disorders. The mean observed minimal plasma concentration of PBZ in the 16 bulls was 76.10 +/- 2.04 micrograms/ml, whereas the mean predicted minimal plasma concentration was 74.69 +/- 3.10 micrograms/ml. Dosages of 4 to 6 mg of PBZ/kg, q 24 h, or 10 to 14 mg of PBZ/kg, q 48 h, provided therapeutic plasma concentrations of PBZ with minimal steady-state concentrations between 50 and 70 micrograms/ml.  相似文献   

11.
OBJECTIVE: To determine the plasma pharmacokinetics and synovial fluid concentrations after oral administration of single and multiple doses of celecoxib in Greyhounds. ANIMALS: 7 adult Greyhounds. PROCEDURES: Dogs received celecoxib (median dose, 11.8 mg/kg [range, 11.5 to 13.6 mg/kg], PO, q 24 h) for 10 days. Blood samples were collected prior to administration of celecoxib and serially for 24 hours after the 1st and 10th doses were administered. A synovial joint catheter was placed into a stifle joint in each dog for collection of synovial fluid samples. Concentrations of celecoxib in plasma and synovial fluid were quantified by use of a validated liquid chromatography/mass spectrometry method. Identification of hydroxy- and carboxyl-celecoxib in plasma and synovial fluid was also performed. Pharmacokinetic parameters were determined by use of noncompartmental analysis. RESULTS: Administration of multiple doses of celecoxib resulted in a significant decrease (40%) in median area under the curve (AUC) values and a corresponding decrease in median maximum concentrations (Cmax; 2,620 to 2,032 ng/mL) between the 1st and 10th doses. Synovial fluid concentrations were less than the corresponding plasma concentrations at all times except 24 hours after administration of the 10th dose of celecoxib. CONCLUSIONS AND CLINICAL RELEVANCE: Celecoxib distributes into the synovial fluid of Greyhounds. Although the exact mechanism for the decreases in AUC and Cmax is not known, results suggested that the plasma pharmacokinetics of celecoxib are different after administration of multiple doses in Greyhounds. These findings warrant further investigation on the absorption, distribution, metabolism, and elimination of celecoxib in Greyhounds and other breeds of dogs.  相似文献   

12.
Phenylbutazone (PBZ) was administered intravenously as a single dose (10 mg/ kg) to adult male and 1-day-, 10-day-, 4-week- and 6 week-old male goats. The plasma concentration of PBZ and its major metabolites oxyphenbutazone (OPBZ) and γ-hydroxyphenbutazone (γ-OHPBZ) was measured over time. The elimination half-life (t½β) of PBZ decreased from 120 h in the 1-day-old to 16 h in the adult goats. Although the volume of distribution ( V d) did not change significantly during maturation, the total body clearance ( Cl B) increased from 2 ml.h-1.kg-1 in I-day-old t o 13 ml.h-1.kg-1 in the adult goats; the increase was 2-fold in the first 10 days of life. Oxyphenbutazone was detectable in the plasma of adult and 6-week-old goats as early as 15 min after PBZ administration. Its peak concentration occurred at 1.5 h (1.6 μg/ml) in adults and at 6 h (0.95 μg/ml) and 12 h (0.36 μg/ml) in 6- and 4-week-old goats respectively. The highest plasma concentration of γ-OHPBZ was achieved in 4-week-old followed by 6-week-old and adult animals.  相似文献   

13.
The effect of intraruminal administration of parbendazole (PBZ) on the flow rate of bile and the pharmacokinetic behaviour of oxfendazole (OFZ) was examined in sheep. PBZ given at 18, 9 and 4.5 mg/kg resulted in a dose-related reduction in bile flow rate which was also inversely related to changing concentration of PBZ and its metabolites in plasma. Co-administration of 4.5 mg PBZ/kg with 5.0 mg [14C]-OFZ/kg resulted in increased concentrations of fenbendazole (FBZ), OFZ and fenbendazole sulphone (FBZ-SO2) in plasma, although total 14C levels remained unchanged compared with that observed when OFZ alone was administered. The presence of PBZ also reduced biliary secretion of 14C by 22% and altered the relative proportions of OFZ metabolites in bile during the 72-h experimental period. The ratio of 4'-hydroxy-OFZ (OH-OFZ) to 4'-hydroxy-FBZ (OH-FBZ) changed from 7:1 in the absence of PBZ to approximately 1:1 in the presence of PBZ. There was no change in urinary or faecal 14C excretion. The PBZ-induced effects were temporary since the pharmacokinetic behaviour of OFZ given alone two weeks before was similar to that given two weeks after PBZ co-administration. It is suggested that the presence of PBZ temporarily slowed hepatic metabolism and biliary secretion of OFZ metabolites but concomitantly increased extra-biliary transfer of OFZ and/or its metabolites from plasma into the gastrointestinal tract. Elevated exposure of parasites in the gut wall to plasma-derived drug, coupled with higher concentrations of anthelmintically active OH-FBZ secreted in bile, could contribute to the previously reported increased efficacy of OFZ when co-administered with PBZ.  相似文献   

14.
Serum and urinary phenylbutazone (PBZ) concentrations were measured for eight Thoroughbred mares following four daily oral doses and one IV dose of PBZ per mare. Urine flow was estimated from urinary creatinine concentration. The serum PBZ concentration significantly correlated with the urinary concentration, but only about half of the variation in serum PBZ concentrations was explained by the linear relationship with urinary PBZ concentration (R2=0.48). Correlation of serum PBZ concentration with urinary PBZ excretion, which was estimated using urinary creatinine concentration, over half of the variation in serum PBZ concentrations: (R2=0.60).  相似文献   

15.
The purpose of the study was to compare the pharmacokinetics of amikacin administered i.v., to Greyhound and Beagle dogs and determine amikacin pharmacokinetics administered subcutaneously to Greyhounds. Amikacin was administered i.v. at 10 mg/kg to six healthy Greyhounds and six healthy Beagles. The Greyhounds also received amikacin, 10 mg/kg s.c. Plasma was sampled at predetermined time points and amikacin concentrations determined by a fluorescence polarization immunoassay (FPIA).
The volume of distribution was significantly smaller in Greyhounds (mean = 176.5 mL/kg) compared to Beagles (234.0 mL/kg). The C 0 and AUC were significantly larger in Greyhounds (86.03 μg/mL and 79.97 h·μg/mL) compared to Beagles (69.97 μg/mL and 50.04 h·μg/mL). The plasma clearance was significantly lower in Greyhounds (2.08 mL/min/kg) compared to Beagles (3.33 mL/min/kg). The fraction of the dose absorbed after s.c. administration to Greyhounds was 0.91, the mean absorption time was 0.87 h, and the mean maximum plasma concentration was 27.40 μg/mL at 0.64 h.
Significant differences in the pharmacokinetics of amikacin in Greyhounds indicate it should be administered at a lower dose compared to Beagles. The dose in Greyhounds to achieve a C max: AUC  ≥ 8 for bacteria (with an MIC  ≤ 4 μg/mL) is 12 mg/kg q24 h compared to 22 mg/kg q24 in Beagles.  相似文献   

16.
Evaluation of skeletal muscle tolerance during development of new drug formulations for i.m. use is most often based on terminal methods performed in the target species after slaughtering. The objective of this study was to evaluate the effect of muscle damage on the pharmacokinetic parameters of the drug delivered into the muscle using an alternative, noninvasive method. Phenylbutazone (PBZ) was used as the test article. Six ewes received increasing volumes of a 20% PBZ i.m. formulation, according to a cross-over design, and an i.v. bolus of the same formulation. Serial blood samples were taken, and a pharmacokinetic analysis of the plasma activity of creatine kinase and plasma PBZ concentrations was carried out. The amount of muscle damage after i.m. administration of 2, 4, or 8 mL of PBZ, calculated from the area under the curve of plasma creatine kinase across time was 36, 76, and 178 g for a 70-kg ewe. The corresponding absolute bioavailability of PBZ was 100 +/- 32%, 96 +/- 19%, and 100 +/- 17%, and the maximal PBZ concentrations were 42 +/- 3.4, 74 +/- 8.8, and 119 +/- 18.2 microg/mL. The plasma clearance of PBZ (i.v.) was 4.2 +/- 0.94 mL.kg(-1).h(-1). In conclusion, the absolute bioavailability of PBZ after i.m. administration was not altered by the increased volume of formulation administered despite the overall increase in the extent of muscle damage.  相似文献   

17.
The present study was undertaken to measure the weight of muscle destroyed by an intramuscular injection of phenylbutazone (PBZ) in horses. In six horses, CK disposition parameters were evaluated after intravenous (i.v.) and intramuscular (i.m.) administration of a CK horse preparation. The same horses received PBZ, a potentially irritating agent, by l.v. and i.m. (neck and hindquarter) routes. Data were analysed using compartmental approaches and instantaneous CK flux was calculated using a discrete deconvolution method. For a 150 U/kg CK dose, the steady-state volume of distribution was 0.050 ± 0.0115 L/kg and the plasma half-life was 112 ± 18 min. After CK i.m. administration, the half-life of the terminal phase was 11.8 ± 5.3 h indicating a flip-flop process and the mean bioavailability of CK was close to 100%. After PBZ i.m. administration, the CK activity was significantly increased with peak values of 508 ± 109 U/L after the neck administration and 873 ± 365 U/L after the gluteal administration. By measuring the total amount of CK released from injured muscle, it was calculated that an equivalent of 0.044 ± 0.029 g/kg of muscle was destroyed after PBZ administration in the neck. The corresponding figure was 0.118 ± 0.048 g/kg after intragluteal PBZ administration. By deconvoluting plasma CK activity, it was shown that the CK entry rate was maximum for the first 30–60 min following PBZ administration, which then decreased slowly to return to the control value after a delay of 24–48 h after PBZ administration. It was concluded that the CK release pattern following a controlled muscular damage was a non-invasive approach useful for quantifying the amount of damaged muscle, and that the calculation of CK input rate by deconvolution was of potential interest in describing events at the muscle cell level.  相似文献   

18.
The pharmacokinetics of tramadol in camels (Camelus dromedarius) were studied following a single intravenous (IV) and a single intramuscular (IM) dose of 2.33 mg kg(-1) bodyweight. The drug's metabolism and urinary detection time were also investigated. Following both IV and IM administration, tramadol was extracted from plasma using an automated solid phase extraction method and the concentration measured by gas chromatography-mass spectrometry (GC/MS). The plasma drug concentrations after IV administration were best fitted by an open two-compartment model. However a three-compartment open model best fitted the IM data. The results (means+/-SEM) were as follows: after IV drug administration, the distribution half-life (t(1/2)(alpha)) was 0.22+/-0.05 h, the elimination half-life (t(1/2)(beta)) 1.33+/-0.18 h, the total body clearance (Cl(T)) 1.94+/-0.18 L h kg(-1), the volume of distribution at steady state (Vd(ss)) 2.58+/-0.44 L kg(-1), and the area under the concentration vs. time curve (AUC(0-infinity)) 1.25+/-0.13 mg h L(-1). Following IM administration, the maximal plasma tramadol concentration (C(max)) reached was 0.44+/-0.07 microg mL(-1) at time (T(max)) 0.57+/-0.11h; the absorption half-life (t(1/2 ka)) was 0.17+/-0.03 h, the (t(1/2)(beta)) was 3.24+/-0.55 h, the (AUC(0-infinity)) was 1.27+/-0.12 mg h L(-1), the (Vd(area)) was 8.94+/-1.41 L kg(-1), and the mean systemic bioavailability (F) was 101.62%. Three main tramadol metabolites were detected in urine. These were O-desmethyltramadol, N,O-desmethyltramadol and/or N-bis-desmethyltramadol, and hydroxy-tramadol. O-Desmethyltramadol was found to be the main metabolite. The urinary detection times for tramadol and O-desmethyltramadol were 24 and 48 h, respectively. The pharmacokinetics of tramadol in camels was characterised by a fast clearance, large volume of distribution and brief half-life, which resulted in a short detection time. O-Desmethyltramadol detection in positive cases would increase the reliability of reporting tramadol abuse.  相似文献   

19.
Metabolic state as influenced by growth rate may influence meat toughness and can be estimated from metabolites excreted in urine. Urine collection over 24 h requires animals to be constrained in metabolism crates for many days. Single blood sampling to estimate metabolites in plasma would be less stressful on animals than collecting 24 h urine excretion. This study investigated the hypothesis that the plasma concentrations of pseudouridine and creatinine were representative of those found in 24 h urine excretions in steers fed different quality diets. Eleven Brahman-cross steers were fed a high (n = 3), medium (n = 4) or low (n = 4) quality hay diet for three weeks. Steers were catheterized and housed in metabolism crates for 6 days. Urine was collected every 24 h and total volume sub-sampled for analyses of creatinine and pseudouridine. Jugular blood was collected from each steer every 3 h from 07:30 to 16:30 h. Plasma was separated from red blood cells by centrifugation and frozen for creatinine and pseudouridine analyses. No time of day effect was apparent for pseudouridine or creatinine so daily means were used to test for effect of diet and to relate to urinary concentrations. Nutritional restriction halted live weight gain but had no effect on urinary or plasma pseudouridine, suggesting that diet did not affect tRNA turnover. Increased plasma creatinine concentrations and reduced urinary creatinine concentration in steers experiencing nutritional restriction indicated that their renal clearance rate decreased. As a result, the ratio of plasma pseudouridine to creatinine concentration was not directly proportional to that of 24 h urinary excretion.  相似文献   

20.
A study of the effects of intravenous administration of either 150 mg or 250 mg of furosemide to standardbred mares pre-treated with other drugs was undertaken to determine whether a unique pattern of drug elimination into urine and from plasma for each compound occurred. Furosemide significantly reduced the plasma concentrations of codeine compared to control 2-6 h after furosemide administration. In contrast, the plasma concentrations of theophylline, phenylbutazone, pentazocine, guaifenesin and flunixin were not markedly altered by furosemide. In the case of acepromazine, clenbuterol and fentanyl, the data generated were insufficient to state with certainty whether or not furosemide affected the plasma concentrations of these three drugs. A significant reduction was noted in the urinary concentrations of guaifenesin, acepromazine, clenbuterol, phenylbutazone, flunixin, fentanyl and pentazocine within 1-4 h of furosemide administration. The urinary concentrations of theophylline remained reduced as long as 8 h after furosemide injection. Furosemide administration to horses pre-treated with codeine resulted in depression of urinary morphine concentrations 2-4 h and 9-12 h after furosemide injection. A lower furosemide dose (150 mg) produced changes in drug urinary excretion and plasma elimination equivalent to the higher dose (250 mg). It is evident that furosemide affects the urinary and plasma concentrations of other co-administered drugs but not in a predictable fashion, which limits the extrapolation of these results to as yet untested drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号