首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

? Context

Two-thirds of Britain’s forest area is privately owned. Thus, understanding private forest owners and managers, and their attitudes to uncertainty and change, is essential for the success of climate change adaptation policies.

? Aim

The aims of this study are to (1) assess how beliefs in climate change in the private sector have influenced forest management practices; (2) identify constraints related to changes in species choice and silvicultural systems; (3) analyse the implications for implementing climate change policy in forestry.

? Method

Semi-structured interviews with key informants who provide advice to, or manage woodlands in, the private forest sector in north Wales.

? Results

Woodland managers and some advisers are not generally convinced of a need to adapt. They feel the future is uncertain, more usually in relation to tree disease than to climate change itself. Species choice is the principle focus of adaptation activities and reveals a deep divide in opinion. Commercial advisors look to new exotics but are inhibited by absence of markets, while small-scale owners rely more on native genetic diversity.

? Conclusions

Findings that are likely to apply widely include: the influential role of forest agents in forest management decisions including species choice; lack of confidence in climate change predictions, and in markets; more immediate concerns about tree pests and diseases; demand for leadership from the public sector, and for engagement amongst the private sector. Further research is needed across a wider area to test the variability in relationship between attitudes and behaviours, and local conditions including climate change predictions.  相似文献   

2.

Context

Nowadays, harvest operations are predominantly performed fully mechanized using heavy tractors or forestry machines. The resulting soil compaction may negatively affect the soil ecosystem.

Aims

We wanted to draw general conclusions concerning the impact of mechanized harvesting on forest soil bulk density and the influencing factors.

Method

Therefore, we combined the data of several studies using a meta-analysis approach.

Results

The impact decreased from the surface towards deeper soil layers. At 0?C10?cm depth, the impact on clayey soils was highest although not significantly different from the impact on sandy soils. Higher initial bulk densities, i.e., on already compacted forest soils, generally led to smaller extra increases of bulk density after machine traffic. For sandy soils, the impact was also significantly smaller when machines were lighter. No significant relationship was observed between the compaction degree and traffic intensity.

Conclusions

We observed clear compaction on both clayey and sandy soils, especially in case of low initial soil compaction degrees and heavy machines. The compacted initial state of many forest soils, the long recovery period, and the generally high impact of the first passes that is frequently mentioned in literature all count in favour of designated skid trails and an adjustment of the machine type to the job.  相似文献   

3.

? Context

Biomass prediction is important when dealing for instance with carbon sequestration, wildfire modeling, or bioenergy supply. Although allometric models based on destructive sampling provide accurate estimates, alternative species-specific equations often yield considerably different biomass predictions. An important source of intra-specific variability remains unexplained.

? Aims

The aims of the study were to inspect and assess intra-specific differences in aboveground biomass of Pinus brutia Ten. and to fill the gap in knowledge on biomass prediction for this species.

? Methods

Two hundred one trees between 2.3 and 55.8 cm in diameter at breast height were sampled throughout the eastern- and southernmost natural distribution area of P. brutia, in Middle East, where it forms different stand structures. Allometric equations were fitted separately for two countries. The differences in biomass prediction at tree, stand, and forest level were analyzed. The effect of stand structure and past forest management was discussed.

? Results

Between-country differences in total aboveground biomass were not large. However, differences in biomass stock were large when tree components were analyzed separately. Trees had higher stem biomass and lower crown biomass in dense even-aged stands than in more uneven-aged and sparse stands.

? Conclusion

Biomass and carbon predictions could be improved by taking into account stand structure in biomass models.  相似文献   

4.

? Context

Projecting changes in forest productivity in Europe is crucial for adapting forest management to changing environmental conditions.

? Aims

The objective of this paper is to project forest productivity changes under different climate change scenarios at a large number of sites in Europe with a stand-scale process-based model.

? Methods

We applied the process-based forest growth model 4C at 132 typical forest sites of important European tree species in ten environmental zones using climate change scenarios from three different climate models and two different assumptions about CO2 effects on productivity.

? Results

This paper shows that future forest productivity will be affected by climate change and that these effects depend strongly on the climate scenario used and the persistence of CO2 effects. We find that productivity increases in Northern Europe, increases or decreases in Central Europe, and decreases in Southern Europe. This geographical pattern is mirrored by the responses of the individual tree species. The productivity of Scots pine and Norway spruce, mostly located in central and northern Europe, increases while the productivity of Common beech and oak in southern regions decreases. It is important to note that we consider the physiological response to climate change excluding disturbances or management.

? Conclusions

Different climate change scenarios and assumptions about the persistence of CO2 effects lead to uncertain projections of future forest productivity. These uncertainties need to be integrated into forest management planning and adaptation of forest management to climate change using adaptive management frameworks.  相似文献   

5.

? Context

Maritime pine (Pinus pinaster Aiton) is one of the most important Portuguese species, growing in pure stands ranging from even-aged to multi-aged structures. Current growth and yield models were developed only for even-aged, managed stands and/or for very specific regions of Portugal.

? Aims

This paper focuses on the validation of the existing size-class model PBRAVO, adapted to even-aged stands, and on the subsequent development of a single tree distance-dependent growth and yield model (PBIRROL), both in distance-independent and distance-dependent versions, for uneven-aged stands.

? Methods

The new model is composed of four modules, each with a set of sub-models for: tree variable prediction, tree volume prediction, future tree list prediction and growth projection.

? Results

The evaluation of the PBRAVO and PBIRROL models showed that the new model gives more accurate predictions. Moreover, medium-term simulations provided consistent and logical predictions.

? Conclusion

It was verified that individual tree models are more suited to simulate poorly managed uneven-aged stands than diameter distribution models. No clear superiority of distance-dependent models was found over models using just distance-independent measures of inter-tree competition.  相似文献   

6.

? Context

Teak??s wood color is considered an important attribute in the marketing phase and it has been influenced by environmental setting, stand conditions and management, plant genetic source, and age. However, there is a lack of understanding about how the environmental factors might affect the teak??s wood color planted in short-rotation forest plantations.

? Aims

The aim of this study is to understand the relationship, gathered from generated information, between edaphic and climatic variables and their effects in the wood color variation of Tectona grandis from trees in forest plantations.

? Methods

Twenty-two plots were grouped in five cluster sites that shared similar climatic and soil conditions. Data about soil??s physical?Cchemical properties and climatic variables were collected and analyzed. Representative trees were harvested next to each plot in order to obtain a wood sample per tree at a diameter breast height. Wood color was measured using standardized CIELab??s chromaticity system.

? Results

After comparing the wood change color index (?E*) in the five studied clusters, it was found that heartwood produced from drier and fertile sites had more yellowish-brown color. The heartwood b* color index resulted with significant correlations (R?>?0.5, P?<?0.05) among nine climatic and eight edaphic variables.

? Conclusion

It was concluded that climatic variables should be considered as the first-order causal variables to explain wood color variation. Hence, darker b* wood color was associated with dry climates; also, with deeper and fertile sites.  相似文献   

7.

?Context

Selective logging followed by natural regeneration is rarely employed for restocking subtropical evergreen broad-leaved forests in East Asia compared with the use of clear-cutting.

?Aims

To clarify the succession of these forests, the effects of selective logging on stand structure, species diversity, and community similarity were studied in a mature and regenerating forest in Okinawa, Japan.

?Methods

Four study plots were established, and trees ≥1.2 m height were identified by species name, tree height, and diameter at breast height.

?Results

The results showed that the species composition of regenerating forest was similar to mature forest; however, the former had a greater species density and Shannon–Wiener index than the latter. Castanopsis sieboldii and Distylium racemosum, the predominant trees in the mature forest, continued to dominate the regenerating forest, with a broad layer distribution. High Sørensen and Jaccard community similarity indices for mature and regenerating forest indicated that the regeneration occurred in a progressive succession.

?Conclusion

The similar species composition and stand structure for both mature and regenerating forest, and the higher species diversity for the latter, provided no evidence of forest degeneration and suggested that the regenerating forest may develop into a stand similar to preselective logging forest.  相似文献   

8.

? Context

Snow gliding is a downhill motion of snow on the ground; observations have shown gliding to be possible not only on open slopes but also in forest stands. Larch stands, with their low canopy density and open forest structure with clearings and gaps, are particularly prone to high glide rates. Snow gliding may have negative effects on juvenescent trees which can be damaged by extraction from the ground.

? Aim

The goal of this study was to determine whether snow gliding depends on forest cover (canopy) and size of clearings.

? Methods

Snow gliding was measured during eight winter periods at six measuring positions (ranging from ‘dense forest’ to ‘open slope’) in and beside a larch stand in the Stubai Valley, Tyrol, Austria.

? Results

The results showed that gliding is strongly influenced by forest cover. Snow gliding increases with decreasing canopy density. The difference between the six measuring positions was highly significant (p?<?0.005).

? Conclusion

The identified glide cracks on at least two measuring positions, indicating extreme glide rates and, therefore, strong negative effects on juvenescent trees. To prevent glide rates of a magnitude such as this requires a mature forest with at least 300 stems/ha.  相似文献   

9.

? Context

The Kyoto Protocol allows the use of domestic forest carbon sequestration to offset emissions to a limited degree, while bioenergy as an unlimited emission reduction option receives substantial financial support in many countries.

? Aim

The primary objective of this study was to analyze (1) whether these limits on forest carbon sequestration would be binding, thereby leading to inefficient mitigation, and (2) the total potential effect of the protocol on the greenhouse gas (GHG) fluxes in the forest sector.

? Methods

A partial equilibrium model of the Norwegian forest sector was used to quantify the GHG fluxes in a base scenario with no climate policy, a Kyoto Protocol policy (KP policy), and a policy with no cap on forest carbon sequestration (FC policy), assuming that the policies apply the rest of the century.

? Results

Carbon offsets are higher under the KP policy than in the base scenario and likewise higher than under the FC policy in the short run, but the KP policy fails to utilize the forest carbon sequestration potential in the long run as it provides considerably less incentives to invest in forestry than the FC policy.

? Conclusion

The KP increases the Norwegian forest sector’s climate change mitigation compared to no climate policy but less in the long run than a carbon policy with no cap on forest carbon credits.  相似文献   

10.

? Context

The knowledge of how shrub–seedling interactions vary with summer drought, canopy opening, and tree species is crucial for adapting forest management to climate change.

? Aims

The aim of this study was to assess variation in shrub–oak recruitment associations along a south–north drought climate gradient and between two levels of canopy cover in coastal dune forest communities in a climate change-adapted forest management perspective.

? Material and methods

Mapped data of associational patterns of seedlings of three oak species with interspecific pooled shrubs were analyzed using a bivariate pair correlation function in 10 (0.315 ha) regeneration plots located in forest and recent gap sites along the climate gradient. An index of association strength was calculated in each plot and plotted against a summer moisture index.

? Results

The association strength increased with increasing summer drought from wet south to dry north and from closed forests to gaps.

? Conclusion

Consistent with facilitation theory, our results suggest that climate change may shift associational patterns in coastal dune forest communities towards more positive associations, in particular in canopy gaps. In a perspective of climate change, foresters may need to conserve understory shrubs in gaps in order to promote oak species regeneration.  相似文献   

11.

? Context

Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales.

? Aims

We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China.

? Method

Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development.

? Results

BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests.

? Conclusion

To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.  相似文献   

12.

Context

The dipterocarp forests in the Central Highland of Vietnam are threatened by overharvesting. In addition, wildfires frequently affect their dynamics. Sustainable management of this unique forest type is of important concern.

Aims

This study aims at providing a first set of operational information for forest management with a model-based approach. Specifically, we (a) evaluate selected cutting regimes with focus on maximum sustainable yield, (b) explore transformation times from a given to a desired forest state, and (c) preliminarily assess wildfire effects on yield.

Methods

A size class model was developed as a tool to address these issues. Various diameter distributions defined by the q factor concept were used as possible desired equilibrium states to be assessed.

Results

Maximum yields were estimated between 3.9 and 2.7?m3?ha?1?year?1, depending on site quality. Based on data from overharvested stands, time for reaching desired equilibria ranged between 20 and 60?years. In stands with frequent severe wildfires, the long-term yield may decrease by 40%.

Conclusions

Our results suggest the model being an effective tool for simulating effects of treatment alternatives. We conclude that, despite a poor information basis, it is necessary to develop and refine such models for supporting sustainable forest management in Vietnam.  相似文献   

13.

Context

Soluble organic nitrogen is considered to reflect the effect of forest types on soil nitrogen status. As a major process affecting the soil-soluble organic nitrogen pool, degradation of insoluble organic nitrogen in the production of soluble organic nitrogen is mediated by a suite of soil enzymes.

Aims

This study aims to examine soil-soluble organic nitrogen pools and their relationships with the activities of soil enzymes in natural secondary forest stands and adjacent larch plantation stands.

Methods

Four pairs of larch plantation stands and secondary forest stands were randomly selected from a mountainous area, and the top 15?cm of the mineral soils were sampled from each field.

Results

The soil-soluble organic nitrogen concentrations were up to 2-fold greater in the secondary forest stands than in the larch plantation stands, whereas the ratio of soluble organic nitrogen/total nitrogen was comparable between the two forest types. The concentrations of soluble organic nitrogen were positively correlated with approximately 2-fold differences in urease and protease activities, a 1.2-fold difference in N-acetyl-??-glucosaminidase and a 1.7-fold difference in l-asparaginase between the two forest types.

Conclusions

Our results suggest that relationships between soil-soluble organic nitrogen and enzyme activities are independent on sampling time, and that the soil enzyme activities can be used as potential indicators of soil soluble organic nitrogen pools in the temperate forest ecosystem.  相似文献   

14.

Aims

This study aims to evaluate the effects of wood ash application on nutrient dynamics and soil properties of an acidic forest soil (Arenosol).

Methods

Treatments were loose and pelleted ash application (11?Mg?ha?1), alone or together with N fertiliser, and control treatment in a lysimeter experiment. Nutrient leaching was followed during a 2-year period and soil chemical and biological properties were evaluated at the end of the experiment.

Results

Wood ash increased leaching of total N, NH 4 + -N, base cations and P, mainly during the first months, the effect being more pronounced for the loose formulation. At the end of the study period, a positive effect on soil nutrient availability and soil acidity reduction was seen. The application of loose and pelleted ash alone decreased N leaching and increased N microbial biomass at the end of the experiment. The C dynamics was weakly affected.

Conclusion

Wood ash can be used to improve nutrient availability and balance nutrient exported by tree harvesting in acid forest soils, the effects at short-term being stronger for loose than for pelleted ash. However, their application should be carried out when vegetation is established to minimise nutrient losses at short-term and reduce the potential risk for water bodies. In N-limited soils, wood ash should be applied with N fertilisers to counteract N immobilisation.  相似文献   

15.

Context

There is strong interest in sustainable forest management systems that preserve characteristics of forests close to naturalness. Assessing the effectiveness of these systems is difficult because defining “natural” baselines from which impacts are estimated is challenging and because the influence of harvesting can have complex interactions with major natural disturbances.

Aims

We used SORTIE/NZ, an individual tree-based forest dynamics model, to understand how harvesting and earthquake disturbance affect the dynamics of a New Zealand podocarp–angiosperm forest.

Methods

Having parameterized SORTIE/NZ with extensive field data, we ran simulations for three natural dynamics scenarios (no disturbance and two earthquake scenarios) and then added podocarp harvesting scenario to each of these.

Results

Simulations suggest that this forest is experiencing transient dynamics, with a natural rise in the dominance of one species of slow-growing podocarp with and without earthquake. Harvesting podocarps strongly affected its increase in basal area.

Conclusion

Our results indicate that transient dynamics may occur in mixed podocarp forests and major disturbances may have complex interactions with management. Evaluating management impacts without accounting for these complex dynamics may be misleading. Models make predictions about transient trajectories that may help to evaluate these impacts.  相似文献   

16.

? Context

Tree height prediction is an important issue in forest management since tree heights are usually measured only in a sample of trees. Although numerous model approaches have been used for this purpose, no agreement on which one is more appropriate has been achieved.

? Aims

To analyse the random effects of basic and generalised height–diameter (hd) models fitted to multi-species uneven-aged forest stands, and to establish their ability to explain differences between ecoregions, plots and species.

? Methods

Height and diameter measurements for 29,084 trees from 187 sample plots located in the state of Durango (Mexico) were used. Basic and generalised hd models were fitted in a mixed-models framework. The variability between ecoregions, plots and species was considered in the random effects definition. Model calibration for different height sampling designs and sampling sizes was also analysed.

? Results

Random components performed well in explaining the differences in the hd relationship between the different plots and species; however, no significant variance for the random effects was found for the different ecoregions. A calibrated basic hd model produced similar results to a fixed-effects generalised hd model when a sufficiently large number of trees was used in the calibration process.

? Conclusion

From a practical point of view, if no calibration is carried out, different models should be used for the different species, so that at least the variation among species is captured.  相似文献   

17.

? Context

Powdery mildew is one of the most common diseases of oaks in Europe. After alarming reports in the beginning of the twentieth century following the presumed introduction of the invasive fungus, the disease has become familiar to foresters. However, its impact may vary greatly according to intrinsic and extrinsic factors.

? Aims

We aimed at providing updated and synthesised information on the impact of powdery mildew on oak and on the effects of environment on disease.

? Methods

A comprehensive literature review was performed, including old reports of the early epidemics to more recent data.

? Results

Tree growth patterns are of critical importance to explain the severity of the disease and the differences between juvenile and mature trees. A critical element, especially for infection of mature trees, is the availability of spores during the production of the first leaf flush. High disease impact is often related to modified growth patterns, either by environmental factors (insects or frost) or silvicultural practices (e.g., coppicing).

? Conclusion

Powdery mildew can have important impacts in natural oak regenerations and a significant role in decline of mature trees. Climate change might influence the disease severity mainly by altering the host pathogen phenological synchrony. Process-based models are required for reliable predictions.  相似文献   

18.

Aims

Globally, extensive areas of native forest have been almost replaced by plantations to meet the demands for timber, fuel material and other forest products. This study aimed to evaluate the effects of forest conversion on labile soil organic C (SOC), soil respiration, and enzyme activity, and to quantify their relationship in subtropical forest ecosystems.

Methods

Surface mineral soil (0–20 cm) was collected from a Cunninghamia lanceolata Hook. plantation, Pinus massoniana Lamb. plantation, Michelia macclurei Dandy plantation, and an undisturbed native broadleaf forest. Soil microbial biomass C, dissolved organic C, permanganate-oxidizable C, basal respiration, and six enzyme activities were investigated.

Results

Soil microbial biomass C was higher by 45.9 % in native broadleaf forest than that in M. macclurei Dandy plantation. The ratio of soil microbial biomass C to total SOC was 27.6 % higher in the M. macclurei Dandy plantation than in the native broadleaf forest. The soil respiration increased by 25.2 % and 21.7 % after conversion from native broadleaf forest to P. massoniana Lamb. and M. macclurei Dandy plantations respectively. The effects of forest conversion on the soil enzyme activities differed among the tree species. Soil microbial biomass C had higher correlation with soil respiration than with the other SOC fractions. Moreover, soil microbial biomass C was positively correlated with urease and negatively correlated with cellulase activity. Soil respiration had higher correlation with soil microbial biomass C, dissolved organic C and permanganate-oxidizable C.

Conclusion

Forest conversion affected the soil microbial biomass C, soil respiration, invertase, cellulase, urease, catalase, acid phosphatase, and polyphenol oxidase activities, but their response depended on tree species. Soil respiration was mainly controlled by labile SOC, not by total SOC.  相似文献   

19.

? Context

The rising demand of energy wood for heating purposes in Germany leads to concerns regarding the overexploitation of forests. A major aspect is the impact of whole-tree harvesting on long-term productivity of forest soils.

? Aims

This study aimed to analyze the effects of nutrient removal on productivity using the historically prevalent practice of litter raking. Since there is a lack of controlled whole-tree harvesting experiments in Germany, we used litter raking as a surrogate management practice entailing the removal of nutrients from forest stands.

? Methods

We used three sites with documented litter raking to analyze the effects of nutrient removal on productivity using dendroecological methods: two recent litter removal experiments in two Scots pine stands (Siegenburg and Burglengenfeld) and one oak stand (Eichhall) with documented historic litter raking. Basal area increment (BAI) and tree-ring characteristics were compared between periods with litter raking and the preceding periods for both treatment and control plots.

? Results

For the two Scots pine sites with a relatively short litter raking period, no effects of litter raking on BAI could be ascribed to nutrient removal. On the oak site with a longer history of litter utilization, the loss in BAI due to litter raking amounts to 22 % during the period with active raking and to still 17 % in the recovery period.

? Conclusions

These results contribute to the still very limited understanding about the impact of whole-tree harvesting on forest productivity in Germany by laying down an upper limit of possible effects due to nutrient removal, as nutrient loss by litter raking tends to be higher than nutrient loss by whole-tree harvesting.  相似文献   

20.

? Context

Over the past few decades, the impact of large herbivorous ungulates on forest vegetation has been clearly highlighted. Among those impacts, bark stripping of coniferous trees is one of the most damaging. Bark stripping leads to rot development, inducing serious loss of timber value.

? Aims

The present study aimed firstly at evidencing the factors explaining the variations observed in fresh bark peeling rate for spruce and Douglas-fir in southern Belgium and secondly at identifying the key factors to consider when setting up a deer management plan.

? Method

Fresh bark peeling rate was recorded with a systematic sampling survey from 2004 to 2007. The covered territory was then divided into 63 distinct hunting zones of area ranging from 1,000 to 25,000 ha. About 5,000 plots were monitored annually. Each zone was characterized with a large number of explanatory variables. The explanatory variables were integrated firstly into fixed linear models using a stepwise procedure, and then into a mixed model.

? Results

The significant variables included in the model (R 2?=?44 %) are (by decreasing order of importance) red deer densities, proportion of coniferous stands and agricultural areas, snow cover, distance to urban habitats, and species diversity in the understory.

? Conclusion

The models revealed the impacts of several factors on bark peeling: deer density, deer-carrying capacity of the territory, landscape structure, and severity of winter conditions. The adjusted model allowed subtracting the impact of winter conditions in order to produce a relevant indicator for hunting management. In addition, the model was used to assess the sensitivity of a forested area to bark peeling based on its environmental characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号