首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of poly (p-phenylene-2, 6-benzobisoxazole) (PBO) fiber as reinforcement in composite material was restricted by its photo-degradation, therefore, some measures should be considered to protect PBO fiber against UV aging. In this study, A series of multilayer coating for (POSS/TiO2)n was prepared on PBO fiber surface via LbL assembly technique for enhancement of UV resistance. TiO2 as UV absorbing material was used to relieve UV-degradation of PBO. Surface elemental composition, surface morphology, mechanical and interfacial properties, and UV resistance of uncoated and coated PBO fibers were investigated. These experimental results show multilayer coating of (POSS/TiO2)n was uniform deposition on fiber surface after treatment, tensile strength decreased to certain extent, interfacial shear strength increased in a small range and UV resistance is obvious enhanced. After the same accelerated aging time under UV irradiation, the retention of tensile strength and intrinsic viscosity of coated PBO fibers were much better than that of untreated PBO fibers.  相似文献   

2.
The present paper reports the development of novel braided structures using polyamide 6.6 fibers for application as artificial anterior cruciate ligaments (ACLs). The developed structures were circular braids, axially reinforced with either a number of core yarns or braided structures. Tensile behavior of these structures was characterized and the effects of number of axial yarns or braids and, the number of yarns used in the axial braids were thoroughly investigated. From the experimental results, it was observed that the braided structures with axial braids could mimic the load-elongation behaviour of native ACL. The average breaking extension and strain at toe region were 30 % and 4.3 % respectively, which are in the range of native ACLs. The maximum breaking force and stiffness achieved with 7 axial braids, each produced using 6 yarns were 274 N and 13.5 N/mm respectively and, both breaking force and stiffess showed linear increase with the number of axial braids as well as number of yarns used in the axial braids. Therefore, it is possible to design an artificial graft using these novel braided sturctures with mechanical properties similar to that of native ACLs, through adjustment of these structural parameters, as these braided structures have much smaller diameter (0.5 mm) than native ACLs (11 mm).  相似文献   

3.
Anatase TiO2 nanoparticles was in-situ formed on the cotton fabric by using tetrabutyl titanate (TBT) as a precursor through the normal pressure hydrothermal method. X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV visible spectra (UV-VIS), ATR-IR were used as the characterization techniques. Photocatalytic performance of TiO2 on the fabric surface was evaluated by methylene blue (MB), 4 kinds of the common living stains and three dyes under ultraviolet and visible light radiation. XRD analysis found that the TiO2 loaded on the fabric was mainly anatase crystalline phase with particle size of 6.4 nm. SEM observed that a large number of nano TiO2 particles are distributed on the fabric surface. UV-VIS test indicated that theTiO2-coated fabric possessed an obvious absorption for ultraviolet. ATR-IR analysis indicated that the nano-TiO2 possesses a strong affinity with the hydroxyl group of the cotton fabric, and the soaping tests showed that the TiO2 was firmly bonded with the fabrics. The treated fabrics have good degradation ability for MB aqueous solution, and could degrade azo, anthraquinone and phthalocyanine dyes. The order of degradation of the common life stains was: pepper oil> tea > coffee > soy sauce.  相似文献   

4.
TiO2/NBR-PVC hollow fibers were spinned by NBR casting solution blended PVC with nano-titanium dioxide (TiO2). The effect of NBR-PVC hollow fiber damping and mechanical properties aroused by loading TiO2 were studied. Results showed that the hollow fibers loaded TiO2 increased in tensile strength, storage modulus, stiffness and glass transition temperature, while decreased in tanδpeak and breaking tensile elongation. The damping of the TiO2/NRR-PVC hollow fiber were not only linked to the dosage of TiO2, but also related to the degree of dispersion in matrix.  相似文献   

5.
Nano-TiO2 based multilayer nanocomposite films were fabricated on cationically modified woven cotton fabrics by layer-by-layer molecular self-assembly technique. Cationization process was used to obtain cationic surface charge on cotton fabrics. Attenuated total reflectance Fourier transform infrared spectroscopy analyses were used to verify the presence of cationic surface charge and multilayer films deposited on the fabrics. Scanning electron microscope micrographs of poly(sodium 4-styrene sulfonate)/TiO2, nano polyurethane/TiO2, and TiO2/poly(diallyldimethylammonium chloride) multilayer films deposited on cotton fabrics were taken. With nano-TiO2 based multilayer film deposition, the protection of cotton fabrics against UV radiation is enhanced. The UV protection durability of the self-assembled multilayer films deposited on the cotton fabrics was analyzed after 10 and 20 washing cycles at 40 °C for 30 min. Air permeability and whiteness value analysis were performed on the untreated and multilayer film deposited cotton fabrics. The effect of layer-by-layer deposition process on tensile strength properties of the warp and weft yarns was determined.  相似文献   

6.
Depositing of TiO2 nanoparticles on cellulose fiber surface has potential technological applications in the field of photocatalysis. With this motivation, multilayers composed of lignosulfonates (LS) and TiO2 nanoparticles were constructed on cellulose fiber surface via layer-by-layer (LBL) self-assembly technique. X-ray photoelectron spectroscopy (XPS), zeta potential measurement and atomic force microscopy (AFM) were used to characterize the LS/TiO2 multilayers on cellulose fiber surface. Moreover, the photocatalytic activities of modified cellulose fibers (decomposition of methyl orange and antibacterial test) were investigated. The decomposition efficiency of methyl orange for a (LS/TiO2)5 multilayer modified cellulose fibers was 74.7 % under 5 h UV irradiation. Photocatalytic decomposition efficiency of methyl orange by LS/TiO2 multilayer modified cellulose fibers under the same UV irradiation time increased linearly with the number of bilayers. Antibacterial tests results revealed that the cellulose fibers modified with LS/TiO2 multilayers exhibited excellent antibacterial activity against E.coil. The degree of E.coil growth inhibition for a (LS/TiO2)5 multilayer modified cellulose fiber reached as high as 93 %. In addition, the effect of LS/TiO2 multilayers on properties of handsheets made from modified cellulose fibers was also considered. The air permeability of the handsheet prepared from fibers modified with TiO2/LS multilayers had 6.1–24.3 % higher compared with that of handsheet prepared from original fibers. The wetting properties measurement results demonstrated that the water contact angle of handsheet oscillated with the increasing number of layers depended on building block which was in the outermost layer.  相似文献   

7.
TiO2 contents in yarns can influence color yield so that dyeing quality of industrial poly ethylene terephthalate (PET) yarns can be improved through the adjustment of TiO2 contents. To evaluate the dyeing performance of color yield, the chips which included the different TiO2 contents of 330, 550, and 1,100 ppm respectively were used to produce the yarns of different TiO2 content by a spin-draft machine. The physical and structural properties of the yarns were measured to investigate effect of the TiO2 contents on them. Dye uptake and dyeing rate were also evaluated using a colorimeter to compare the yarns having different TiO2 contents. The experimental results showed that there were no appreciable variation in physical and structural properties among the yarn samples and no difference were observed among the dyed fabric samples with regard to dyeing uptake and dyeing rate. However, the color yield of dyed fabrics increased as TiO2 contents decreased in the yarns especially when the fabric samples were dyed to pale shade. The physical reasoning could be proposed on why the yarns having low TiO2 contents appeared to have higher color yield after dyeing.  相似文献   

8.
In the research self-cleaning coatings based on photocatalytically active nano titanium dioxide (TiO2) were prepared. When applied directly to cellulose fiber surfaces, TiO2 coatings form weak bonds with fibers. Therefore 3-glycidooxypropyl-trimethoxysilane was used as a coupling agent. It had been applied on the surface of cellulose fibers before the TiO2 coating was performed. In this case, the silane is in the interface region, where it can be most effective as an adhesion promoter. Silane coupling agents have unique chemical and physical properties not only to enhance bond strength, but more importantly to prevent de-bonding at the interface during composite aging and use as well. The coupling agent provides a stable bond between two otherwise poorly bonding surfaces. Surface properties of these coatings have been examined, such as surface morphology and surface microstructure. TiO2 nanoparticles were irreversibly attached to the surface of monodisperse silica (SiO2) spheres and to the surface of Lyocell fibers coated with an epoxy-containing silane coupling agent. Analysis using scanning electron microscopy showed uniform distribution of nanoparticles in the resulting coatings. Fourier transform infrared spectroscopy revealed changes in the surface microstructure occurring after different modifications. In addition, the influence of photocatalytic activity on the mechanical properties of Lyocell fibers was determined. In addition to that, the results indicated that SiO2 and the coupling agent provide a protection against high oxidizing power of TiO2 under exposure to daylight irradiation.  相似文献   

9.
The dynamic testing conditions simulate actual manufacturing conditions more closely than static testing. In most cases, as results from dynamic tests differ significantly from static tests, dynamic tests are more relevant from the point of view of processing of yarn. The yarns are in motion when they are running on different machines during the production process viz. weaving; knitting etc. Compact ring spun yarns have created a fundamental change how the industry views the ring spinning. The new technology compact yarns such as EliTe® yarns need to be compared with the normal doubled yarns in a dynamic way. This study involves dynamic testing of the EliTe® compact yarns and normal ring spun doubled yarns using CTT (Constant Tension Transport) machine, a versatile test instrument to measure the yarn properties such as dynamic breaking strength, elongation, abrasion, lint, yarn faults (thick, thin places, neps), hairiness etc. EliTe® compact yarns showed higher breaking strength, more elongation, with lesser yarn faults and hairiness, less abrasiveness and less lint generating tendencies during the dynamic testing as compared to the normal ring spun doubled yarns.  相似文献   

10.
Microorganisms can lead to functional, hygienic and aesthetic (e.g. deterioration, staining) problems on textile products. Natural fibers especially cotton are more easily affected by microorganisms. Blending of cotton fibers with antimicrobial fibers can enhance the protective properties of products against microorganisms. Demand of antimicrobial performance from the products changes depending on the application area. Therefore determination of suitable antimicrobial fiber quantity for the desired application is important. In this study the spinning performance of SeaCell Active/cotton blended open end rotor yarns and antibacterial activities of fabrics produced by these blended yarns were investigated. Five different cotton/SeaCell Active blended slivers with SeaCell Active content from 3 % up to 53 % were prepared on drawframe machine and all slivers were spun into yarns on open end rotor spinning machine at a yarn count of 20 tex with αTt=3827 twist coefficient. The effects of rotor speed, opening roller speed, rotor, opening roller and navel type on the quality parameters of SeaCell Active/cotton blended yarns were investigated. Tensile properties, hairiness, unevenness and IPI values of the yarns were reported. All types of cotton/SeaCell Active blended yarns were knitted on a circular knitting machine. Antibacterial activity of the fabrics was analyzed quantitatively. Antibacterial tests showed that good antibacterial activity can be achieved after several washings even with 3 % of SeaCell Active fibers in fabrics.  相似文献   

11.
PET fabric was first modified with silane coupling agent KH-560, and then was loaded with a layer of nano-scaled TiO2 particles using tetrabutyl titanate as precursor by low temperature hydrothermal method, followed by dyeing with Disperse Blue 56. The morphology, crystalline phase, chemical modification, thermal stability and optical property of PET fiber before and after treatments were studied by scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric and diffuse reflectance spectrum techniques. The properties of tensile, air permeability, luster, ultraviolet (UV) protection, photocatalytic activity, K/S value and color fastness were also measured. It was found that compared with the TiO2-coated fabric without modification with KH-560, the loading of TiO2 nanoparticles on the surface of the TiO2-coated fabric modified with KH-560 was obviously improved. The pure anatase TiO2 nanoparticle was grafted onto the fiber surface. The onset decomposition temperature increased. The absorbing capability to ultraviolet radiation was enhanced. The properties of tensile, air permeability, luster, K/S value and color fastness changed slightly. The UV protection ability and photodegradation of methyl orange under UV illumination were enhanced to some extent.  相似文献   

12.
This study employed a SKF draft system equipped with an additional spreading device to form a high performance flame-retardant composite yarn. For mixing the spread Technora® filaments and Stretch-Broken oxidized fibers, nip of the front rollers was arranged for best dispersion. The yarn unevenness (CV %), strength, abrasion-resistance, and Limited Oxygen Index (LOI) of the composite yarn were evaluated. The cross-sections of the actual composite yarn were observed to assess its structure and the effect on yarn performance. The experimental results showed that the yarn CV% is worse as the yarn count (Tex) tend to be finer. This would be an optimum condition adopting 30 TM for the yarn evenness and yarn strength. After abrasion test, the residual strength of composite yarns remains above 80 %. The LOI value depends on the coverage degree of oxidized fiber outside the yarn surface, and there tended to be a lower LOI value with finer yarn count (Tex). Overall, the T/O composite yarn with uniform distribution structure can provide high performance and flame-retardancy.  相似文献   

13.
Although high performance fibers possess higher thermal resistant properties, they show very low sunlight stability. In this paper, a new sol-gel treatment method was used to enhance their light-resistant properties. Their mechanical property retention ratios (tenacity, extension, modulus) of fibers treated with titanium hydrosol were higher than those of the original Kevlar®129, PBO, and Kermel® fibers after light irradiation. Moreover, Kermel® fiber showed the highest improvement among the three kinds of fibers.  相似文献   

14.
Comfort is one of the most important aspects of clothing. Thermal comfort is related to fabric’s ability to maintain skin temperature and allow transfer of perspiration produced from the body. Properties like thermal resistance, air permeability, water vapor permeability, and liquid water permeability are suggested as critical for thermal comfort of clothed body. In this study the fabrics developed from the EliTe compact yarns are compared with the fabrics made from normal yarns. The thickness of the fabrics made from EliTe® compact yarns is also slightly less than the fabrics made from normal yarns. Fabrics made from EliTe® compact yarns have shown greater air permeability as compared to the fabrics made from normal yarns. It is observed that, thermal resistivity values of the fabrics developed from EliTe® compact yarns are lower than the fabrics made from normal yarns indicating they are cooler fabrics compared to normal fabrics. Fabrics developed from the EliTe® compact yarns have shown slightly higher values of MVTR (moisture vapor transmission rate) as compared to the fabrics made from the normal yarns. The wicking characteristic of fabrics developed from EliTe® compact yarns was slightly higher than the fabrics developed from normal yarns.  相似文献   

15.
Core spun yarns are applied for various purposes that especially require the multi-functional performance. This research reports on the core spinning effect on the yarn strength. We prepared various core yarns by combining different kinds of high tenacity filaments in core with cotton staples in sheath with various twist levels in the ring spin system. And the tensile strength was tested to investigate the contribution of the core-sheath structure to the core yarn strength. The influence of the twist level was also checked up on the relationship between the core-sheath structure and the yarn strength. Results turned out that the core-sheath weight ratio had influence on the tensile properties of the ring core-spun yarns in different ways according to the core filaments used for the yarn. Increasing the twists yielded a monotone decreasing strength for the aramid and the basalt core yarns, while the PET core yarns showed almost unchanged strength, which could be ascribed to the extensional property of the filaments.  相似文献   

16.
Cellulose acetate (CA) films containing anatase type titanium dioxide (TiO2) nanoparticles were prepared by solution casting. The film surface was modified by UV irradiation using a grid type UV irradiator. The UV irradiation caused slight increase in photodegradation of the CA films with TiO2 compared to the CA film alone. However, CA films irrespective of TiO2 content did not show a significant enzymatic degradation by a cellulase fromAspergillus niger without UV irradiation. Upon UV irradiation, the biodegradability remarkably improved even in the CA film without TiO2. The irradiation of CA films decreased both the water contact angle and the degree of substitution (DS) implying the decrease in acetyl groups of the CA film surface due to the photo-scission of the acetyl group and photooxidation, resulting in more facile biodegradation of the surface film layer. The substantial enhancement in biodegradation of the UV irradiated CA film containing TiO2 was attributed to the increased hydrophilicity, lowered DS and zeta potential due to the photoscission and the photooxidation effect of UV light. Also the increased surface area of the CA film due to the photocatalysis of TiO2 particles may encourage the facile biodegradation.  相似文献   

17.
The length and fineness of fibers are critical to the strength of yarns. Much research has been conducted on the issue in the past decades. Zeidman and Sawhney introduced a new parameter called strength efficiency (SE) of fibers in a yarn using an elaborate probabilistic method. Their final formula, a non-dimensional measure, describes the influence of the fiber length distribution on the strength of yarn. The result, however, is based on the assumption that the fibers are identical in all respects including their cross-sectional area. The influence of fiber fineness can not be seen in their formula. In fact the joint influence of fiber length and fineness is rarely studied. We derive a new strength efficiency of the joint influence of fiber length and fineness on the basis of Zeidman’s result. The conclusion is helpful to the understanding of the comprehensive influence of fiber length and fineness on the strength of yarn. Furthermore, we give a plausible method to estimate the critical length defined by Zeidman. The result can be applied to the research of the properties between fibers and yarns.  相似文献   

18.
Dimensional constants (k values) of single jersey fabrics made from LincLITE® and conventional yarns are calculated under dry, steam, full relaxation treatments. Fabrics were made under different tightness factors such as high, medium and low with different twist factors, twist directions and feeder blending. LincLITE® yarns made to get soft and bulkier effects with yarn count of 39 tex and conventional yarns made into 39 tex and 48 tex yarn counts. Various effects on K values are analysed using correlation coefficients. K-values are increased with relaxation progression and have shown some differences between in LincLITE® and conventional fabrics, and feeder blended fabrics. Loop shape factor is highly affected by tightness factor, relaxation and feeder blending in LincLITE® fabrics, whereas twist factor not significantly effects on loop shape factor in conventional fabrics. Stitch density significantly increases with relaxation in conventional fabrics and no significant effect shows with LincLITE® fabrics.  相似文献   

19.
In this study, spirality related mechanical properties such as torque, tensile and snarling tendency and their effect on spirality and skewness are investigated in single jersey structures made from soft and bulkier lincLITE® yarns and conventional wool yarns. Twist liveliness, snarling tendency, torque and residual torque, asymmetry of torque and tightness significantly effect the spirality and skewness of single jersey fabrics. Torques and residual torques and snarling tendency have positive and tightness factor has a negative correlation with skewness. Asymmetry of torque appeared to be proportional with an increase of torque and residual torques, but showed a negative correlation with torsional resilience. LincLITE® yarns showed better torsional properties nearly in all cases in concern of spirality. Tensile properties are nearly similar between lincLITE® and conventional yarns. Lower initial modulus and slightly higher coefficient of friction are exhibited by lincLITE® yarns over conventional yarns.  相似文献   

20.
Jute yarns were cured with acrylic acid (AA) and phosphoric acid (PA) using UV radiation in order to prepare selective ion adsorbent. A series of formulations were prepared in methanol containing varying percentages of (10–70 %) of AA and 2 % photo-initiator (PI) (Darocur-4043). jute yarns were soaked in this formulation for various soaking times (10–30 min) and cured under UV radiation of different intensities (20–50 UV passes). Concentration of AA, soaking time and intensity of UV radiation were optimized based on polymer loading (PL). The maximum PL (21 %) was observed for 50 % AA solution for 20 min soaking time at 40 UV passes. Various formulations were prepared using 5–15 % (w/w) of phosphoric acid, 50 % AA and 2 % PI in methanol. Then jute yarns were soaked in this solution for 20 min and irradiated at 40th UV pass. The concentration of PA was again optimized for maximum PL. It was found that the formulation containing 10 % PA, 50 % AA, 38 % methanol and 2 % PI showed 70.95 % of PL. To investigate the adsorbent behavior, a 10 ppm CuSO4 solution was prepared and then grafted yarns were soaked in the solutions for 30–300 min at different conditions. After withdrawing the yarns, the remaining copper in the solution were measured by atomic absorption spectrophotometer (AAS). It was revealed that copper was successfully removed by using the grafted jute yarns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号