首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Taxus chinensis and T. wallichiana in have been threatened in their distribution areas in recent decades because of their over-exploitation and reduction and destruction of native habitats. Determining the genetic diversity in populations of the two species will provide guidelines for their protection and preservation. Two hundred and fifteen trees from six populations of T. chinensis and 150 sampled trees of T. wallichiana were sampled. Six microsatellite primer pairs selected from 16 primer pairs were used to investigate genetic variation at the population and species levels. Five yielded polymorphic alleles, and among the 13 putative alleles amplified, 11 were polymorphic (accounting for 76.33 %).Shannon’s information index (I) and percentage of polymorphic bands (PPB) (I = 0.202 and PPB = 67.22 % for T. chinensis; I = 0.217 and PPB = 65.03 % for T. wallichiana). Both species had low levels of genetic diversity (mean H o = 0.107, H e = 0.121 for T. chinensis; H o = 0.095, H e = 0.109 for T. wallichiana). Genetic differentiation among populations was higher (F ST = 0.189) for T. chinensis and lower (0.156) for T. wallichiana, indicating limited gene flow (Nm) among populations for T. chinensis (0.68) and T. wallichiana (0.65). Variation among individuals of T. chinensis was 63.59 and 73.12 % for T. wallichiana. Thus, the threatened status of the two conifers is related to a lack of genetic diversity. All populations are isolated in small forest remnants. An ex situ conservation site should be established with a new population for these species that comprises all the genetic groups for the best chance to improve their fitness under environmental stresses.  相似文献   

2.
We applied under pot-culture conditions and the double-casing pot method to study the characteristics of photosynthetic gas exchange and chlorophyll fluorescence in the leaves of Physocarpus amurensis Maxim (PA) and Physocarpus opulifolius under flooding stress. Our results indicate a significantly higher flooding tolerance of P. opulifolius compared to P. amurensis. Especially in P. amurensis, the limitation of non-stomatal factors played a major role in the advanced stages of flooding stress, observed as a rapid increase of the intercellular CO2 concentration (C i) and a decrease of the stomatal limitation value (L s). The maximal PSII photochemical efficiencies (F v/F m) and actual photochemical efficiency (Ф PSII) in the leaves of P. opulifolius were significantly higher, and the extent of decrease during the flooding process was smaller than in P. amurensis. In addition, the non-chemical quenching (NPQ) in the leaves of P. opulifolius significantly increased from the 10th day under flooding stress, while the variation of NPQ in the leaves of P. amurensis was much smaller. This indicates that the leaves of P. opulifolius had not only higher PSII photochemical activity, but also improved tolerance to flooding stress, which may be caused by its ability to dissipate excess excitation energy by starting NPQ. At the 16th day under flooding stress, the P IABS significantly decreased with greater extent of decrease than F v/F m in the leaves of both Physocarpus, but the decreasing extent of P IABS in P. opulifolius was significantly smaller than in P. amurensis. In the 16th day under flooding stress, the fluorescence at J and I point (V J and V I) in P. amurensis were significantly higher, and the extent of increase in V J was greater than V I. However, the variations of V J and V I in the leaves of P. opulifolius were smaller, suggesting that the damage sites of flooding stress to PSII in the leaves of P. amurensis were mainly located in the electron transport process from QA at the PSII receptor side to QB. Flooding stress reduced the proportion (φE o ) of luminous energy absorbed by the PSII reaction center for the electron transport following Q A ? , while the maximum quantum yield (φD o) of non-photochemical quenching increased. However, the TRo/RC and ETo/RC in the leaves of P. amurensis decreased accompanied by a dramatic increase of energy (DIo/RC) from the dissipation in the reaction center. This further indicated that the function of the PSII reaction center in the leaves of P. amurensis was significantly lower than in P. opulifolius.  相似文献   

3.
Pieris japonica is a poisonous tree species that is rarely eaten by herbivorous animals, a fact that could enable the expansion of its distribution range and influence ecosystems into which it encroaches. In a regional-scale study, 300 P. japonica trees from 13 populations were sampled at the University of Tokyo Chichibu Forest, Japan, and were analyzed using 11 microsatellite markers. Genetic differentiation among the populations was low (F ST = 0.022 and G′ ST = 0.024). A plot (30 × 30 m) was established for a fine-scale study, in which all P. japonica trees and saplings were measured and genetically analyzed using the microsatellite markers. Using this approach, we detected 84 genotypes among the 121 P. japonica trees in the plot. A few genotypes had expanded by more than 5 m, indicating that the ability to reproduce asexually could facilitate P. japonica trees to remain in a given location. Autocorrelation analysis showed that the extent of nonrandom spatial genetic structure was approximately 7.0 m, suggesting that seed dispersal was limited. KINGROUP analyses showed that 44 genotype pairs were full siblings, 23 were half-siblings, and 40 were parent-offspring. Only 32 seedlings were observed, of which 15 had reproduced asexually. The number of P. japonica trees has been increasing gradually for more than half a century in our study areas.  相似文献   

4.

Key message

Historic transfer of larch from Alpine sources to Southern and Eastern Carpathians has been verified by means of nuclear genetic markers. Tyrolean populations can be differentiated into a north-western and south-eastern group, while Romanian populations are separated according to the Southern and Eastern Carpathians. Low-level introgression from Alpine sources is found in autochthonous Carpathian populations.

Context

Large scale human mediated transfer of forest reproductive material may have strongly modified the gene pool of European forests. Particularly in European larch, large quantities of seeds from Central Europe were used for plantations in Southern and Eastern Europe starting in the mid nineteenth century.

Aims

Our main objective was to provide DNA marker based evidence for the anthropogenic transfer of Alpine larch reproductive material to native Carpathian populations.

Methods

We studied and compared 12 populations (N?=?771) of Larix decidua in the Alps (Austria, Italy) and in the Southern and Eastern Carpathians (Romania) using 13 microsatellites.

Results

High genetic diversity (He?=?0.752; RS?=?9.4) and a moderate genetic differentiation (FST?=?0.13; GST?=?0.28) among populations were found; Alpine and Carpathian populations were clearly separated by clustering methods. A Tyrolean origin of plant material was evident for one out of four adult Romanian populations. In the transferred population, a genetic influence from Carpathian sources was found neither in adults nor in juveniles, while the natural regeneration of two Romanian populations was genetically affected by Alpine sources to a minor degree (2.2 and 2.9% allochthonous individuals according to GeneClass and Structure, respectively).

Conclusion

Tracing back of plant transfer by means of genetic tools is straightforward, and we propose further studies to investigate gene flow between natural and transferred populations.
  相似文献   

5.

Key message

Seedling ontogeny exerted a greater influence on physiological activity of Quercus rubra seedlings than genetics; thus, it may be more important to use an appropriate growth index to account for seedling ontogeny in experiments than to control for genetic variation.

Context

Members of the genus Quercus exhibit semi-determinate growth, resulting in complex and developmentally variable endogenous physiological patterns. The Quercus morphological index (QMI; Hanson et al. Tree Physiol. 2:273-281, 1986) was developed as a tool to relate physiological patterns to morphologically identifiable ontological stages, thereby allowing for treatment or measurement of seedlings at uniform ontological stages rather than strictly by chronology.

Aims

Although clear physiological patterns relative to seedling ontogeny have been observed using the QMI in pre-transplant half-sibling seedlings, we sought to determine whether physiological patterns remain consistent across genotypes within a species.

Methods

We examined net photosynthesis, transpiration, leaf chlorophyll concentrations, and chlorophyll fluorescence (F v /F m ) throughout the first flush after transplant for northern red oak (Quercus rubra L.) seedlings from three half-sibling families.

Results

Neither net photosynthesis nor transpiration rates varied by family, whereas leaf chlorophyll concentrations and F v /F m differed significantly. Despite family differences for magnitudes of some parameters, no interactions between QMI growth stage and family were observed, and patterns of all parameters relative to growth stage were consistent across families. Net photosynthetic rates, transpiration rates, and F v /F m increased during the flush, while leaf chlorophyll concentration decreased, suggesting that chlorophyll synthesis is not a limiting factor during leaf maturation in this species.

Conclusion

Findings indicate that QMI-based physiological patterns may be at least regionally applicable within a given Quercus species.
  相似文献   

6.
Picea crassifolia and P. wilsonii, commonly used for afforestation in northern China, are increasingly likely to be subjected to high temperatures and soil drought stress as a result of global warming. However, little is known about the effects of these stresses on foliar photosynthesis in the two species. To investigate how photosynthetic characteristics and sensitivity respond to prolonged high temperatures and soil drought, foliar gas exchange and other closely related parameters were recorded from four-year-old seedlings of both species. Seedlings were grown under two temperature treatments (25/15 and 35/25 °C) and four soil water regimes [80, 60, 40 and 20% of maximum field capacity (FC)] for 4 months. Although all treatments significantly reduced photosynthetic rates (P n) of both species, P. crassifolia exhibited greater photosynthetic acclimation than P. wilsonii. Differences in photosynthetic acclimation were mainly related to variations in stomatal conductance (Cond) and the maximum quantum yield of PSII (F v/F m) between treatments. Indeed, higher Cond and F v/F m in all treatments were shown for P. crassifolia than for P. wilsonii. Moreover, photosynthesis in P. crassifolia exhibited inherently lower temperature sensitivities (broader span for the temperature response curves; lower b) and higher thermostability (invariable b between treatments). Further, severe drought stress (20% FC) limited the survival of P. wilsonii. Our results indicate that P. wilsonii is more susceptible to high temperatures and soil drought stress. Planting P. crassifolia would be more expected to survive these conditions and hence be of greater benefit to forest stability if predicted increases in drought and temperature in northern China occur.  相似文献   

7.
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture, soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa (Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate (P N), stomatal conductance (g s), and water-use efficiency (W UE) in the seedlings exhibited a clear threshold response to the relative soil water content (R SWC). The highest P N and W UE occurred at R SWC of 51.84 and 64.10%, respectively. Both P N and W UE were higher than the average levels at 39.79% ≤ R SWC ≤ 73.04%. When R SWC decreased from 51.84 to 37.52%, P N, g s, and the intercellular CO2 concentration (C i) markedly decreased with increasing drought stress; the corresponding stomatal limitation (L s) substantially increased, and nonphotochemical quenching (N PQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II (PSII) in the form of heat, and the reduction in P N was primarily due to stomatal limitation. While R SWC decreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry (F v/F m) and the effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (q P), and N PQ; in contrast, minimal fluorescence yield of the dark-adapted state (F 0) increased markedly. Thus, the major limiting factor for the P N reduction changed to a nonstomatal limitation due to PSII damage. Therefore, an R SWC of 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% ≤ R SWC ≤ 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F. suspensa.  相似文献   

8.
Information on population genetic structure and crop genetic diversity is important for genetically improving crop species and conserving threatened species. The PAL gene sequence is part of a multigene family that can be utilized to design DNA marker systems for genetic diversity and population structure investigation. In the current study, genetic diversity and population structure of 100 accessions of wild Pistacia species were investigated with 78 PAL markers. A protocol for using PAL sequences as DNA markers was developed. A total of 313 PAL loci were recognized, showing 100% polymorphism for PAL markers. The PAL markers produced relatively more observed and effective alleles in Pistacia falcata and Pistacia atlantica, with a higher Shannon’s information index and expected heterozygosity in P. atlantica, Pistacia vera and Pistacia mutica. Pairwise assessment of Nei’s genetic distance and genetic identity between populations revealed a close association between geographically isolated populations of Pistacia khinjuk and Pistacia chinensis. The accessions of wild Pistacia species had more genetic relationship among studied groups of species. Analysis of molecular variance indicated 19% among-population variation and 81% within-population variation for the PAL gene based DNA marker. Population structure analysis based on PAL revealed four groups with high genetic admixture among populations. The results establish PAL markers as a functional DNA marker system and provide important genetic information about accessions from wild populations of Pistacia species.  相似文献   

9.
  • ? Microsatellite markers were used to describe the genetic structure and variability of early, intermediate and late phenological forms of European beech (Fagus sylvatica L.). Two hundred and seventy individuals from three populations located in southern Poland were divided into three forms according to the phenological criterion — bud burst, and analyzed for allelic variation at five highly polymorphic microsatellite loci.
  • ? Population differentiation was moderate and differed significantly among phenological forms. Average values of F ST and R ST decreased across phenological forms and amounted to F ST values of 0.135, 0.110 and 0.108 and R ST values of 0.365, 0.231 and 0.098 for early, intermediate and late forms of beech, respectively.
  • ? Analysis of Molecular Variance (AMOVA) revealed different genetic structures characteristic of respective phenological forms of beech. The amount of within-population variability increased with the delay of the beginning of vegetation and amounted to 64%, 77% and 90% of total variability, depending on phenological form. A similar trend was found in average pairwise genetic distance between individuals belonging to a given phenological form (11.78, 11.85 and 12.22, from early to late forms).
  • ? Our results demonstrate the importance of late spring frosts as a factor influencing the genetic structure of beech, and as a cause of the decrease in genetic variability as well as the increase in population differentiation proportional to the degree of phenological earliness.
  •   相似文献   

    10.
    11.
    The natural resistance of Erythrophleum fordii Oliver wood to degradation by Phanerochaete sordida and Phanerochaete chrysosporium white-rot fungi was investigated. In this study, Fagus crenata Blume (Japanese beech) was selected as reference species. The results showed that both fungi caused less than 2% mass loss in E. fordii wood, while the degradation of beech wood produced by P. chrysosporium and P. sordida was approximately 12 and 14%, respectively. Microscopic observations revealed high structural rigidity of E. fordii timber. Hyphae were only observed in the lumen of vessels and parenchymal cells, while the fibers were not affected. The E. fordii wood fiber consisted of highly lignified thick-walled fibers with the fiber lumina almost completely closed. Two-dimensional heteronuclear single-quantum coherence nuclear magnetic resonance evaluation revealed the E. fordii wood to have a highly condensed-lignin structure that reflected by the durability classes. These unique parameters are likely to be critical for the high natural resistance of E. fordii.  相似文献   

    12.
    This study quantified variations within tree stems in tangential shrinkage (αT), radial shrinkage (αR), and tangential/radial shrinkage ratio (αT/αR) of Melia azedarach grown in two different sites in northern Vietnam. The overall values of αT, αR, and αT/αR were 7.05%, 4.38%, and 1.64, respectively. The variation pattern in αT and αR was found to increase gradually from pith to bark and this trend was similar on both sites. In radial direction, the αT/αR decreased significantly from 10 to 50% of the radial length from pith before approaching a constant value toward the outside. The transverse shrinkage variation with height was very small and without statistical significance. There were strong positive relationships between transverse shrinkage and basic density (BD). This implies that the selection for high wood density may lead to increase wood transverse shrinkage. In addition, the αT and αR had significant positive linear relationships with both acoustic wave velocity (VL) and dynamic modulus of elasticity of log (DMOElog). This result suggests that it might be possible to sort lumber with large transverse shrinkage by stress wave method for M. azedarach planted in northern Vietnam.  相似文献   

    13.
    14.
    Our previous studies have revealed that the ThCAP gene plays a vital role in transgenic Populus (P. davidiana × P. bolleana) in response to cold stress. However, the regulatory mechanism of ThCAP gene expression has been unclear. In this study, the 5′ flanking region of the ThCAP promoter (PThCAP) was cloned using a genome-walking method. By analyzing cis-acting regulatory elements of PThCAP, a DRE motif and MYC and MYB elements were found to be located in the promoter. To identify the regulatory elements that control the expression of the ThCAP gene promoter, a series of deletion derivatives of PThCAP, P1–P5, from the translation start code (?1538, ?1190, ?900, ?718 and ?375 bp), were fused to the GUS reporter gene, and then each deletion was stably introduced into Arabidopsis thaliana plants. Deletion analysis of the promoter suggested that only the P2 fragment had strong GUS expression in leaves and roots of A. thaliana exposed to low temperature stress. These results suggest that this 290-bp region (?1190 to ?900 bp), as an important part in PThCAP, was associated with cold tolerance of A. thaliana. Our results provide evidence for the regulatory mechanism of ThCAP gene involved in the response to cold stress, and that the gene is promising candidate gene for genetic improvement of crops.  相似文献   

    15.
    Betula luminifera is a commercial tree species that is emerging as a new model system for tree genomics research. A draft genomic sequence is expected to be publicly available in the near future, which means that an explosion of gene expression studies awaits. Thus, the work of selecting appropriate reference genes for qPCR normalization in different tissues or under various experimental conditions is extremely valuable. In this study, ten candidate genes were analyzed in B. luminifera subjected to different abiotic stresses and at various flowering stages. The expression stability of these genes was evaluated using three distinct algorithms implemented using geNorm, NormFinder and BestKeeper. The best-ranked reference genes varied across different sample sets, though RPL39, MDH and EF1a were determined as the most stable by the three programs among all tested samples. RPL39 and EF1a should be appropriate for normalization in N-starved roots, while the combination of RPL39 and MDH should be appropriate for N-starved stems and EF1a and MDH should be appropriate in N-starved leaves. In PEG-treated (osmotic) roots, MDH was the most suitable, whereas EF1a was suitable for PEG-treated stems and leaves. TUA was also stably expressed levels in PEG-treated plants. The combination of RPL39 and TUB should be appropriate for heat-stressed leaves and flowering stage. For reference gene validation, the expression levels of SOD and NFYA-3 were investigated. This work will be beneficial to future studies on gene expression under different abiotic stress conditions and flowering status in B. luminifera.  相似文献   

    16.
    Northern hardwood stands, notably those with American beech (Fagus grandifolia Ehrh), sugar maple (Acer saccharum Marsh.), and yellow birch (Betula alleghaniensis Britton), are abundant across the forested landscapes of northeastern USA and southeastern Canada. Recent studies have reported an increasing dominance of American beech in the understory and midstory of these forests. Beech is a commercially less desirable tree species due to its association with beech-bark disease, and because it commonly interferes with the regeneration of other more desirable tree species. We examined hardwood regeneration characteristics nine years after application of a 3 × 4 factorial combination of glyphosate herbicide (0.56, 1.12, and 1.68 kg ha?1) and surfactant concentrations (0.0, 0.25, 0.5, and 1.0% v v?1) to release sugar maple regeneration from beech-dominated understories using three stands that received shelterwood seed cutting in central Maine. Measurements nine years after treatment showed that glyphosate rate increased both absolute (AD) and relative density (RD) of sugar maple regeneration, but not its height (HT). In contrast, beech AD, RD, and HT were all significantly reduced with increasing glyphosate rate. Post-release browsing by ungulates and a high residual overstory basal area resulted in reduced sugar maple HT. Our results indicated that glyphosate herbicide applied in stands that have been recently shelterwood seed cut can significantly increase the abundance of sugar maple regeneration. However, subsequent browsing damage combined with the negative influence of the residual overstory cover can limit the longer-term benefit of understory herbicide treatments. Subsequent removal of the overstory and browsing-control measures may be needed to promote sugar maple regeneration over beech in similar northern hardwood stands.  相似文献   

    17.
    Understanding the variation of mating patterns in disturbed habitats provide insight into the evolutionary potential of plant species and how they persist over time. However, this phenomenon is poorly understood in tropical dryland tree species. In the present study, we investigated how Acacia senegal reproduces in two different environmental contexts in Kenya. Open-pollinated progeny arrays of 10 maternal trees from each environmental context were genotyped using 12 nuclear microsatellite markers. Overall, A. senegal displayed a predominantly allogamous mating pattern. However, higher multilocus outcrossing rate (tm) was found in Lake Bogoria (tm = 1.00) than in Kampi ya Moto population (tm = 0.949). Higher biparental inbreeding (t m  ? t s  = 0.116) and correlation of outcrossed paternity (rp = 0.329) was found in Kampi ya Moto than in Lake Bogoria population (t m  ? t s  = 0.074, rp = 0.055), showing the occurrence of mating among relatives. Coefficient of coancestry (Θ = 0.208) showed that full-sibs constitute about 21% of the offspring in Kampi ya Moto population compared to about 14% (Θ = 0.136) in Lake Bogoria population. The results demonstrate that low adult tree density of A. senegal may be promoting seed production through consanguineous mating and suggest that man-made disturbance can affect mating patterns of the species. Despite these mating differences, trees from both populations can contribute as seed source for conservational plans, and to support effective genetic conservation and artificial regeneration programs of A. senegal. We suggest collection of seeds from at least 42 and 63 trees in Lake Bogoria and Kampi ya Moto populations, respectively, to retain a progeny array with a total effective population size of 150.  相似文献   

    18.
    Soil moisture is a major limiting factor for plant growth on shell ridge islands in the Yellow River Delta. However, it is difficult to carry out situ experiment to study dominant plant photosynthesis physiological on the shell ridge islands under extreme soil water stress. To evaluate the adaptability of plants to light and moisture variations under extreme soil moisture conditions present on these islands, we measured photosynthetic gas exchange process, chlorophyll fluorescence, and stem sap flow variables for 3-year-old trees of Tamarix chinensis Lour, a restoration species on these islands, subjected to three types of soil water levels: waterlogging stress (WS), alternating dry–wet (WD), and severe drought stress (SS) to inform decisions on its planting and management on shell ridge islands. Gas exchange, chlorophyll fluorescence, and stem sap flow in T. chinensis were then measured. Net photosynthetic rate (P N), transpiration rate (E), and water use efficiency (W UE) were similar under WS and alternating dry–wet conditions, but their mean E and W UE differed significantly (P < 0.05). Under SS, the P N, E and W UE of T. chinensis leaves varied slightly, and mean P N, E and W UE were all low. Apparent quantum efficiency (A QY), light compensation point (L CP), light saturation point (L SP), and maximum net photosynthetic rate (P Nmax) of leaves were not significantly different (P > 0.05) under WS and dry–wet conditions; however, under extreme drought stress, compared with the dry–wet conditions, L CP was higher, L SP was lower, and A QY and P Nmax were both at the lowest level. Therefore, drought stress weakened light adaptability of leaves, and the efficiency of light transformation was poorer. (3) Maximum photochemical efficiency (F v/F m) and the actual photochemical efficiency (Φ PSII) were similar under waterlogged stress and dry–wet conditions, indicating a similar healthy photosynthetic apparatus and photosynthetic reaction center activity, respectively. Under SS, F v/F m was 0.631, and the coefficient of non-photochemical quenching (N PQ) was 0.814, which indicated that while the photosynthetic mechanism was damaged, the absorbed light energy was mainly dissipated in the form of heat, and the potential photosynthetic productivity was significantly reduced. The daily cumulants of sap flow of T. chinensis under dry–wet alternation and severe drought stress were 22.25 and 63.97% higher, respectively, than under waterlogging stress. Daily changes in sap flow velocity for T. chinensis differed under the three soil water levels. Stem sap flow was weak at night under severe drought stress. Under dry–wet alternation, daytime average stem sap flow velocity was the highest, and night stem flow accounted for 10.26% of the day cumulants, while under waterlogged stress, the average nightly stem flow velocity was the highest, accounting for 31.82% of the day cumulants. These results provide important information for regional vegetation restoration and ecological reconstruction.  相似文献   

    19.
    Within-stem variations in the mechanical properties of 17–19-year-old Melia azedarach planted in two sites in northern Vietnam were examined by destructive and nondestructive methods. Wood samples were collected from 10, 50, and 90% of the radial length from pith on both sides (North and South) at 0.3, 1.3, 3.3, 5.3, and 7.3 m heights above the ground. The mean values in whole trees of wood density (WD), modulus of rupture (MOR), modulus of elasticity (MOE), and dynamic modulus of elasticity (Ed) at 12% moisture content were 0.51 g/cm3, 78.58 MPa, 9.26 GPa, and 10.93 GPa, respectively. Within the stem, the radial position was a highly (p?<?0.001) significant source of variation in mechanical properties. MOR, MOE, and Ed increased from pith to bark. WD had a strong positive linear relationship with both MOR (r?=?0.85, p?<?0.001) and MOE (r?=?0.73, p?<?0.001). This suggests that it is potentially possible to improve mechanical properties through controlling WD. MOR had also a strong linear relationship with Ed (r?=?0.84, p?<?0.001). This indicates that Ed is a good indicator to predicting the strength of wood if the density of measured element is known. Besides, the stress wave method used in this study provides relatively accurate information for determining the stiffness of Melia azedarach planted in northern Vietnam.  相似文献   

    20.
    In the Los Tuxtlas Biosphere Reserve, Veracruz, México, managers and farmers of two communities have promoted the cultivation of Chamaedorea hooperiana amid primary forest (PF) on the assumption that this would provide viable economic income while contributing to forest sustainability. The aim of this study was to test whether or not C. hooperiana is able to grow in PF without canopy management, and to compare its growth pattern to the one observed in secondary forest (SF) (acahual) managed by farmers. The performance of C. hooperiana was evaluated for nearly a thousand days in patches of forest from two communal lands dedicated to palm extraction. The results indicate that the palms grew four to five times faster in the SF than in the PF, although the number of leaves was only about one-and-a-half times greater. Also, a different growth pattern was detected at each site in terms of plant height and length of leaves, i.e., allometric growth was negative in the PF (the length of leaves increased more slowly than the height of the palms) and positive in the SF (length of leaves increased faster than the height of the palms). It was concluded that although C. hooperiana may be defined as a shade-tolerant plant species growing best under intermediate light, seedlings will not grow under a closed canopy of PF, except at those gaps with enough light. Growing the Mayan palm under SF opens up the possibility of rehabilitating deforested areas.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号