首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
为明确青海春小麦品种‘青春38’成株期抗条锈性的遗传基础,以‘青春38’为父本与感病春小麦品种‘Taichung 29’(T29)杂交构建F2∶3代分离群体。在青海西宁和互助两地田间病圃进行了抗条锈性鉴定,应用植物数量性状主基因+多基因混合遗传模型单个分离世代分析方法,解析‘青春38’的抗条锈性遗传特点。结果表明,‘青春38’/‘T29’F2∶3群体单株的病害严重度和反应型在两个试验点均未呈现连续性分布,也不符合正态分布,初步推测‘青春38’对小麦条锈病的成株期抗性具有质量性状特征;以严重度或反应型数据进行遗传分析,‘青春38’在两个试验点对小麦条锈病的成株期抗性表现的最优遗传模型均属2对主基因遗传,只是主基因的作用方式(C-1:2MG-ADI加性-显性-上位性,C-4:2MG-EA等加性,C-6:2MG-EEAD等显性)有所不同。  相似文献   

2.
小麦条锈病是小麦生产上重要的气传叶部病害。不断发掘和利用新抗源是持续控制条锈病流行危害的重要基础研究工作。‘老白麦’是我国小麦农家品种,对我国当前主要流行小种和致病类型均表现为高抗水平。本研究采用常规杂交分析方法,对‘老白麦’及其与感病品种‘Taichung 29’的杂交后代在成株期和苗期分别接种CYR32号小种和CYR33号小种,进行抗条锈性鉴定和统计分析。结果表明,‘老白麦’对CYR33号小种在苗期和成株期均表现近免疫,其全生育期抗条锈性由1对显性基因控制;对CYR32号小种在成株期表现近免疫,苗期表现高感,成株抗条锈性由1对显性基因控制,属细胞核遗传。研究结果表明‘老白麦’至少含有2对显性抗病基因,分别控制‘老白麦’对CYR33号小种的全生育期抗性和对CYR32号小种的成株抗性。基因推导分析认为‘老白麦’对CYR33的全生育期抗性基因可能为未知新基因。建议在抗病育种中加以有效合理利用,促进小麦品种中抗病基因多样化布局。  相似文献   

3.
小麦条锈病是小麦生产中最重要的病害,培育抗病品种是防治条锈病最经济、有效、安全的措施。‘Cham-plein’引自法国,对条锈菌生理小种表现良好持久抗性。为了明确其抗性遗传特点,以感病品种‘铭贤169’与其杂交、自交和回交获得了F1、F2、F3和BC1代,人工接种小麦条锈菌生理小种CY32,在温室和田间对‘Champlein’进行遗传分析。结果表明:苗期‘Champlein’对CY32的抗病性由1对显性基因控制;成株期‘Champlein’对CY32的抗病性由2对显性和1对隐性抗条锈病基因以互补方式控制;系谱分析表明基因可能来源于‘Vilmorin27’。  相似文献   

4.
小麦条锈病是小麦生产中最重要的病害,培育抗病品种是防治条锈病的有效措施。小麦品系P81在苗期和成株期对当前流行的条锈菌小种条中30、31和32均表现免疫。以感病品种川麦28、Taichung29作母本,P81作父本通过杂交分别配制了F1、F2和BC1、BC2代,用人工接种方法研究P81及其杂交后代对条中32号的苗期抗性并进行了遗传分析;同时,将P81分别与含有抗条锈基因的Yr5、Yr10、Yr15、Yr26材料进行杂交配制F2,用条中32号小种对其F2进行抗感鉴定,确定抗性基因的等位性。结果表明,P81与川麦28、Taichung29杂交F1代植株对条锈菌条中32号小种表现出与P81相似的高抗,说明P81中的抗条锈基因为显性表达。根据P81与川麦28、Taichung29杂交的F2、BC1、BC2代植株的抗性分离情况及F1代植株及亲本的抗性表现,说明P81对条中32号的抗性由1对显性抗条锈病基因控制;用条中32号小种接种鉴定P81与已知抗锈基因Yr5、Yr10、Yr15、Yr26构建的F2群体时均出现了感病植株,说明P81中的抗条锈病基因与Yr5、Yr10、Yr15、Yr26不相同;系谱分析表明,该基因来源于叙利亚普通小麦品系叙29。  相似文献   

5.
我国小麦农家品种‘小红芒’成株抗条锈性遗传分析   总被引:1,自引:0,他引:1  
小麦农家品种是宝贵的种质资源,具有丰富的等位基因变异。我国农家品种‘小红芒’具有成株抗条锈性的特点,可抗我国当前主要流行小种。采用常规杂交分析方法,通过‘小红芒’与感病品种‘Taichung29’杂交、自交和回交,获得F1、F2和BC1代。在田间成株期接种条锈菌CYR32,对其双亲及杂交后代进行了抗病性鉴定和统计分析。结果表明,‘小红芒’对CYR32的成株抗条锈性是由1对隐性抗条锈性基因控制。建议在今后抗病育种中加以有效利用。  相似文献   

6.
小麦条锈病是长期威胁我国小麦生产安全的重要气传病害。由于病原菌(Puccinia striiformis f.sp.tritici,Pst)群体毒性结构高度变异,我国小麦条锈病防治工作经常面临严峻挑战。培育和广泛利用抗病品种是防治小麦条锈病最为经济有效的措施。因此,鉴定抗源和探究持久抗病基因型的遗传模式能为抗病育种提供抗病新基因和理论指导,具有重要意义。我国部分持久抗条锈病的小麦品种和新育成抗病品系的抗性遗传特点尚未明确,本研究中以这些抗病品种或品系作父本,高感病品种‘Taichung 29’或‘铭贤169’作为母本进行有性杂交,构建遗传群体,在成株期利用条锈菌优势小种CYR32进行接种鉴定,分析其抗病性遗传组分及遗传特点。在10个持久抗条锈病品种中,多数品种(8个)由1对或2对隐性遗传基因控制;6个新育成抗病品系中,多数(4个)含有单个抗病基因,隐性或显性遗传偏向性不明显。因此,隐性遗传抗病基因在持久抗条锈病品种中发挥更重要的作用。另外,新育成品系‘WJ10-97’对CYR32号小种具有慢条锈性特点,可作为新抗源用于小麦品种选育。  相似文献   

7.
为明确春小麦品种墨波成株期抗条锈性遗传基础,以墨波与感病品种Taichung29(T29)杂交创建F_(2∶3)分离群体,通过青海西宁市和海东市2个试验点2年田间病圃鉴定,应用植物数量性状主基因+多基因混合遗传模型单个分离世代分析方法对墨波/T29 F2群体的抗性遗传效应进行了分析。结果发现群体单株/家系的病害严重度和反应型在2个试验点均未呈现连续性分布,但是在不同区段内,群体株系间又表现出较明显的连续性变异,初步推测,墨波成株期对小麦条锈病抗性具有由主效基因和微效基因共同控制的特征;遗传分析结果表明,墨波的成株期抗条锈性最优遗传模型均为2对主基因遗传,并受微效基因影响,在海东市试验点用反应型数据分析得到的最优遗传模型为C-6模型2MG-EEAD,即2对等显性主基因遗传,在海东市及西宁市试验点用严重度数据分析得到的最优遗传模型均为C-1模型2MG-ADI,即2对主基因加性-显性-上位性遗传。  相似文献   

8.
冬小麦品种‘兰天23号’苗期抗条锈性遗传分析   总被引:1,自引:0,他引:1  
2014年在甘肃省农业科学院植物保护研究所兰州温室,进行了‘兰天23号’/‘铭贤169’组合的亲本及其F1、F2、BC1代对条锈菌主要流行小种CYR32、CYR33及新菌系G22-9的遗传分析。结果表明,接种CYR33,F2代植株抗感分离比为144R∶54S,符合3R∶1S的理论比值;接种CYR32,F2代植株抗感分离比为62R∶22S,符合3R∶1S的理论比值;接种G22-9,F2代植株抗感分离比为85R∶24S,符合3R∶1S的理论比值;F1代植株对供试菌系均表现免疫,BC1代植株抗感分离比均符合1R∶1S的理论比值,表明‘兰天23号’对3个供试条锈菌系的抗病性均由1对显性抗性基因控制。通过系谱分析推知,该抗病基因来源于抗病亲本‘SXAF4-7’。  相似文献   

9.
辣椒疫病抗性资源‘CM334’的抗性遗传分析   总被引:1,自引:0,他引:1  
采用经典遗传分析方法,对来源于美国辣椒疫病抗性资源 ‘CM334’的疫病抗性遗传规律进行了研究。试验将‘CM334’与疫病高感自交系‘949’配制杂交组合,并构建杂交组合的6个世代(P1,P2,F1,F2,B1和B2),用苗期伤根灌根接种法对其各世代群体植株进行抗性鉴定, 并进行χ2的适合性测验。结果表明: ‘CM334’的抗疫病性状遗传符合一对显性基因控制模式。  相似文献   

10.
普通野生稻抗源对细菌性条斑病的抗性遗传分析   总被引:2,自引:0,他引:2  
用感细菌性条斑病品种9311为母本,4个普通野生稻抗源DY3、DY16、DY17、DY20为父本,组配了9311/DY3、9311/DY16、9311/DY17和9311/DY204个组合的F1、F2和B1C1群体。在水稻分蘖期,用广西细菌性条斑病菌优势致病型菌株JZ28,以针刺法对各世代进行接种鉴定和遗传分析。结果表明,对DY3,F2群体抗感分离比为39∶544,卡方测验x2=0.1245x02.05,1,符合1R∶15S的理论比例;对DY16,F2群体抗感分离比为94∶343,卡方测验x2=2.655x02.05,1,符合1R∶3S的理论比例;对DY17,F2群体抗感分离比为41∶501,卡方测验x2=1.382x20.05,1,符合1R∶15S的理论比例;对DY20,F2群体抗感分离比为43∶489,卡方测验x2=2.745x02.05,1,符合1R∶15S的理论比例。结合各个组合F1和B1C1植株对细菌性条斑病表现为感至高感,据此推知DY3、DY17、DY20的抗性由2对隐性抗性基因控制;DY16的抗性由1对隐性抗性基因控制。  相似文献   

11.
小麦新品种川麦42抗条锈病性遗传分析   总被引:10,自引:2,他引:10  
条锈病是我国小麦最重要的病害之一,严重威胁小麦生产。川麦42是利用硬粒小麦-节节麦人工合成的高抗条锈病小麦新品种。为明确川麦42抗条锈性遗传基础,将川麦42分别与高感条锈小麦品种绵阳26、绵阳335杂交和回交,获得杂交F1、F2、BC1群体,其中,川麦42×绵阳26、川麦42×绵阳335F2群体分别为208和337株,川麦42/绵阳26//绵阳26、川麦42/绵阳335//绵阳335BC1群体分别为171和216株用于抗性遗传分析。利用条锈菌小种条中32号(CYR32)对抗感杂交的F1、F2和BC1群体接种,结果显示,所有F1代对条中32都表现免疫或高抗,F2代群体中抗∶感分离比例均符合3R∶1S理论比例,BC1群体抗∶感分离比也符合1R∶1S理论比例,说明川麦42对条中32的抗性由1对显性基因控制。  相似文献   

12.
美国小麦种质资源IR35抗条锈性评价及遗传分析   总被引:1,自引:0,他引:1  
2006-2011年对美国小麦种质资源材料‘IR35’进行了抗条锈病评价及遗传分析。结果发现,‘IR35’在苗期、成株期均表现中度抗病,苗期基因推导分析发现该品种含有未知抗条锈病基因;遗传分析表明‘IR35’对条锈菌条中32号的抗病性由1对显性基因控制,对条中33号的抗病性由1对隐性基因控制。‘IR35’可作为小麦抗条锈病资源材料进一步研究利用。  相似文献   

13.
 抗条锈病小麦新种质D31是以印度圆粒小麦(Triticum sphaerococcum Perc.)AS384与普通小麦品系94-3854杂交、回交选育而成的新品系。用中国小麦条锈病菌(Puccinia striiformis f.sp. stritici)流行生理小种条中32号对D31和Taichung29的杂交后代进行苗期及成株期抗条锈性遗传分析。结果表明,D31对生理小种条中32号表现为全生育期近免疫抗性反应,其抗性由1对隐性基因控制,暂命名为YrSph。利用BSA法对构建的F2遗传作图群体进行SSR标记分析。通过对400对微卫星引物的筛选和群体分析表明,抗性基因与 Xwmc149、Xwmc246、Xgwm372和Xwmc198 具有连锁关系,其中与 Xwmc246 标记连锁较近,遗传距离为8.8 cM。基因和标记之间的顺序为 Xwmc149-YrSph-Xwmc246-Xgwm372-Xwmc198 。根据作图结果,将D31所含的抗条锈病基因YrSph定位于2A短臂上。基于该基因的作图位置与系谱分析,认为该基因可能是1个新的抗条锈病基因。  相似文献   

14.
甘蔗褐锈病是一种重要的世界性甘蔗病害, 可造成巨大的经济损失?为明确甘蔗属长齿蔗茅‘云滇95-19’和‘云滇95-20’对甘蔗褐锈病的抗性遗传规律, 采用自交方法分别获得‘云滇95-19’和‘云滇95-20’自交F1代, 对亲本及其自交F1代进行了抗褐锈病基因Bru1的检测和褐锈病抗性鉴定?研究结果表明, ‘云滇95-19’和‘云滇95-20’及其自交F1代均未检测到Bru1基因, 两个自交F1代群体对褐锈病的抗性均出现了明显的3∶1的分离比, 证实了‘云滇95-19’和‘云滇95-20’对甘蔗褐锈病的抗性均由一对新的显性基因控制?本研究为挖掘和利用长齿蔗茅抗褐锈病基因资源奠定了基础, 对今后抗褐锈病品种的选育具有重要意义?  相似文献   

15.
[目的]对3份小麦农家品种‘矮秆芒麦’、‘红头麦’和‘大红头’进行苗期抗性的遗传分析,研究它们的抗白粉病遗传特点,为其在抗病育种中的有效利用提供依据.[方法]将这3份小麦农家品种分别与感病品种‘铭贤169’正、反杂交,获得了F1和F2代.利用白粉菌E09菌株,分别对这3份农家品种、感病亲本‘铭贤169’以及各自的F1和F2代植株进行抗性鉴定.调查统计的数据经卡方测验分析其符合度.[结果]这3份农家品种对白粉菌E09菌株的抗性均由1对隐性核基因控制.[结论]3份农家品种对石家庄本地区的混合白粉病菌表现出良好的抗性,并且对E09的抗性均由1对隐性基因控制.可以进一步对它们进行分子标记及定位研究,为其作为抗源在小麦抗白粉病育种中的应用奠定基础.  相似文献   

16.
小麦条锈菌鉴别寄主尤皮Ⅱ号抗条锈性遗传分析   总被引:9,自引:0,他引:9  
小麦品种尤皮Ⅱ号是重要的中国小麦条锈菌鉴别寄主.为研究尤皮Ⅱ号的抗条锈性遗传基础,将该品种分别与感病品种铭贤169及其它抗病品种杂交,获得各组合的F1、BC1和F2代群体.在温室对各组合亲本及F1、BC1和F2代群体进行了苗期抗性鉴定.结果表明,尤皮Ⅱ号对CY29菌系的抗性由两对隐性基因独立或重叠遗传控制;对CY23的抗性由两对显性基因互补遗传控制;对CY31的抗性亦由两对显性基因互补遗传控制,而对Su-1的抗性则由一对显性基因控制.抗CY29的两对基因不抗CY23、CY31和Su-1,因此将这两对基因暂定名为YrJu1和YrJu2.抗CY23的两对基因中,其中一对同时抗CY31和Su-1,该基因与Spaldings prolific中的一对基因等位或紧密连锁,将该基因暂定名为YrJu3;另一对则与抗引655中的一对抗性基因等位或紧密连锁,暂定名为YrJu4.YrJu1、YrJu2、YrJu3和YrJu4均与其它供试品种中的已知抗性基因不同.  相似文献   

17.
种植抗病品种是防治小麦条锈最经济有效且有利于环境保护的措施。2016年-2018年,在甘肃陇南两个不同生态区甘谷和汪川试验点对8个中梁系列冬小麦品种‘中梁25号’~‘中梁32号’进行了成株期抗条锈性分析,并在温室进行了苗期抗条锈病性评价。成株期抗条锈性鉴定结果表明:‘中梁25号’~‘中梁28号’对接种及自然诱发的条锈菌单孢菌系及混合菌均表现感病;‘中梁29号’对条锈菌CYR32、CYR33、中4-1表现抗病,对条锈菌CYR34和G22-14表现中抗~中感;‘中梁30号’~‘中梁32号’对供试条锈菌单孢菌系及混合菌表现免疫到中抗。抗条锈病基因检测发现:‘中梁26号’和‘中梁27号’含有抗病基因Yr9,‘中梁29号’含有抗病基因Yr26,其余品种含有未知抗条锈病基因。同时对后CYR34时期供试品种在甘肃陇南的利用前景进行了讨论。  相似文献   

18.
小麦品种C591的抗条锈性遗传分析   总被引:1,自引:0,他引:1  
李勇  牛永春 《植物保护》2006,32(6):39-41
C591是原产于印度的普通小麦品种,苗期和成株期均对中国小麦生产上流行的条锈菌(Puccinia striiformis f.sp.tritici)主要生理小种表现良好抗性。本文以感病品种Taichung29作母本、C591作父本通过杂交制备了F1代、F2代和BC1代种子,用人工接种方法研究了C591及其杂交后代对小麦条锈菌不同生理小种的苗期抗性并进行了遗传分析。结果显示,C591与Taichung29杂交F1代植株对小麦条锈菌条中19号、条中29号和条中32号小种均表现出与C591相似的高抗,说明C591中的抗条锈基因主要为显性表达。根据杂交F2代、BC1代植株的抗性分离情况和F1代植株及亲本的抗性表现,说明C591中至少具有3对抗条锈基因,针对条锈菌不同的生理小种其有效性是不同的。对条中32号小种的抗性受1对显性基因控制,对条中29号小种的抗性受1对显性基因和2对隐性基因的独立控制,对条中19号小种的抗性受2对显性基因独立控制。结果表明,C591作为抗源在我国小麦抗锈育种中具有较大应用价值。  相似文献   

19.
小麦新抗源CH223抗条锈性的遗传分析及细胞学鉴定   总被引:1,自引:0,他引:1  
用条中(CYR)30、31、32和33号对小麦抗病新品系CH223及其亲本进行抗性评价,分析其对条中32号的抗性遗传方式,并研究其细胞学特征。结果显示,CH223苗期和成株期对上述4个生理小种表现出免疫或近免疫的抗性水平,并具有与其抗性供体TAI7047及其野生亲本中间偃麦草相似的抗病反应型;抗×感的F1代均为免疫,反应型为0~0;型,且F2、F2:3、BC1代的抗、感分离比均符合1对显性基因控制的分离模式;CH223及其与小麦品种"中国春"等杂种F1的染色体数目均为2n=42,绝大多数的花粉母细胞具有2n=21Ⅱ的配对构型,并能与小麦染色体完好配对。说明CH223不含较大的外源染色体片段,是一个携带偃麦草抗条锈病基因的隐形异源渐渗系,对条中32号的成株抗性受1对显性核基因控制。  相似文献   

20.
小麦新品系YW243抗条锈性鉴定和遗传分析   总被引:7,自引:0,他引:7  
 YW243是最近培育出的兼抗条锈病、白粉病和黄矮病的小麦新品系,本文对其条锈病抗性进行研究。小麦条锈菌苗期接种鉴定表明,YW243高抗CY29、CY30、CY31、CY32、CYSu-11等我国条锈菌流行小种。用26个来自世界各地的菌系接种进行基因推导,结果表明,YW243具有较宽的抗谱,试验中21个已知基因系,仅有Yr5的抗性与YW243相似,但YW243的系谱表明不含有Yr5基因,因此YW243很可能含有一个新的抗条锈病基因。用YW243和京771分别作为抗感亲本进行杂交,后代分离结果表明,YW243对条锈菌CY31的抗性由1个显性基因控制。分子标记初步研究表明,该基因与RAPD引物OPY08扩增出的1条特异DNA片段连锁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号