首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Different earthworm species have different tolerances of acid soil conditions, and the application of lime to upland grassland to improve the grazing quality may therefore alter the size and diversity of the earthworm community. Altering soil properties may also affect the chemical characteristics of organic C in earthworm casts. We surveyed the earthworm community of an upland grassland in southern Scotland at the outset of annual lime applications, and after 3 years, and used 13C nuclear magnetic resonance (NMR) spectroscopy to assess the distribution of C between different functional groups in the organic matter. In addition, soil was incubated for 8 weeks with several earthworm species in the presence or absence of lime, and the earthworm casts were subsequently analysed by 13C NMR spectroscopy. Liming did not significantly affect earthworm abundance or species diversity, but it did affect the chemical composition of the casts. Casts from earthworms incubated in unlimed soil had greater ratios of alkyl‐C to O?alkyl‐C, indicative of more decomposed, recalcitrant C, and spectra from litter‐feeding species had the greatest intensities of O?alkyl‐C signals. In limed soil, the largest O?alkyl‐C signal intensities were not restricted to litter‐feeding species, indicating an increase in the quality of organic matter ingested by geophagous species.  相似文献   

2.
Is the composition of soil organic matter changed by adding compost? To find out we incubated biowaste composts with agricultural soils and a humus‐free mineral substrate at 5°C and 14°C for 18 months and examined the products. Organic matter composition was characterized by CuO oxidation of lignin, hydrolysis of cellulosic and non‐cellulosic polysaccharides (CPS and NCPS) and 13C cross‐polarization magic angle spinning nuclear magnetic resonance (CPMAS 13C‐NMR) spectroscopy. The lignin contents in the compost‐amended soils increased because the composts contained more lignin, which altered little even after prolonged decomposition of the composts in soil. A pronounced decrease in lignin occurred in the soils amended with mature compost only. Polysaccharide C accounted for 14–20% of the organic carbon at the beginning of the experiment for both the compost‐amended soils and the controls. During the incubation, the relative contents of total polysaccharides decreased for 9–20% (controls) and for 20–49% (compost‐amended soils). They contributed preferentially to the decomposition as compared with the bulk soil organic matter, that decreased between < 2% and 20%. In the compost‐amended agricultural soils, cellulosic polysaccharides were decomposed in preference to non‐cellulosic ones. The NMR spectra of the compost‐amended soils had more intense signals of O–alkyl and aromatic C than did those of the controls. Incubation for 18 months resulted mainly in a decline of O–alkyl C for all soils. The composition of the soil organic matter after compost amendment changed mainly by increases in the lignin and aromatic C of the composts, and compost‐derived polysaccharides were mineralized preferentially. The results suggest that decomposition of the added composts in soil is as an ongoing humification process of the composts themselves. The different soil materials affected the changes in soil organic matter composition to only a minor degree.  相似文献   

3.
The 4‐year application of pig‐manure compost (PMC) to crop fields in Jiangsu significantly increased organic‐C and total N concentrations compared to chemical fertilization and control treatment. To identify the soil processes that led to these changes, 13C cross‐polarization magic‐angle spinning nuclear‐magnetic resonance (13C CPMAS NMR) and dipolar‐dephasing nuclear‐magnetic‐resonance spectroscopy (DD NMR) were conducted on soil organic matter (SOM) fractions separated by wet‐sieving and density fractionation procedures. This allowed characterization of the SOM quality under three contrasting fertilizer regimes. The results indicate that PMC application can alter the distribution of functional groups and improve alkyl C‐to‐O‐alkyl C ratios compared to chemical‐fertilizer treatment (CF). Alkyl C contents were increased from macroaggregate fractions (> 2 mm) to microaggregate fractions (0.05–0.25 mm) for all treatments, suggesting that recalcitrant material accumulates in the microaggregate fractions. The O‐alkyl C contents were decreased from macroaggregate fractions (> 2 mm) to microaggregate fractions (0.05–0.25 mm) under CF and PMC treatments, while no consistent trend was found for the control (NF) treatment. The alkyl C‐to‐O‐alkyl C ratios in macroaggregates were lower than those in microaggregates, indicating that the degrees of SOM decomposition were lower in macroaggregates compared to microaggregates. In all aggregate‐size classes, the amount of organic matter appeared to depend on the fertilization regime. This study provides useful information regarding the buildup of organic material in soil from long‐term manure‐compost enrichment.  相似文献   

4.
We studied the impact of climate, soil texture and iron mineralogy on the content and composition of organic matter in Ferralsols along a climosequence in southern Brazil. We characterized the organic matter by solid‐state cross‐polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy. The organic matter content in the Ferralsols increased from the lowest to the highest sites (440–950 m altitude) as a result of the increase in humidity and the decrease in temperature. This influence was more pronounced in the heavy clayey Ferralsols, suggesting that the accumulation of organic matter was enhanced by organo‐mineral interactions. Iron oxides contributed to the stabilization of the organic matter in these soils, which was dominated by O–alkyl C structures followed by aromatic and alkyl C groups. The aromatic C contribution to the total organic C increases with depth at the expense of O–alkyl C, regardless of the site altitude and climate. Although the impact of the environment on the amount of organic matter and its chemical composition is confirmed, our results clearly show that this is so only for the surface horizons. With increasing soil depth the climatic influence decreased, showing that other factors become more important for the accumulation of organic matter.  相似文献   

5.
The composition of functional light soil organic matter pools of arable Cambisols with a gradient in clay content was investigated. Soil texture differences originate from increasing loess admixture to the parent material (coarse‐grained tertiary sediments). Using density fractionation in combination with ultrasonic dispersion, two types of particulate organic matter (POM) were obtained: (1) free POM and (2) POM occluded in soil aggregates. Both POM fractions were analyzed by elemental analysis (C, N) and CPMAS 13C NMR spectroscopy. With increasing clay content the amount of organic carbon stored in the occluded POM fraction increased considerably, whereas the amounts of free POM were not related to the soil clay content. With increasing soil clay contents increasing proportions of O‐alkyl C and decreasing proportions of aryl C were found for both POM fractions. The occluded POM fraction showed a higher degree of degradation as indicated by lower amounts in O‐alkyl carbon. A lower degree of POM degradation was associated with higher clay contents. Higher soil clay contents promoted the conservation of POM with a low degree of alteration. This effect of soil texture was found to be highly significant when the aryl C : O‐alkyl C ratio was used as indicator for POM decomposition rather than the alkyl C : O‐alkyl C ratio.  相似文献   

6.
Mid‐infrared spectroscopy (MIRS) is assumed to be superior to near‐infrared spectroscopy (NIRS) for the prediction of soil constituents, but its usefulness is still not sufficiently explored. The objective of this study was to evaluate the ability of MIRS to predict the chemical and biological properties of organic matter in soils and litter. Reflectance spectra of the mid‐infrared region including part of the near‐infrared region (7000–400 cm–1) were recorded for 56 soil and litter samples from agricultural and forest sites. Spectra were used to predict general and biological characteristics of the samples as well as the C composition which was measured by 13C CPMAS‐NMR spectroscopy. A partial least‐square method and cross‐validation were used to develop equations for the different constituents over selected spectra ranges after several mathematical treatments of the spectra. Mid‐infrared spectroscopy predicted well the C : N ratio: the modeling efficiency EF was 0.95, the regression coefficient (a) of a linear regression (measured against predicted values) was 1.0, and the correlation coefficient (r) was 0.98. Satisfactorily (EF ≥ 0.70, 0.8 ≤ a ≤ 1.2, r ≥ 0.80) assessed were the contents of C, N, and lignin, the production of dissolved organic carbon, and the contents of carbonyl C, aromatic C, O‐alkyl C, and alkyl C. However, the N mineralization rate, the microbial biomass and the alkyl–to–aromatic C ratio were predicted less satisfactorily (EF < 0.70). Limiting the sample set to mineral soils did generally not result in improved predictions. The good and satisfactory predictions reported above indicate a marked usefulness of MIRS in the assessment of chemical characteristics of soils and litter, but the accuracies of the MIRS predictions in the diffuse‐reflectance mode were generally not superior to those of NIRS.  相似文献   

7.
Because of its insolubility, heterogeneity and structural complexity, humin is the least understood among the three fractions of soil humic substances. This research aimed to evaluate the long‐term effect of combined nitrogen and phosphorus (NP) fertilizer addition on the chemical structure of humin under maize (Zea mays L.) monoculture in a Typic Hapludoll of northeast China. Soil samples were collected 12 and 25 years after the initiation of the fertilizer treatment. Soil humin was isolated using NaOH‐Na4P2O7 extraction to remove humic and fulvic acids, which was followed by HF‐HCl treatment to remove most of the inorganic minerals. Solid‐state 13C cross‐polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy was used to characterize the chemical structure of the humin isolates. Results showed that the organic carbon (C) content of humin increased after NP fertilizer addition, compared with a no‐fertilizer (CK) treatment. 13C CPMAS NMR indicated that O‐alkyl C and aromatic C of humin decreased, while alkyl C and the ratios of alkyl C/O‐alkyl C, aliphatic C/aromatic C and hydrophobic C/hydrophilic C all increased in the NP fertilizer treatment. The long‐term application of NP fertilizer changed the molecular structure of soil humin to be more alkyl and hydrophobic, and was thus beneficial to the sequestration and stability of organic C in soil.  相似文献   

8.
The surfaces of macropores or aggregates can act as hot spots for biogeochemical processes and solute transport during preferential flow. For the characterization of organic matter (OM) at macropore surfaces non‐destructive methods have been applied such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). However, effects of organic components on DRIFT signal intensities are often difficult to distinguish from those of mineral components. Here, DRIFT spectra from intact earthworm burrow walls and coated cracks were re‐evaluated to improve the interpretation of C–H and C=O bands. We compared DRIFT and transmission Fourier transform infrared (FTIR) spectra of entire samples that were from the same pedogenetic soil horizon (Bt) but different in mineral composition and texture (i.e., glacial till vs. loess). Spectra of incinerated samples were subtracted from the original spectra. Transmission FTIR and DRIFT spectra were almost identical for entire soil samples. However, the DRIFT spectra were affected by the bulk mode bands (i.e., wavenumbers 2000 to 1700 cm?1). These bands affected spectral resolution and reproducibility. The ratios between C–H and C=O band intensities as indicator for OM quality obtained with DRIFT were smaller than those obtained from transmission FTIR. The results demonstrated that DRIFT and transmission FTIR data required separate interpretations. DRIFT spectroscopy as a non‐destructive method for analyzing OM composition at intact surfaces in structured soils could be calibrated with information obtained with the more detailed transmission FTIR and complementary methods. Spectral subtraction procedure was found useful to reduce effects of mineral absorption bands. The improved DRIFT data may be related to other soil properties (e.g., cation exchange capacity) of hot spots in structured soils.  相似文献   

9.
A combination of solid‐state CPMAS‐13C‐NMR and TMAH thermochemolysis‐GC/MS was applied to investigate the molecular composition of particulate organic matter (POM) separated from a Chinese paddy soil, from the Tai Lake region, under a long‐term field experiment with different fertilizer treatments. The treatments were: (i) no fertilizer application (NF), (ii) chemical fertilizers only (CF), (iii) chemical fertilizer plus pig manure (CFM) and (iv) chemical fertilizer plus crop straw (CFS). CPMAS‐13C‐NMR spectra showed that POM from all treated plots was rich in O‐alkyl‐C compounds, followed by alkyl‐C and aromatic‐C compounds. However, as compared with a control (NF), POM under CFM and CFS treatments exhibited a smaller relative O‐alkyl‐C content and a larger contribution of aromatic‐C and alkyl‐C, thus increasing both aromaticity and hydrophobicity and, hence, recalcitrance of POM samples. Thermochemolysis of POM from all treatments demonstrated a dominance of aliphatic and lignin‐derived compounds. However, the distribution of lignin monomers (p‐hydroxyphenyl, P, guaiacyl, G, and syringyl, S) revealed significant differences among the treatments. The relative distribution of lignin P, G and S monomers in NF, CF and CFS indicated a preferential contribution of annual crops and maize straw, as compared with that found for CFM. Concomitantly, a larger content of aliphatic thermochemolysis derivatives was found for CFS and CFM. The relative increase of aliphatic molecules in CFS was attributed to hydrophobic polyesters from higher plants. In the CF and CFM systems, the presence of aliphatic components of microbial origin suggested a greater microbial activity in comparison with NF and CFS. The combined application of solid state CPMAS‐13C‐NMR and TMAH thermochemolysis‐GC/MS can be used to assess effectively the accumulation of recalcitrant organic compounds in soil POM under long‐term fertilizer application with organic biomass. It is thus inferred that soil organic matter stabilization by molecular recalcitrance contributes to carbon sequestration in Chinese paddy soils under long‐term managements.  相似文献   

10.
A series of humic matter samples isolated from a soil sequence, different oxisols, size‐fractionated from a vermicompost humic acid and subjected to chemical modifications, were characterized by CPMAS 13C‐NMR spectroscopy. The relative signal areas in chemical shift regions of NMR spectra of the four sets of samples were analysed by principal component analysis (PCA). Hierarchical cluster analysis (HCA) was applied to build a classification model, which allowed the recognition of humic matter according to its origin. The relationship between carbon species and biological activity of humic acids, as promoters of lateral root emergence, was obtained by applying PLS multivariate analysis. This showed that lateral root emergence was mostly related to NMR parameters such as the hydrophobicity index (HB/HI) and the 40–110 and 160–200 ppm chemical shift regions (hydrophilic carbon HI), while the content of hydrophobic (HB) carbon in humic samples was negatively correlated with induction of lateral root hair. Our results represent a step further in the structure‐bioactivity relationship of natural humic substances and confirm their role as plant root growth promoters.  相似文献   

11.
The dynamics of incorporation of fresh organic residues into the various fractions of soil organic matter have yet to be clarified in terms of chemical structures and mechanisms involved. We studied by 13C‐dilution analysis and CPMAS‐13C‐NMR spectroscopy the distribution of organic carbon from mixed or mulched maize residues into specific defined fractions such as carbohydrates and humic fractions isolated by selective extractants in a year‐long incubation of three European soils. The contents of carbohydrates in soil particle size fractions and relative δ13C values showed no retention of carbohydrates from maize but rather decomposition of those from native organic matter in the soil. By contrast, CPMAS‐13C‐NMR spectra of humic (HA) and fulvic acids (FA) extracted by alkaline solution generally indicated the transfer of maize C (mostly carbohydrates and peptides) into humic materials, whereas spectra of organic matter extracted with an acetone solution (HE) indicated solubilization of an aliphatic‐rich, hydrophobic fraction that seemed not to contain any C from maize. The abundance of 13C showed that all humic fractions behaved as a sink for C from maize residues but the FA fraction was related to the turnover of fresh organic matter more than the HA. Removal of hydrophobic components from incubated soils by acetone solution allowed a subsequent extraction of HA and, especially, FA still containing much C from maize. The combination of isotopic measurements and NMR spectra indicated that while hydrophilic compounds from maize were retained in HA and FA, hydrophobic components in the HE fraction had chemical features similar to those of humin. Our results show that the organic compounds released in soils by mineralization of fresh plant residues are stored mainly in the hydrophilic fraction of humic substances which are, in turn, stabilized against microbial degradation by the most hydrophobic humic matter. Our findings suggest that native soil humic substances contribute to the accumulation of new organic matter in soils.  相似文献   

12.
Abstract

Data on the organic matter composition of vegetation, crop litter, and forest litter of Oi (=L) horizons from several European locations available with the litter compound analysis (LCA) discussed in previous communications are presented. The wet chemical results are discussed in comparison to data as revealed by cross polarization magic angle spinning carbon‐13 nuclear magnetic resonance spectroscopy (CPMAS 13C‐NMR) and pyrolysis‐field ionization mass spectrometry (Py‐FIMS). The LCA of vegetation, crop litter, and forest litter provides much detailed information about the chemical composition of extractable organic matter. Normally, both CPMAS 13C‐NMR and Py‐FIMS confirm the wet chemical results. Our data suggest a moderate chemical variation between the fresh organic residue and the litter. NMR revealed structural information about the non‐extractable organic matter using a combination of wet chemical extraction and CPMAS 13C‐NMR of whole soil. In addition, Py‐FIMS identified specific SOM segments at a qualitative level.  相似文献   

13.
The usefulness and limitations of near‐infrared reflectance spectroscopy (NIRS) for the assessment of several soil characteristics are still not sufficiently explored. The objective of this study was to evaluate the ability of visible and near‐infrared reflectance (VIS‐NIR) spectroscopy to predict the composition of organic matter in soils and litter. Reflectance spectra of the VIS‐NIR region (400–2500 nm) were recorded for 56 soil and litter samples from agricultural and forest sites. Spectra were used to predict general and biological characteristics of the samples as well as the C composition which was measured by 13C‐CPMAS‐NMR spectroscopy. A modified partial least‐square method and cross‐validation were used to develop equations for the different constituents over the whole spectrum (1st to 3rd derivation). Near‐infrared spectroscopy predicted well the C : N ratios, the percentages of O‐alkyl C and alkyl C, the ratio of alkyl C to O‐alkyl C, and the sum of phenolic oxidation products: the ratios of standard deviation of the laboratory results to standard error of cross‐validation (RSC) were greater than 2, the regression coefficients (a) of a linear regression (measured against predicted values) ranged from 0.9 to 1.1, and the correlation coefficients (r) were greater than 0.9. Satisfactorily (0.8 ≤ a ≤ 1.2, r ≥ 0.8, and 1.4 ≤ RSC ≤ 2.0) assessed were the contents of C, N, and production of DOC, the percentages of carbonyl C and aromatic C and the ratio of alkyl C to aromatic C. However, the N‐mineralization rate and the microbial biomass were predicted unsatisfactorily (RSC < 1.4). The good and satisfactory predictions reported above indicate a marked usefulness of NIRS in the assessment of biological and chemical characteristics of soils and litter.  相似文献   

14.
This study investigated the suitability of mid‐infrared diffuse reflectance Fourier transform (MIR‐DRIFT) spectroscopy, with partial least squares (PLS) regression, for the determination of variations in soil properties typical of Italian Mediterranean off‐shore environments. Pianosa, Elba and Sardinia are typical of islands from this environment, but developed on different geological substrates. Principal components analysis (PCA) showed that spectra could be grouped according to the soil composition of the islands. PLS full cross‐validation of soil property predictions was assessed by the coefficient of determination (R2), the root mean square error of cross‐validation and prediction (RMSECV and RMSEP), the standard error (SECV for cross‐validation and SEP for prediction), and the residual predictive deviation (RPD). Although full cross‐validation appeared to be the most accurate (R2 = 0.95 for organic carbon (OC), 0.96 for inorganic carbon (IC), 0.87 for CEC, 0.72 for pH and 0.74 for clay; RPD = 4.4, 6.0, 2.7, 1.9 and 2.0, respectively), the prediction errors were considered to be optimistic and so alternative calibrations considered to be more similar to ‘true’ predictions were tested. Predictions using individual calibrations from each island were the least efficient, while predictions using calibration selection based on a Euclidian distance ranking method, using as few as 10 samples selected from each island, were almost as accurate as full cross‐validation for OC and IC (R2 = 0.93 for OC and 0.96 for IC; RPD = 3.9 and 4.7, respectively). Prediction accuracy for CEC, pH and clay was less accurate than expected, especially for clay (R2 = 0.73 for CEC, 0.50 for pH and 0.41 for clay; RPD = 1.8, 1.5 and 1.4, respectively). This study confirmed that the DRIFT PLS method was suitable for characterizing important properties for soils typical of islands in a Mediterranean environment and capable of discriminating between the variations in soil properties from different parent materials.  相似文献   

15.
This study was conducted to investigate the influence of land-use systems (grassland and cropland) and of long-term no-till cropping systems [bare soil, oat/maize (O/M), pigeon pea+maize (P+M)] on the composition of organic N forms in a subtropical Acrisol. Soil samples collected from the 0- to 2.5-cm layer in the study area (Eldorado do Sul RS, Brazil) were submitted to acid hydrolysis and cross-polarization magic angle spinning (CPMAS) 15N and 13C nuclear magnetic resonance (NMR) spectroscopies. The legume-based cropping system P+M contained the highest contents of non-hydrolysable C and N, hydrolysable C and N, amino acid N and hydrolysed unknown N. The relative proportion of non-hydrolysable N was higher in bare soil (30.0%) and decreased incrementally in other treatments based on the total C and N contents. The amino acid N corresponded to an average of 37.2% of total N, and was not affected by land use and no-till cropping systems. The non-hydrolysable residue contained lower O-alkyl and higher aromatic C concentrations, as revealed by CPMAS 13C NMR spectroscopy, and higher C:N ratio than the bulk soil. No differences in the bulk soil organic matter composition could be detected among treatments, according to CPMAS 13C and 15N NMR spectra. In the non-hydrolysable fraction, grassland showed a lower concentration of aromatic and a higher concentration of alkyl C than other treatments. From CPMAS 15N NMR spectra, it could be concluded that amide N from peptide structures are the main organic N constituent. Amide structures are possibly protected through encapsulation into hydrophobic sites of organic matter and through organomineral interaction.  相似文献   

16.
Sorption on the mineral matrix is an important process restricting the movement of dissolved organic matter (DOM) in soils. In this study, we aimed to identify the chemical structures responsible for the retention of DOM by sorption experiments with total DOM and acidic humic substances (AHS), containing humic and fulvic acids, on soil samples and minerals (goethite, ferrihydrite, and amorphous Al(OH)3). The AHS remaining in solution after sorption were studied by 13C nuclear magnetic resonance (NMR) analysis, and total DOM and AHS for bed on the surfaces of minerals by diffuse reflectance Fourier-transform infrared (DRIFT) spectroscopy. The soil samples were taken from strongly sorbing Bw horizons of two Inceptisols rich in pedogenetic Fe (29 and 35 g kg ?1) and containing little C (7 and 22 g kg?1). The 13C-NMR spectra showed that sorption causes a preferential removal of aromatic and carboxyl C from the solution, whereas alkyl-C accumulates in the solution. No change was observed for O-alkyl C. The DRIFT spectra of sorbed total DOM and AHS showed a relative increase of the band intensity of carboxyl groups compared to DOM in the initial solution, confirming the importance of those groups for the sorption to mineral surfaces. The spectra also indicated reactions of carboxyl groups with metals at the mineral surfaces. The extent to which the carboxyl groups are bound depended on the surface coverage with DOM and the type of mineral.  相似文献   

17.
Long‐term effects of liming on microbial biomass and activity and soil organic matter (SOM) were investigated in samples from organic horizons (Of/Oh) in spruce forests at Adenau, Höglwald, Idar‐Oberstein, and Schluchsee (Southern Germany) where plots have been manually treated 7 to 13 years ago with dolomitic limestone. At all sites, pH values were markedly increased after liming. The contents of C and N in the organic horizons of the limed plots appeared to be lower with the greatest decrease at Höglwald (Dystric Luvisol) where liming has affected the soil properties for the longest time of all sites. Catalase activity was promoted after liming at Adenau (Cambic Podzol). This was also the case for the Dystric Luvisol where liming resulted also in higher basal respiration. Biomass‐C was higher in samples from the limed plot at Idar‐Oberstein (Dystric Cambisol). The 13C CPMAS NMR spectra of organic horizons from the control plots indicate no differences in the gross carbon composition of SOM. Furthermore, spectra from the limed Cambic Podzol, Dystric Cambisol, and Haplic Podzol (Schluchsee) were remarkably similar. However, for the Dystric Luvisol, the lime‐induced promotion of microbial activity resulted in lower O‐alkyl‐C intensity. The observed patterns of microbial biomass and activity were site‐dependent rather than a result of liming. Obviously liming had only small long‐term effects on the humus quality in the organic horizons, as far as detectable by CPMAS NMR spectroscopy. More sensitive techniques like pyrolysis‐GC/MS should be applied to analyze differences in C composition.  相似文献   

18.
This study addressed fire‐induced changes in topsoil organic matter (SOM) from a eucalypt plantation in Portugal over 2 years by using three complementary biogeochemical techniques: elemental analysis, analysis of biomarkers from the total extractable lipids (TLE) and solid state 13C nuclear magnetic resonance (NMR) spectroscopy. Direct wildfire effects included a marked decrease in soil total organic carbon (TOC) and total nitrogen (TN) content. However, both contents seem to have recovered during the 2 years. Fire also substantially reduced the TLE, producing noticeable changes in its composition. These included the thermal breakdown and cracking of n‐alkyl compounds. Ratios of short‐to‐long n‐alkanes and n‐fatty acid methyl esters (FAMEs) increased and typical carbon number predominance indices for n‐alkanes (odd‐to‐even) and n‐FAMEs (even‐to‐odd) were altered. Furthermore, the relative abundances of certain markers that are plant‐species specific were modified, especially by decreasing terpenoids such as epiglobulol, ledol and globulol, which are characteristic of Eucalyptus globulus. Other differences observed in the burnt soil were the appearance of levoglucosan, a typical marker for the thermal alteration of polysaccharides, larger relative abundances of lignin‐derived compounds (vanillin and methoxyphenols) and the presence of N‐heteroaromatic structures, which suggested the accumulation of ‘black nitrogen’. The 13C NMR spectra indicated that the wildfire produced a considerable increase in the aromaticity and aromatic condensation of the topsoil SOM. This was reflected in a broadening of the signal of aromatic compounds at the expense of O‐alkyl and alkyl‐C compounds. The continuation of these differences in SOM quality during the 2‐year study suggested a slow recovery of soil properties, possibly influenced by a limited recovery of the vegetation after the fire combined with the fire‐enhanced losses of soil.  相似文献   

19.
Preservation of organic matter in soils depends on the chemical structure of organic compounds and on the surface properties of the mineral matrix. We tested the effect of mineral surface reactivity on organic matter decomposition by (i) investigating changes of organic matter composition in clay subfractions of an illitic Haplic Chernozem along a time series of fertilizer deprivation and (ii) simultaneously characterizing the reactivity of mineral surfaces. The soil was subjected to fertilizer deprivation for 18, 44 and 98 years, respectively. Mineral surface properties were characterized by selective dissolution of pedogenic oxides. The number of hydroxyls released after exposure to sodium fluoride was taken as an index for mineral surface reactivity. Organic soil constituents were determined by 13C cross‐polarization magic‐angle spinning nuclear magnetic resonance (13C CPMAS NMR). Clay subfractions had different mineral surface properties. The coarse fractions have more reactive surfaces and contain more organic carbon than the fine clay fractions. Mineral surface properties are constant over time and are not affected by fertilizer deprivation. Surface reactivity is a function of iron oxide density and controls carbon concentrations in the clay subfractions. Within the time frame of our investigation, alkyl C and aromatic C responded to the duration of fertilizer deprivation, but were indifferent to mineral surface reactivity. O–alkyl C seems to be protected by interactions with pedogenic oxides.  相似文献   

20.
Organic matter mineralization of forest litter is catalysed by the action of different extracellular enzymes produced by microorganisms. Coupling enzyme activities with data on the general macromolecular structure of organic matter, provided by cross‐polarization magic angle spinning 13C nuclear magnetic resonance (13C CPMAS NMR), allows researchers new insights into organic matter degradation processes. In this paper, the effect of the temperature of incubation on the degradation processes was evaluated in three distinct layers (OhLn, OhLv and OhLf) of an evergreen oak litter (Quercus ilex L.), located in the Mediterranean area of south‐eastern France. We studied degradation phenomena by a combination of 13C CPMAS NMR and microbiological analysis. In order to determine the microbial activity of litter layers, three enzyme activities (laccase, cellulase and butyrate esterase) were measured in a 6‐month mesocosm study. Results showed an increase in the alkyl C to O‐alkyl‐C ratio and an increase of the phenolic C and carboxyl C regions, indicating a preferential degradation of polysaccharides. The aromaticity also increased with litter depth and degradation, and humification processes were more elevated at 30°C. anova showed significant effects (P < 0.001) of increased temperature, depth and time of degradation on microbiological variables. Further information is needed about the variations in temperature and temperature‐litter response and soil functions to link fundamental understanding of carbon stabilization, climate change and global C cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号