首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Milk performance traits are likely influenced by both additive and non‐additive (e.g. dominance) genetic effects. Genetic variation can be partitioned using genomic information. The objective of this study was to estimate genetic variance components of production and milk component traits (e.g. acetone, fatty acids), which are particularly important for milk processing or which can provide information on the health status of cows. A genomic relationship approach was applied to phenotypic and genetic information of 1295 Holstein cows for estimating additive genetic and dominance variance components. Most of the 17 investigated traits were mainly affected by additive genetic effects, but protein content and casein content also showed a significant contribution of dominance. The ratio of dominance to additive variance was estimated as 0.64 for protein content and 0.56 for casein content. This ratio was highest for SCS (1.36) although dominance was not significant. Dominance effects were negligible in other moderately heritable milk traits.  相似文献   

2.
The aim of this study was to estimate the non‐additive genetic effects of the dominance component of heterosis as well as epistatic loss on semen traits in admixed Swiss Fleckvieh, a composite of Simmental (SI) and Red Holstein Friesian (RHF) cattle. Heterosis is the additional gain in productivity or fitness of cross‐bred progeny over the mid‐purebred parental populations. Intralocus gene interaction usually has a positive effect, while epistatic loss generally reduces productivity or fitness due to lack of evolutionarily established interactions of genes from different breeds. Genotypic data on 38,205 SNP of 818 admixed, as well as 148 RHF and 213 SI bulls as the parental breeds were used to predict breed origin of alleles. The genomewide locus‐specific breed ancestries of individuals were used to calculate effects of breed difference as well as the dominance component of heterosis, while proxies for two definitions of epistatic loss were derived from 100,000 random pairs of loci. The average Holstein Friesian ancestry in admixed bulls was estimated 0.82. Results of fitting different linear mixed models showed including the dominance component of heterosis considerably improved the model adequacy for three of the four traits. Inclusion of epistatic loss increased the accuracy of the models only for our new definition of the epistatic effect for two traits, while the other definition was so highly correlated with the dominance component that statistical separation was impossible.  相似文献   

3.
Genetic correlations between body condition score (BCS) and fertility traits in dairy cattle were estimated using bivariate random regression models. BCS was recorded by the Swiss Holstein Association on 22,075 lactating heifers (primiparous cows) from 856 sires. Fertility data during first lactation were extracted for 40,736 cows. The fertility traits were days to first service (DFS), days between first and last insemination (DFLI), calving interval (CI), number of services per conception (NSPC) and conception rate to first insemination (CRFI). A bivariate model was used to estimate genetic correlations between BCS as a longitudinal trait by random regression components, and daughter's fertility at the sire level as a single lactation measurement. Heritability of BCS was 0.17, and heritabilities for fertility traits were low (0.01-0.08). Genetic correlations between BCS and fertility over the lactation varied from: -0.45 to -0.14 for DFS; -0.75 to 0.03 for DFLI; from -0.59 to -0.02 for CI; from -0.47 to 0.33 for NSPC and from 0.08 to 0.82 for CRFI. These results show (genetic) interactions between fat reserves and reproduction along the lactation trajectory of modern dairy cows, which can be useful in genetic selection as well as in management. Maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in mid lactation when the genetic variance for BCS is largest, and the genetic correlations between BCS and fertility is strongest.  相似文献   

4.
The reliability of genomic evaluations depends on the proportion of genetic variation explained by the DNA markers. In this study, we have estimated the proportion of variance in daughter trait deviations (DTDs) of dairy bulls explained by 45 993 genome wide single‐nucleotide poly‐ morphism (SNP) markers for 29 traits in Australian Holstein‐Friesian dairy cattle. We compare these proportions to the proportion of variance in DTDs explained by the additive relationship matrix derived from the pedigree, as well as the sum of variance explained by both pedigree and marker information when these were fitted simultaneously. The propor‐ tion of genetic variance in DTDs relative to the total genetic variance (the total genetic variance explained by the genomic relationships and pedigree relationships when both were fitted simultaneously) varied from 32% for fertility to approximately 80% for milk yield traits. When fitting genomic and pedigree relationships simultaneously, the variance unexplained (i.e. the residual variance) in DTDs of the total variance for most traits was reduced compared to fitting either individually, suggesting that there is not complete overlap between the effects. The proportion of genetic variance accounted by the genomic relationships can be used to modify the blending equations used to calculate genomic estimated breeding value (GEBV) from direct genomic breeding value (DGV) and parent average. Our results, from a validation population of young dairy bulls with DTD, suggest that this modification can improve the reliability of GEBV by up to 5%.  相似文献   

5.
The aim of this study was to estimate genetic and phenotypic parameters for growth and survival traits of Sahiwal cattle in Kenya and determine their relationship to milk production and fertility. Performance records of 5,681 animals were obtained from the National Sahiwal Stud and the traits considered were: birth weight (kilogrammes), weaning weight (kilogrammes), pre-weaning average daily gain (grammes per day), post-weaning average daily gain (grammes per day), yearling weight (kilogrammes), mature weight at 36 months (kilogrammes), pre-weaning survival rate (SR), post-weaning survival rate (PSR), lactation milk yield (kilogrammes), age at first calving (days), and calving interval (days). The data was analysed using univariate and bivariate animal model based on restricted maximum likelihood methods, incorporating all known pedigree relationship among animals. The additive direct effects were more pronounced than maternal genetic effects in early and in post-yearling growth performance. The additive genetic variance and heritabilities were low for SR and PSR. The correlation between direct additive genetic and maternal genetic effect were negative for pre-yearling traits. Genetic and phenotypic correlations among growth traits and between growth and milk yield were positive, whilst those between growth and fertility were weak and negative. Correlations between survival and growth were generally low and positive. The estimates obtained in this study provide the necessary technical parameters for evaluating alternative breeding programmes and selection schemes for sustainable improvement of Sahiwal cattle.  相似文献   

6.
The objectives of this study were to estimate the environmental and additive and non-additive genetic effects on lactation curve and lactation parameters of crosses of Holstein (H), Brahman (B) and Brown Swiss (BS) in Olancho region in Honduras. The data consisted of 54,517 milk yield records from 192 dual-purpose crossbred cows lactating from 2000 to 2005 at the Universidad Nacional de Agricultura de Honduras (UNA). The lactation curve and lactation parameters of interest were the scaling factor to represent yield at the beginning of lactation (a), the factor associated with the inclining (b) and declining (c) slopes of the lactation curves, and the milk yield at initial day of lactation (MY20), peak milk yield (MYmax), day at peak milk yield (tmax), and the total milk yield (TM) per lactation, respectively. The incomplete gamma function (Wood function) was used to estimate lactation curve and lactation parameters from daily milk records of H × B, H × BS and BS × B crossbred cows. The environmental, additive and non-additive genetic effects on lactation curve and lactation parameters were estimated using Dickerson and Kinghorn models. The coefficients of determination of fitness of Wood's function (R2) ranged from 80% to 97% with an average of 93%. The lactation curve of the crossbred cows was similar to those reported for dairy cows grazing in the tropics. Lactation parameters such as MYmax, tmax and TM were significantly (P < 0.05) influenced by environmental sources of variation suggesting the necessity of differential management strategies. The moderate to large positive phenotypic correlation of MYmax and TM indicate that one of the milk yield parameters could be used as a selection criterion to improve either one or both traits. Despite the fact that both genetic models showed similar patterns, the absolute value of the parameters varied. For both models, individual additive genetic breed effect for H breed were significant (P < 0.05) and contributed more to TM than the BS breed. In the Dickerson model, highly positive significant (P < 0.01) effect on TM for H×BS and BS×B crosses was found. The Kinghorn model did not show significant effects of dominance on this parameter. The estimate of recombination effect for all crosses involving B breed were negative and significant (P < 0.05) for positive correlated lactation curve parameters. Although the inclusion of non-additive effects on crossbreeding genetic effects were not all significant for lactation curve and lactation parameters, non-additive effects should be taken into account to improve the Honduran dairy cattle production management.  相似文献   

7.
Non-additive effects on milk production in Czech dairy cows   总被引:1,自引:0,他引:1  
Crossbreeding effects on milk production traits of Czech dual‐purpose and dairy cattle breeds were estimated. Nearly 370 000 cows with known gene proportions from Czech Pied, Ayrshire or Holstein cattle were selected from the national milk recording data base. Single‐trait animal models were calculated for milk, fat and protein yield, fat and protein content. The model of Dickerson including additive, additive maternal, heterotic and recombination effects was used for the part of the animal model describing the crossbreeding effects in all calculations. For milk yield, the additive genetic effect (defined as deviation from Czech Pied cattle) was 850–900 kg for Holstein and 240–480 kg for Ayrshire. The maternal effects were low and negative. Low significant positive heterotic effects were observed being up to approximately 100 kg for Czech Pied × Holstein. The recombination effects were negative and statistically significant for Czech Pied × Holstein. The results for fat and protein yield were similar to the results for milk yield. For fat and protein content, nearly no statistically significant crossbreeding effects were found.  相似文献   

8.
(Co)variance components, direct and maternal breed additive, dominance, and epistatic loss effects on preweaning weight gain of beef cattle were estimated. Data were from 478,466 animals in Ontario, Canada, from 1986 to 1999, including records of both purebred and crossbred animals from Angus, Blonde d'Aquitaine, Charolais, Gelbvieh, Hereford, Limousin, Maine-Anjou, Salers, Shorthorn, and Simmental breeds. The genetic model included fixed direct and maternal breed additive, dominance, and epistatic loss effects, fixed environmental effects of age of the calf, contemporary group, and age of the dam x sex of the calf, random additive direct and maternal genetic effects, and random maternal permanent environment effects. Estimates of direct and maternal additive genetic, maternal permanent environmental and residual variances, expressed as proportions of the phenotypic variance, were 0.32, 0.20, 0.12, and 0.52, respectively. Correlation between direct and maternal additive genetic effects was -0.63. Breed ranking was similar to previous studies, but estimates showed large SE. The favorable effects of direct and maternal dominance (P < 0.05) on preweaning gain were equivalent to 1.3 and 2.3% of the phenotypic mean of purebred calves, respectively. The same features for direct and maternal epistatic loss effects were -2.2% (P < 0.05) and -0.1% (P > 0.05). The large SE of breed effects were likely due to multicollinearity among predictor variables and deficiencies in the dataset to separate direct and maternal effects and may result in a less reliable ranking of the animals for across breed comparisons. Further research to identify the causes of the instability of estimates of breed additive, dominance, and epistatic loss genetic effects, and application of alternative statistical methods is recommended.  相似文献   

9.
Parameters for direct and maternal dominance were estimated in models that included non-additive genetic effects. The analyses used weaning weight records adjusted for age of dam from populations of Canadian Hereford (n = 467,814), American Gelbvieh (n = 501,552), and American Charolais (n = 314,552). Method R estimates of direct additive genetic, maternal additive genetic, permanent maternal environment, direct dominance, and maternal dominance variances as a proportion of the total variance were 23, 12, 13, 19, and 14% in Hereford; 27, 7, 10, 18, and 2% in Gelbvieh; and 34, 15, 15, 23, and 2% in Charolais. The correlations between direct and maternal additive genetic effects were -0.30, -0.23, and -0.47 in Hereford, Gelbvieh, and Charolais, respectively. The correlations between direct and maternal dominance were -0.38, -0.02, and -0.04 in Hereford, Gelbvieh, and Charolais, respectively. Estimates of inbreeding depression were -0.20, -0.18, and -0.13 kg per 1% of inbreeding for Hereford, Gelbvieh, and Charolais, respectively. Estimates of the maternal inbreeding depression were -0.01, -0.02, and -0.02 kg, respectively. The high ratio of direct dominance to additive genetic variances provided some evidence that direct dominance effects should be considered in beef cattle evaluation. However, maternal dominance effects seemed to be important only for Hereford cattle.  相似文献   

10.
Most genomic prediction studies fit only additive effects in models to estimate genomic breeding values (GEBV). However, if dominance genetic effects are an important source of variation for complex traits, accounting for them may improve the accuracy of GEBV. We investigated the effect of fitting dominance and additive effects on the accuracy of GEBV for eight egg production and quality traits in a purebred line of brown layers using pedigree or genomic information (42K single‐nucleotide polymorphism (SNP) panel). Phenotypes were corrected for the effect of hatch date. Additive and dominance genetic variances were estimated using genomic‐based [genomic best linear unbiased prediction (GBLUP)‐REML and BayesC] and pedigree‐based (PBLUP‐REML) methods. Breeding values were predicted using a model that included both additive and dominance effects and a model that included only additive effects. The reference population consisted of approximately 1800 animals hatched between 2004 and 2009, while approximately 300 young animals hatched in 2010 were used for validation. Accuracy of prediction was computed as the correlation between phenotypes and estimated breeding values of the validation animals divided by the square root of the estimate of heritability in the whole population. The proportion of dominance variance to total phenotypic variance ranged from 0.03 to 0.22 with PBLUP‐REML across traits, from 0 to 0.03 with GBLUP‐REML and from 0.01 to 0.05 with BayesC. Accuracies of GEBV ranged from 0.28 to 0.60 across traits. Inclusion of dominance effects did not improve the accuracy of GEBV, and differences in their accuracies between genomic‐based methods were small (0.01–0.05), with GBLUP‐REML yielding higher prediction accuracies than BayesC for egg production, egg colour and yolk weight, while BayesC yielded higher accuracies than GBLUP‐REML for the other traits. In conclusion, fitting dominance effects did not impact accuracy of genomic prediction of breeding values in this population.  相似文献   

11.
Autoregressive (AR) and random regression (RR) models were fitted to test-day records from the first three lactations of Brazilian Holstein cattle with the objective of comparing their efficiency for national genetic evaluations. The data comprised 4,142,740 records of milk yield (MY) and somatic cell score (SCS) from 274,335 cows belonging to 2,322 herds. Although heritabilities were similar between models and traits, additive genetic variance estimates using AR were 7.0 (MY) and 22.2% (SCS) higher than those obtained from RR model. On the other hand, residual variances were lower in both traits when estimated through AR model. The rank correlation between EBV obtained from AR and RR models was 0.96 and 0.94 (MY) and 0.97 and 0.95 (SCS), respectively, for bulls (with 10 or more daughters) and cows. Estimated annual genetic gains for bulls (cows) obtained using AR were 46.11 (49.50) kg for MY and −0.019 (−0.025) score for SCS; whereas using RR these values were 47.70 (55.56) kg and −0.022 (−0.028) score. Akaike information criterion was lower for AR in both traits. Although AR model is more parsimonious, RR model assumes genetic correlations different from the unity within and across lactations. Thus, when these correlations are relatively high, these models tend to yield to similar predictions; otherwise, they will differ more and RR model would be theoretically sounder.  相似文献   

12.
The aim of the study was to find functional polymorphism within two exons of the SIGLEC5 (sialic acid‐binding Ig‐like lectin‐5) gene and to examine its effects on the production and fertility traits of cows and bulls. Two hundred seventytwo Holstein‐Friesian cows and 574 bulls were included in the study. Novel missense polymorphism (A > G) within exon 3 causing substitution of amino acid arginine by glutamate in position 260 of SIGLEC5 protein (R260Q) was identified by sequencing and digestion by restriction enzyme Msp I. Basic production and fertility traits of cows and estimated breeding values (EBV) of bulls were analysed. The study demonstrated a significant association of SIGLEC5 R260Q polymorphism with days open and calving interval in cows as well as with breeding value for calving interval in bulls. An opposite effect of SIGLEC5 alleles for production and fertility traits was observed: the allele G increased the breeding value for the protein yield, while the allele A increased the breeding value for the calving interval. The current study suggests the involvement of SIGLEC5 R260Q polymorphism in biological processes related to fertility traits. This finding can be applied as a biomarker for a genetic improvement programme in Holstein‐Friesian cattle.  相似文献   

13.
Genomic imprinting should be considered in animal breeding systems to avoid lead in bias in genetic parameter estimation. The objective of this study was to clarify the effects of pedigree information on imprinting variances for carcass traits and fatty acid composition in Japanese Black cattle. Carcass records [carcass weight, rib eye area, rib thickness (RT), subcutaneous fat thickness and beef marbling score (BMS)] and fatty acid composition were obtained for 11,855 Japanese Black feedlot cattle. To estimate and compare the imprinting variances for the traits, two imprinting models with different pedigree information [the sire–dam gametic relationship matrix (Model 1) and the sire–maternal grandsire (MGS) numerator relationship matrix (Model 2)] were fitted. The ratio of the imprinting variance to the total additive genetic variance for RT (6.33%) and BMS (19.00%) was significant in Model 1, but only that for BMS (21.09%) was significant in Model 2. This study revealed that fitting the sire–MGS model could be useful in estimating imprinting variance under certain conditions, such as when restricted pedigree information is available. Furthermore, the present result suggested that the maternal gametic effects on BMS should be included in breeding programmes for Japanese Black cattle to avoid selection bias caused by imprinting effects.  相似文献   

14.
旨在估计山东省荷斯坦奶牛体型性状遗传参数,为育种方案制定提供参考。本研究收集了山东省2010—2020年间的144个牛场31 963头头胎中国荷斯坦母牛的20个体型性状记录,其中性状评分由线性分转为功能分,将场、泌乳月、产犊月龄、鉴定员效应为固定效应,以个体的加性遗传效应作为随机效应,利用 DMU 软件,采用AI-REML结合EM算法并配合动物模型进行遗传参数估计。结果表明,体型性状的遗传力属于中等偏低水平,其估计值变化范围为0.049(后肢侧视)到 0.282(棱角性),性状间的遗传相关范围为-0.558(前乳头位置与乳房深度)至0.717(蹄踵深度与蹄角度)。体躯容量各性状间的遗传相关范围为0.118 (体深与体高)至0.461(胸宽与腰强度);尻角度与尻宽的遗传相关为-0.251;肢蹄各性状间的遗传相关范围为-0.035(蹄踵深度与后肢后视)到 0.717(蹄踵深度与蹄角度);泌乳系统各性状间的遗传相关范围为-0.558 (前乳头位置与乳房深度)至0.587(悬韧带与前乳房附着)。另外,体型性状的遗传力估计标准误在查找的系谱世代数为3的情况下为最小,这可能是由于系谱数据完整性的限制导致了该种情况,具体还需要进一步验证。加强对体型性状中遗传力较高且与泌乳系统遗传相关较强性状的选择,有利于奶牛生产性能的提高。另外,在本研究数据中,使用前3代系谱估计的遗传力标准误最小,因此,利用前3代系谱估算遗传参数可能较佳。  相似文献   

15.
Although epistatic effects are well defined and, in principle, can be exploited in quantitative-genetic selection theory, they often are ignored or even treated as nuisance parameters in practical applications. Traditionally, epistasis is considered as an interaction between genes at unspecified loci. Inspired by the observation that functional genes are often organised in physical clusters, we developed a model to combine additive effects and additive × additive interactions in linked gene clusters of defined length. Malécot's kinship concept is extended to identity by descent probabilities for chromosome segments of a given length in Morgan units, called epistatic kinship. Using the analogy of Malécot's kinship and Wright's relationship and inbreeding coefficients, epistatic relationship coefficients and epistatic inbreeding coefficients are defined. Simple rules are given to set up the epistatic numerator relationship matrix and its inverse directly from a pedigree list. The well-known single locus parameters and algorithms to set up the additive numerator relationship matrix and its inverse are a special case of the suggested methodology for a chromosome segment length of null Morgan. A proof of concept of the suggested method is given with a small simulation study. Assuming additive, linked epistatic and residual variance components, 100 replicated data sets for 1000 individuals are generated. From these data, residual maximum likelihood estimates of the variance components and of the chromosome segment size are obtained. Potential applications of the methodology are discussed. Given that a substantial variance component is attributed to this effect, the expected genetic gain can be increased on the short term if selection is on additive and epistatic effects, the latter comprising additive × additive interaction effect of loci in linkage disequilibrium. This extra benefit, however, will diminish through crossing over in subsequent generations. Despite some practical problems yet to be solved, the suggested model and algorithms open new perspectives to use a higher proportion of genetic variability in selection and breeding.  相似文献   

16.
Reproductive efficiency is major determinant of the dairy herd profitability. Thus, reproductive traits have been widely used as selection objectives in the current dairy cattle breeding programs. We aimed to evaluate strategies to model days open (DO), calving interval (CI) and daughter pregnancy rate (DPR) in Brazilian Holstein cattle. These reproductive traits were analysed by the autoregressive (AR) model and compared with classical repeatability (REP) model using 127,280, 173,092 and 127,280 phenotypic records, respectively. The first three calving orders of cows from 1,469 Holstein herds were used here. The AR model reported lower values for Akaike Information Criteria and Mean Square Errors, as well as larger model probabilities, for all evaluated traits. Similarly, larger additive genetic and lower residual variances were estimated from AR model. Heritability and repeatability estimates were similar for both models. Heritabilities for DO, CI and DPR were 0.04, 0.07 and 0.04; and 0.05, 0.06 and 0.04 for AR and REP models, respectively. Individual EBV reliabilities estimated from AR for DO, CI and DPR were, in average, 0.29, 0.30 and 0.29 units higher than those obtained from REP model. Rank correlation between EBVs obtained from AR and REP models considering the top 10 bulls ranged from 0.72 to 0.76; and increased from 0.98 to 0.99 for the top 100 bulls. The percentage of coincidence between selected bulls from both methods increased over the number of bulls included in the top groups. Overall, the results of model-fitting criteria, genetic parameters estimates and EBV predictions were favourable to the AR model, indicating that it may be applied for genetic evaluation of longitudinal reproductive traits in Brazilian Holstein cattle.  相似文献   

17.
The influence of selection and epistasis on inbreeding depression estimates   总被引:1,自引:0,他引:1  
Inbreeding depression estimates obtained by regression of the individual performance on the inbreeding were studied by stochastic simulation under various genetic models (solely additive, partial dominance, overdominance and epistasis), and mating strategies (random mating versus selection). In all models, inbreeding depression estimates based on the individual pedigree inbreeding coefficients were compared with estimates based on the true level of autozygosity. For the model with partial dominance and selection, the estimates of inbreeding depression from pedigree information were more negative (lower) than those based on true inbreeding coefficients whereas, in contrast, they were less negative (higher) for the models with overdominance and selection. The difference in the variation of true and pedigree individual inbreeding coefficient indicated that biased estimates might occur even in random mating populations. The estimation of inbreeding depression was further complicated when epistatic effects were present. The sign and the magnitude of the inbreeding effect (depression) estimates might be rather heterogeneous if additive by dominance effects are present because they are strongly dependent on the gene frequency. It was also shown that inbreeding depression is possible in models with negative additive by dominance effects. In models with dominance by dominance inheritance it was difficult to assess the non-linear relationship between performance and inbreeding, while at the same time, non-linear estimates based on pedigree information were extremely biased. The results obtained indicate that new or additional methodologies are required if reliable conclusions about consequences of inbreeding depression are needed.  相似文献   

18.
Genetic variability and genetic trends for 305-day milk yield (MY), 305-day fat yield (FY), and average 305-day fat percent (FP) were evaluated using monthly test-day records from first-lactation cows collected from 1991 to 2005 in 92 farms located in Central Thailand. Estimates of variance and covariance components and breeding values (EBV) were obtained using a multiple-trait animal model. Fixed effects were contemporary group (herd–year–season), calving age, additive genetic group as a function of Holstein fraction, and non-additive genetic group as function of heterosis effect. Random effects were animal and residual. Program ASREML was used to perform computations. Estimates of heritabilities were 0.38 ± 0.10 for MY, 0.25 ± 0.11 for FY, and 0.22 ± 0.11 for FP. Although the difference between the mean MY for cows in 1991 and 2005 was 324.1 kg, the regression of mean cow EBV for MY on year was 6.5 kg/year. Differences between mean cow EBV for FY and FP in 1991 and 2005 and their corresponding regressions of mean FY and FP on year were all near zero. Similarly, mean EBV for sires and dams of cows also showed near zero trends during these years. A factor contributing to the near complete absence of genetic trends was likely the variety of criteria used by producers to choose sires and to keep dams in addition to EBV (e.g., availability of semen, reproductive ability, adaptation to hot and humid conditions). It also appears that high percent Holstein cows failed to reach their production potential under the management, nutrition, and hot and humid climatic conditions in this tropical region. Changes in nutrition and management would be needed for high percent Holstein cows to show an upward trend in Central Thailand.  相似文献   

19.
Genetic and environmental impact on auction prices for Holstein cows   总被引:1,自引:0,他引:1  
The aim of the present analysis was to determine the impact of a variety of traits and effects (i.e. production, type, health, management effects, pedigree information) on prices of Holstein cows sold at auction, and to estimate genetic (co)variance components between type traits and auction price. Results were used to derive economic weights for type traits. Data of 1565 cows in first parity were collected at six monthly auction sales from August 2005 through January 2006. Seventeen linear type traits and body condition (scale 1 to 9), and four type composites (dairy character, body, feet and legs, and udder; scale 65 to 88) were scored by two classifiers in the auction hall before cows were sold. Analysis of variance revealed a highly significant impact (< 0.001) of auction date, test day milk yield, stage of lactation, origin of sire, and miscellaneous defects on auction price. The most expensive cows were sold in August, they were from foreign proven sires, they had a high level of test day milk yield, and they were free from defects related to udder, feet and legs, or milkability. The feet and leg, udder, and body composite also had a significant effect on the price (< 0.001), with higher scores being associated with higher prices. The opposite association was found for dairy character (< 0.01). Utilizing results from regression analysis, economic weights per genetic standard deviation were highest for linear scored rear udder height (1.23 €), front teat placement (0.97 €), and strength (0.80 €), but were negative for dairy character (− 0.69 €). Genetic parameters for linear type traits scored at the auction date were consistent with literature reports. Heritability for auction price was 0.27, and auction price was genetically positively related to the feet and leg (0.55), udder (0.55), and body composite (0.21). A relative breeding value for auction price was estimated for 27 influential sires, and correlated with official indices for production, conformation, somatic cell count, functional herd life, fertility, and the total net merit index. Correlations were 0.15, 0.21, 0.11, 0.03, 0.05, and 0.19, respectively. Auction price in combination with type scores and information related to farm management provide valuable information for genetic analysis in dairy cattle, and results can be used to increase dairy cow profitability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号