首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This study aims to evaluate the effect of puerarin on performance, meat quality, and serum indexes of beef cattle under hot environment. Thirty-two bulls were divided into four groups and fed diet supplemented with puerarin at 0, 200, 400, or 800 mg/kg. Results showed that heat stress was employed for 54 out of 60 days, 400 mg/kg group declined serum cortisol (COR) contents, all treatments increased the contents of total cholesterol, high density lipoprotein cholesterol, and total superoxide dismutase activity; in addition, glutathione peroxidase activity of 200 mg/kg group were enhanced, only 800 mg/kg group enhanced immunoglobulin (IgA, IgM, and IgG) and low density lipoprotein cholesterol contents compared with the control (p < .05). Moreover, 400-mg/kg puerarin increased serum growth hormone levels compared with 200 mg/kg group but declined COR concentrations compared with 200 mg/kg and 800 mg/kg groups (p < .05). More importantly, average daily gain and daily matter intake, and intramuscular fat contents of 400 mg/kg group were enhanced, but the shear force of beef in 400 mg/kg and 800 mg/kg groups were declined compared with the control (p < .05). These findings indicated that supplemental with puerarin enhanced immune and antioxidant, and 400 mg/kg of puerarin improved performance and meat quality by normalizing levels of stress hormones and increasing intramuscular fat deposition of beef cattle under hot environment.  相似文献   

2.
In this study, we examined the effect of dietary supplementation with grape seed (GS) on the performance, carcass traits, plasma biochemistry, antioxidant status and ileal microflora in broilers. Experiment diets included a control diet (without additive) and three levels of GS powder (10, 20 and 40 g/kg of diet). Each diet was fed to a total of 300 one‐day‐old Cobb‐500 chicks for 42 days. The addition of 20 g/kg of GS to the basal diet increased final body weight and body weight gain, improved the feed conversion ratio and did not affect feed intake. Dietary 20 g GS significantly increased (p < .05) the percentage of carcass yield %, dressing % and gizzard. However, the addition of 40 g/kg of GS significantly reduced the percentage of abdominal fat in the birds. Diets supplemented with GS showed the lowest content of ether extract compared with the control group (p < .05). The physical characteristics of meat and the chemical composition of DM, CP and ash were not significantly influenced by treatments. In the GS groups, plasma protein, albumin, globulin, aspartate aminotransferase and alanine aminotransferase concentrations showed no significant change compared with the control group. Broilers fed a diet supplemented with GS had lower levels of plasma glucose, total lipids, triglycerides and cholesterol compared with the control birds (p < .05). The addition of 40 g of GS significantly (p < .05) enhanced the activity of reduced glutathione, catalase, superoxide dismutase, glutathione peroxidase and GST, and correlated with significantly decreased thiobarbituric acid‐reactive substances levels compared with the control group. The value of ileal pH was not significantly affected by the GS levels. Broilers fed diets supplemented with GS had lower ileal Streptococcus spp. and Escherichia coli populations but higher Lactobacillus spp. populations (p < .05). No adverse effects on birds’ health were detected due to the use of GS. Thus, GS could be recommended as an herbal supplement in the diet of broiler chickens to improve performance, reduce blood lipids, enhance antioxidant capacity and decrease detrimental bacteria in the ileum.  相似文献   

3.
The objective of this study was to evaluate the effects of dietary supplementation with zinc oxide nanoparticles (ZnO‐NPs) on the performance, egg quality, Zn retention, immunity responses, superoxide dismutase activity (SOD), egg malondialdehyde (MDA) content, and serum parameters in laying hens in the late phase of production. A total of 288 laying hens at 64 weeks of age were randomly assigned to 4 treatments with 6 replicates, and 12 birds within each group. Experimental diets included a corn‐soybean meal‐based diet (without Zn supplementation) and a basal diet supplemented with 80 mg/kg of Zn‐oxide, ZnO‐NPs, and Zn‐methionine. The results indicated that egg production and egg mass were significantly higher in the Zn‐methionine and ZnO‐NPs groups (p < .05). Also, eggshell thickness and shell strength increased in the ZnO‐NPs group as compared with the other groups (p < .05). Moreover, Zn supplementation decreased egg loss (p < .05). There were significant differences among treatments in Zn deposition in tibiotarsus, liver, pancreas, eggs, and excreta (p < .01). Antibody titre, heterophil (%(, and phytohemagglutinin (PHA) were significantly higher in birds fed with Zn‐supplemented diets (p < .05). In treatments supplemented with ZnO‐NPs and Zn‐methionine, the SOD activity in the liver, pancreas, and plasma was greater as compared with the other treatments (p < .05). The MDA content in eggs was significantly reduced in groups supplemented with Zn (p < .01). Moreover, dietary Zn supplementation significantly affected serum total protein, albumin, glucose, alkaline phosphatase activity, carbonic anhydrase activity, and Zn level (p < .05). In conclusion, this study demonstrated that dietary supplementation with ZnO‐NPs can improve the performance of laying hens. Therefore, ZnO‐NPs can enhance zinc absorption in the intestine of aged layers and can be a more suitable source of zinc than regular Zn‐oxide in diets.  相似文献   

4.
This study aimed to investigate the effect of l -carnitine and energy level and on oxidant/antioxidant balance in laying hens subjected to high stocking density. A total of 176, 32-week-old laying hens were assigned to eight groups with four replicates and hens in four groups were placed at the normal stocking densities of 500 cm2/hen (four hens per cage) and in the remaining four groups were placed at the high stocking densities of 287.5 cm2/hen (seven hens per cage). Hens received diets of high (2,850 kcal/kg ME) or normal (2,650 kcal/kg ME) energy which are supplemented with 0 or 200 mg/kg l -carnitine for 70 days. Results showed that exposure to high stocking density increased (p < .05) plasma malondialdehyde (MDA) and nitric oxide (NO) levels and decreased (p < .05) erythrocyte superoxide dismutase (SOD), catalase (CAT) and superoxide dismutase (GPx) activities. l -carnitine supplementation increased (p < .05) erythrocyte SOD, CAT and GPx activities, and decreased (p <.05) MDA and NO level in high stocking densities. The oxidan/antioxidan balance of birds was not influenced by increasing dietary energy level. The results of the present study indicate that the supplementation of l -carnitine to the birds subjected to high stocking density could effectively reverse the negative effects of high stocking density by improving oxidant/antioxidant balance. Therefore, l -carnitine supplementation at level of 200 mg/kg to diet may be as a favourable alternative to deal with oxidative stress caused by high stocking density in laying hens.  相似文献   

5.
A 2 × 3 factorial study (protease: 0 or 1,5000 PROT/kg and raw full‐fat soya bean meal [RSBM] replacing the commercial SBM at 0, 45 and 75 g/kg of diet) was conducted to examine the performance of broilers. Phytase (2000 FYT/kg) was uniformly added to each diet, each also replicated six times, with eight birds per replicate. Birds were raised in climate‐controlled rooms using sawdust as the bedding material and offered starter, grower and finisher diets. Feed intake (FI) and body weight gain (BWG) were reduced (p < .05) due to increasing levels of RSBM, but feed conversion ratio (FCR; 0–35 days) was unaffected. Over the first 24 days, neither RSBM nor protease supplementation affected (p > .05) mortality, footpad dermatitis or intestinal lesions in birds. At day 24, the weight, length, width and strength of tibia bone were reduced in chickens that received an elevated level of RSBM (75 g/kg of diet), but this was not significant at day 35. At day 24 (p < .05) and 35 (p < .01), Ca concentration in the litter was reduced when the RSBM level was increased in the diet, but P content was not affected. On days 24 (p < .05) and 35 (p < .01), the N content in litter was also increased with increase in dietary RSBM. Protease supplementation increased (p < .05) the uric acid concentration in the litter (at day 35), but the reverse was the case for ammonia concentration. Overall, the results of this study indicate that there are no major health‐related risks, associated with the replacement of commercial SBM with RSBM (≤25%) in broiler diets.  相似文献   

6.
This research aimed to determine whether the astragalus polysaccharide (AP) can improve the production performance and gut microbiota in Chongren hens.120 Chongren hens (240-d old) were randomly allocated into 4 treatments with 30 hens and fed with a control basal diet (CON) or CON supplemented with the different levels of AP (100, 200, and 400 mg/kg) for 56 d. The egg production and feed conversion ratio were decreased (p < .05) with the levels of AP. The yolk weight, yolk color, eggshell thickness, eggshell redness index and egg shell yellowness were increased (p < .05). AP supplementation increased CAT and T-AOC and SOD, and decreased MDA (p < .05). Supplementation of AP decreased IL-2, IL-6 and TNF-α levels (p < .05), but increased the IL-4 level in the liver (p < .05). The villus heights of duodenum, jejunum ileum, the crypt depth and V/C in the jejunum were increased (p < .05). Dietary supplementation of 200 mg/kg AP increased (P relative abundances of Firmicutes and Lactobacteriaceae in the cecum of Chongren hens. In conclusion, addition of AP improved the production performance, egg quality, antioxidant function, and intestinal morphology in hens, which might be associated with the gut microbiota.  相似文献   

7.
One hundred Yorkshire × Landrace sows were randomly assigned to one of two dietary treatments (diet ND: 6,000 IU vitamin D3/d feed; diet 25‐D: 200 μg/day 25OHD3 feed). The experiment began on d 90 of gestation and continued until weaning on day 21 of lactation. In sows that received 25OHD3, the growth rate of the piglets before weaning was significantly accelerated (0.266 kg/day, p < .05). Sow serum was collected after weaning, and those in the 25OHD3 group were found to have significantly higher serum calcium (CA) and phosphorus (PI) levels (p < .05). Interestingly, the oestrus cycle of sows fed 25OHD3 was significantly shortened (p < .05), the oestrus time was concentrated on the fifth day after weaning, and the piglets were born with a higher degree of uniformity (p < .05). Colostrum was collected on the day of delivery, and the colostrum of sows fed 25OHD3 contained higher milk fat content than the control group (p < .05). 25OHD3 supplementation increased the mRNA and protein expression of INSIG1 and SREBP1, which regulate milk fat synthesis, in the mammary gland of lactating sows (p < .05). In conclusion, 25OHD3 supplementation in maternal diets improved reproductive performance, milk fat content and the mRNA and protein levels of genes regulating milk fat synthesis in lactating sows.  相似文献   

8.
This study was conducted to evaluate the effects of dietary soapnut (Sapindus mukorossi) shell powder (SSP), a cheap source of saponins, on growth performance, immunity, serum biochemistry and gut health of broiler chickens. The experimental design was 4×2, employing four saponin levels (0, 100, 150 and 200 mg/kg diet), each provided for two time durations (0–42 day and 21–42 day) resulting into eight dietary treatments. Results revealed no significant effect of dietary saponins on body weight gain, feed intake and feed conversion ratio of birds. The abdominal fat percentage, heterophil to lymphocyte ratio, serum cholesterol and triglyceride levels, faecal total plate count, coliform count and E. coli count decreased (p < .05) progressively with increasing saponin levels and lower values were observed at 150 mg and 200 mg saponin levels. Significant improvement of cell‐mediated and humoral immune response was observed in birds fed 150 mg and 200 mg saponin compared to control. The serum glucose concentration was significantly (p < .05) higher in control group compared to other groups. No significant effects of dietary saponin were observed on carcass characteristics, faecal Lactobacillus count, intestinal histomorphometry and cost economics of broiler chicken production. Thus, dietary saponins at 150 mg/kg diet as SSP for three weeks (21–42 days) was optimum for better immunity and welfare of birds without adverse effects on the growth performance.  相似文献   

9.
Lycium barbarum polysaccharides (LBPs) are a complex mixture of highly branched and partially characterised polysaccharides and proteoglycans extracted from the goji berry. This mixture has great potential as a novel feed supplement for pigs. Two trials were conducted to evaluate the effects of supplementation with LBPs on the growth performance, immune status, antioxidant capacity and selected intestinal microbial populations in weaned piglets. In trial 1, a total of 400 weaned piglets [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 6.34 ± 0.16 kg (21 days of age) were divided into five groups and fed a basal diet (control group) or a basal diet containing 1,000, 2,000, 4,000 or 6,000 mg/kg LBPs (supplemented at the expense of corn). Supplementation with 4,000 or 6,000 mg/kg LBPs for 2 weeks significantly increased the average daily gain (ADG) and average daily feed intake (ADFI) of the pigs compared with the control group (p < .05). In trial 2, thirty-two 21-days-old weaned piglets (BW: 6.33 ± 0.11 kg) were allotted to a control group (fed with a basal diet) or an experimental group (basal diet containing 4,000 mg/kg LBPs). The experiment lasted for 14 days. Pigs fed LBP diets exhibited an increased ADG and ADFI, and a decreased diarrhoeal incidence compared with those fed the basal diets (p < .05). Supplementation with LBPs increased the serum IgG and IgM levels (p < .05). Dietary LBPs effectively promoted antioxidant defence properties through enhancing the activities of serum, liver superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), in addition to decreasing the malondialdehyde (MDA) content (p < .05). The addition of LBPs increased the amounts of Bacteroidetes in the ileum and caecum and the caecal contents of Lactobacillus spp. and Bifidobacterium spp. (p < .05), while decreased the populations of Escherichia coli and Firmicutes in the ileum and caecum (p < .05) compared with the control group. Our results suggest that dietary supplementation with LBPs can enhance growth performance, immune status and antioxidant capacity, and improve the intestinal microbial populations of weaned piglets.  相似文献   

10.
This experiment was conducted to evaluate the effects of astragalus polysaccharides (Aps) and ginseng polysaccharide (Gps) on growth performance, liver function, immune function, TLR4 signalling pathways and intestinal barrier in weaned piglets challenged with lipopolysaccharide (LPS). In an experiment spanning 28 days, 180 weaned piglets were randomly divided into three treatment groups: basal diet (Con), basal diet supplemented with 800 mg/kg Gps (Gps) and basal diet supplemented with 800 mg/kg Aps (Aps). At the end of the experiment, 12 piglets of each group were selected; half (n = 6) were intraperitoneally injected with LPS and half with normal saline. Dietary supplementation with Aps and Gps significantly increased (p < .05) the average daily gain and feed conversion rate. Lipopolysaccharide challenge increased (p < .05) expression of serum urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-1β (IL-1β) and tumour inflammatory factor-α (TNF-α), but decreased (p < .05) serum superoxide dismutase (SOD) level, total antioxidant capacity (T-AOC) and immunoglobulin A (IgA) expression. Lipopolysaccharide-challenged piglets fed with Aps or Gps had lower (p < .05) BUN, ALT, AST, IL-1β and TNF-α levels and greater (p < .05) SOD, T-AOC and IgA levels. Lipopolysaccharide challenge increased (p < .05) the expression of TLR4, MyD88 and NF-κB, and LPS-challenged piglets fed diets supplemented with Aps or Gps increased TLR4 and MyD88 and decreased NF-κB expression. Lipopolysaccharide challenge reduced (p < .05) the jejunal villus height, and piglets fed with Aps or Gps had increased (p < .05) jejunal villus height. Supplementation with Aps or Gps enhanced the expression of occludin and claudin in challenged or unchallenged piglets. In conclusion, dietary supplementation with Aps or Gps enhanced piglet growth performance, alleviated liver dysfunction and reduced immunological stress caused by LPS, as well as increased the intestinal barrier function.  相似文献   

11.
Carryover effect of prior fibre consumption on metabolic markers was investigated. Treatments were arranged in 2 × 2 factorial with 2 fibre sources, 4% inulin or cellulose (Solka‐Floc®) and fat levels (5 or 15%) for the low‐fat diet (LFD) and high‐fat diet (HFD) respectively. Pigs were fed the two fibre diets for the first 56d (nursery phase), and thereafter fed either the LFD or HFD containing no added fibre source from d56 to 140 (growing phase). Pigs on the HFD were heavier (p = .05) than those on LF (64.61 vs. 68.38 kg), regardless of prior fibre type consumed. Pigs that were fed cellulose during the nursery and later fed the HFD had the highest ADG (p < .05). Feeding the HFD resulted in higher back fat (BF) (13.41 and 18.18 ± 0.12 mm for LFD and HFD, respectively; p < .01). The HFD resulted in higher (p < .01) insulin (0.014 and 0.016 ± 0.001 mg/L for LF and HF respectively) and glucose (100.89 and 125.03 ± 4.39 mg/dl for LF and HF respectively) concentrations in the serum. Inulin increased ( .02) jejunal expression of SREBP‐1c and CL‐4, but reduced (p < .05) TNFɑ and IL‐6 expression in the ileum. Alpha‐diversity was significantly different (p < .05) between the inulin and cellulose fed pigs at the end of the nursery and finishing phases. Therefore, inulin feeding before a HFD may lead to reduction in ADG and inflammatory markers in the small intestine of pigs, and thus prevent future metabolic disorders.  相似文献   

12.
A 3 × 3 + 1 factorial, involving three levels of protease (0, 15,000 or 30,000 PROT/kg) and three levels of phytase (1,000, 2,000 or 3,000 FYT/kg), was used to evaluate the effect of replacing commercial soybean meal (SBM) with raw, full‐fat soybean (RFSB) at 75 g/kg of diet for broilers. A control diet was used for comparison. Each treatment was replicated six times, with nine birds per replicate. The concentration of trypsin inhibitors (TIs) in the test diets was approximately 10,193.4 TIU/kg. Regardless of enzyme supplementation, feed intake (FI) and body weight gain (BWG) of birds in the control group were superior to those on the test diets. Birds that received the protease‐free test diets had reduced FI and BWG, but when supplemented with protease, were similar to the control diet in BWG, FI (except 0–35 days) and feed conversion ratio (FCR). When the test diet was supplemented with elevated levels (extradose) of protease and phytase, the BWG was improved during 0–10 days (p = .05) and 0–24 days (p < .01). Regardless of protease supplementation, the weight of thighs was lower for birds fed the test diets. Birds that received the control diet had smaller weight of pancreas. Increasing the level of phytase supplementation reduced (p < .05) the weight of the pancreas. The apparent ileal digestibility (AID) of CP and AA was higher in birds on the control diets, but this was also improved in test diets by protease supplementation. The activities of trypsin (7%), general proteolytic (11%) and lipase (12%) were slightly increased because of protease supplementation. Mucosal depth and apparent villus surface areas were increased by about 2.9% and 20%, respectively, due to supplementation of elevated level of phytase. It can be concluded that RFSB could partially replace SBM in broiler diets, provided the diets are supplemented with elevated levels of protease and phytase.  相似文献   

13.
The objective of this trial was to test the effects of oxidative stress induced by a high dosage of dietary iron on intestinal lesion and the microbiological compositions in caecum in Chinese Yellow broilers. A total of 450 1‐day‐old male chicks were randomly allotted into three groups. Supplemental iron (0, 700 and 1,400 mg/kg) was added to the basal diet resulting in three treatments containing 245, 908 and 1,651 mg/kg Fe (measured value) in diet respectively. Each treatment consisted of six replicate pens with 25 birds per pen. Jejunal enterocyte ultrastructure was observed by transmission electron microscopy. The results showed that a high dosage of dietary iron induced oxidative stress in broilers. Dilated endoplasmic reticulum (ER), autophagosome formation of jejunal enterocytes and decreased villi were caused by this oxidative stress. Compared to the control, concentration of the malondialdehyde (MDA) in jejunal mucosa in the 908 and 1,651 mg/kg Fe groups increased by 180% (p < .01) and 155% respectively (p < .01); activity of copper‐zinc superoxide dismutase (Cu/ZnSOD) increased in jejunum (p < .01); and the concentration of plasma reduced glutathione (GSH) decreased by 34.9% (p < .01) in birds fed 1,651 mg/kg Fe. Gene expression of nuclear factor, erythroid‐derived 2‐like 2 (Nrf2) and zonula occludens‐1 (ZO‐1), in the higher dietary Fe groups was enhanced (p < .05). Species of microbial flora in caecum increased caused by oxidative stress. The PCR‐DGGE (denaturing gradient gel electrophoresis) dendrograms revealed different microbiota (65% similarity coefficient) between the control and iron‐supplemented groups (p < .05). These data suggest high dosage of iron supplement in feed diet can induce oxidative stress in Chinese Yellow broilers, and composition of microbiota in the caecum changed. It implied there should be no addition of excess iron when formulating diets in Chinese Yellow broilers.  相似文献   

14.
To investigate the effects of chlorogenic acid-enriched extract (CGAE) from Eucommia ulmoides Oliver leaf on growth performance and quality and oxidative status of meat in pigs fed diets containing fresh or oxidized corn oil, a total of 180 barrows (initial body weight: 81.6 ± 2.08 kg) were randomly allocated into 6 diet treatments (5 replicate pens per treatment and 6 barrows per pen) in a 2 × 3 factorial design with corn oil (fresh or oxidized corn oil at 5% inclusion of diet) and CGAE (0, 500 or 1,000 mg/kg of diet containing fresh or oxidized corn oil) as main factors. The experiment lasted for 6 weeks. Dietary oxidized oil reduced average daily gain (ADG, p < .05) and average daily feed intake (ADFI, p < .01) of pigs and pH24 (p < .05), total antioxidant capacity (T-AOC, p < .01), glutathione peroxidase (GPx, p < .05) and sarcoplasmic reticulum Ca2+-ATPase (SERCA, p < .05) activities in meat and increased drip loss (p < .01), cooking loss (p < .05), malondialdehyde (p < .01) and carbonyl (p < .01) contents and mRNA expression of superoxide dismutase 1 (SOD1, p < .05) in meat. Dietary CGAE supplementation at 1,000 mg/kg increased (p < .05) ADG and ADFI of pigs and pH24, T-AOC, T-SOD, GPx and SERCA activities and mRNA expression of SOD1 in meat and reduced (p < .05) drip loss, cooking loss, carbonyl and malondialdehyde contents in meat. No interaction effects between oxidized corn oil and CGAE were found in pigs. Overall, dietary CGAE supplementation at 1,000 mg/kg improved growth performance and quality and oxidative status of meat in pigs subjected or not to oxidative stress induced by dietary oxidized oil.  相似文献   

15.
This experiment was conducted to assess nutritional potential of corn steep liquor (CSL) as an alternative protein source in broiler's diet. A total of 280‐day‐old unsexed broiler chicks were randomly distributed into four experimental groups in a simple randomised experimental design (each group had seven replicates; 10 birds per each). Four iso‐nitrogenous and iso‐caloric broiler starter and finisher diets (C, LCSL, MCSL and HCSL) were formulated containing 0%, 5%, 10% and 15% CSL respectively. Results revealed that chicks fed MCSL diet had significantly (p ≤ .05) the heaviest Body weight, highest Body weight gain and the lowest feed conversion ratio followed by those fed HCSL diet. In the starter period, LCSL and MCSL diets resulted in better (p ≤ .05) dry matter (DM) (89.57%) and crude protein (67.67%) digestibilities respectively. In the finisher period, DM, crude fibre and fat digestibilities were not affected by CSL inclusion levels; while crude protein digestibility was significantly (p ≤ .05) high in the groups fed LCSL and HCSL diets. The CSL inclusion had no effect on blood haematology except serum uric acid, which tended to increase with increasing CSL levels. No microscopic changes were exhibited on liver, heart, kidneys and intestine of birds across all dietary treatments. However, crops in birds fed HCSL diet showed moderate to severe hypertrophy and hyperplasia of the mucosal lining. The study showed that CSL could be added up to 15% in broiler's diet without any adverse effect on bird's performance.  相似文献   

16.
Fifty-six piglets were weaned at 21 days and randomly assigned to 1 of 8 dietary treatments with 7 replicate pens for a 14-day experimental period. The eight experimental diets were prepared via a 2 × 4 factorial arrangement with citric acid (CA; 0 and 0.3%) and dietary electrolyte balance (dEB, Na +K − Cl mEq/kg of the diet; −50, 100, 250, and 400 mEq/kg). Varying dEB values were obtained by altering calcium chloride and sodium bicarbonate contents. Dietary CA significantly increased (p < .05) villus height (VH) and villus height:crypt depth (VH:CD) in the jejunum. Piglets fed a 250 mEq/kg diet increased (p < .05) VH and VH:CD values in the duodenum. Jejunal VH and VH:CD increased (quadratic; p < .05), and ileal VH:CD (liner and quadratic; p < .05) decreased as dEB was increased in diets without CA, but no such effect was observed on the diets containing CA (dEB ×CA; p < .05). The CD in jejunum (quadratic; p < .05) increased as dEB was increased in diets containing CA, whereas it was decreased (linear; p < .05) in the diets without CA (dEB ×CA; p < .001). Dietary CA increased maltase activity and reduced the number of Ki67-positive cells (p < .05). Increasing dEB values in diets without CA increased sucrose and lactase activities (quadratic; p < .05), but no such effect was observed in the diets with CA (dEB ×CA; p < .05). An interaction effect between dEB and CA on the number of Ki67-positive cells was observed (p < .001). In conclusion, 250 mEq/kg dEB diet with CA improved piglet intestinal digestion and absorption function by improving intestinal morphology and increasing digestive enzyme activities. However, these improvements were also observed in piglets fed the 100 mEq/kg dEB diet without CA.  相似文献   

17.
This study was conducted to test our hypothesis that intramuscular fat (IMF) accumulation increases in pigs fed on a low lysine diet during the dark period than those fed on the same diet during the light period. Using barrows aged 6 weeks, we monitored whether serum glucose and insulin levels were affected by light conditions. Two diets with different levels of lysine, 0.78% (LL diet) and 1.37% (control diet) were prepared. Eight pigs were fed on the diet during the light period, while the remaining pigs were fed during the dark period. The pigs were fed either the LL diet or the control diet. Although IMF contents of Longissimus dorsi (LD) muscle were higher in the pigs fed on a LL diet (p < .05), the light conditions had no effect. Low dietary lysine caused reduction in serum glucose levels (p < .05) and serum insulin levels (p = .0613). However, they were also unaffected by the lighting conditions. To gain further insights, we determined the messenger RNA levels of insulin receptor, insulin receptor substrate 1, acetyl CoA carboxylase, and fatty acid synthase in LD and Rhomboideus muscles and in the liver.  相似文献   

18.
19.
There is a risk of iron overload in grazing livestock. However, the effects on nutrient absorption and rumen function induced by excessive iron have not been well understood. Therefore, the purpose of present study was to investigate the impact of over-load iron on growth performance, nutrient digestibility, blood biochemistry, rumen fermentation and bacterial communities in sheep. Twenty-four German Mutton Merino cross-bred sheep with weight (42.66 ± 2.34 kg BW) were randomly divided into 4 groups, each with 6 replicates and 1 sheep per replicate. The basal diet consisted of 60% Leymus chinensis hay and 40% concentrate. The sheep in 4 groups were fed the basal diets supplemented with 50 (Control), 500 (T1), 1,000 (T2) and 1,500 (T3) mg Fe/kg as ferrous sulphate monohydrate (FeSO4·H2O) respectively. And the actual contents of iron in the diet were determined to be 457.68 (control), 816.42 (T1), 1,256.78 (T2) and 1,725.63 (T3) mg/kg respectively. The experiment lasted 62 days including a 7-day metabolism trial. During the whole experiment, the digestibility of dry matter, organic matter, neutral detergent fibre and acid detergent fibre showed a quadratic increase with increasing over-load iron levels (p < .05), and maximum responses were found with 500 mg/kg supplementation. However, the response of total VFA concentration showed a quadratic decrease, as did the concentrations of propionate, butyrate and valerate (p < .05). Serum total iron-binding capacity on day 30 showed a quadratic decrease with the increase in high-dose iron, while the serum iron content increased linearly at day 60 (p < .05). Excessive iron resulted in the change in bacterial communities. An increase in over-load iron linearly decreased the abundance of bacteria in the phylum Bacteroidetes (p < .05), but linearly increased the Firmicutes (p = .037) and Proteobacteria (p = .018). In addition, there was a quadratic effect (p = .003) on the Fibrobacteres, which was higher in the 500 and 1,000 mg/kg Fe-supplemented groups. At the genus level, there were quadratic effects on the abundances of Selenomonas_1 (p = .023) and Ruminococcaceae_UCG-014 (p = .016). Furthermore, feeding of iron linearly increased the relative abundances of Succiniclasticum and Succinivibrionaceae_UCG-002 (p < .05). These results indicate that increasing ferrous sulphate monohydrate in diets had no negative impact on the growth performance, but it changed nutrient digestibility, blood iron parameters, rumen fermentation and bacterial communities in sheep.  相似文献   

20.
In this study, we investigated the effects of Saccharomyces cerevisiae (SC), Bacillus subtilis (BS) and Enterococcus faecalis (EF), singly and in combination, on the dry matter intake (DMI), milk production and composition, and faecal microflora of Saanen dairy goats. Fifty goats were randomly divided into five groups: (a) basal diet (control); (b) basal diet + SC; (c) basal diet + BS; (d) basal diet + EF; and (e) basal diet + mixed probiotics. Each treated animal received 5 g/d of probiotics for a total administration of 5 × 1,011 CFU/goat per day. The inclusion of B. subtilis and E. faecalis in the diet of lactating Saanen goats increased DMI (p < .05). Enhanced milk yield was observed with BS and EF. Milk fat percentage was significantly increased by feeding mixed probiotics compared with the control (p < .05); supplying SC, BS and mixed probiotics enhanced the protein percentage (p < .05). The milk lactose percentage in the SC and BS groups was higher than in the control (p < .05). The amount of milk total solids was higher after feeding EF or mixed probiotics than in the control group (p < .05). Non-fat solids showed no notable differences among groups (p > .05). There was no significant influence on gut bacterial abundance and diversity from adding these three probiotics, singly or in combination. Bacteroidales, Escherichia–Shigella and Christensenellaceae abundances were decreased by supplying these probiotics but Succinivibrionaceae increased. In conclusion, there were positive influences of probiotic feed supplementation on intake, milk performance and intestinal microecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号