首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity.  相似文献   

2.
By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.  相似文献   

3.
Small-magnitude earthquakes began beneath Mount St. Helens 40 days before the eruption of 20 March 1982. Unlike earlier preeruption seismicity for this volcano, which had been limited to shallow events (less than 3 kilometers), many of these earthquakes were deep (between 5 and 11 kilometers). The location of these preeruptive events at such depth indicates that a larger volume of the volcanic system was affected prior to the 20 March eruption than prior to any of the earlier dome-building eruptions. The depth-time relation between the deep earthquakes and the explosive onset of the eruption is compatible with the upward migration of magmatic gas released from a separate deep reservoir.  相似文献   

4.
Seismic precursors to the mount st. Helens eruptions in 1981 and 1982   总被引:1,自引:0,他引:1  
Six categories of seismic events are recognized on the seismograms from stations in the vicinity of Mount St. Helens. Two types of high-frequency earthquakes occur near the volcano and under the volcano at depths of more than 4 kilometers. Medium- and low-frequency earthquakes occur at shallow depths (less than 3 kilometers) within the volcano and increase in number and size before eruptions. Temporal changes in the energy release of the low-frequency earthquakes have been used in predicting all the eruptions since October 1980. During and after eruptions, two types of low-frequency emergent surface events occur, including rockfalls and steam or gas bursts from the lava dome.  相似文献   

5.
Miller V  Savage M 《Science (New York, N.Y.)》2001,293(5538):2231-2233
The eruptions of andesite volcanoes are explosively catastrophic and notoriously difficult to predict. Yet changes in shear waveforms observed after an eruption of Mount Ruapehu, New Zealand, suggest that forces generated by such volcanoes are powerful and dynamic enough to locally overprint the regional stress regime, which suggests a new method of monitoring volcanoes for future eruptions. These results show a change in shear-wave polarization with time and are interpreted as being due to a localized stress regime caused by the volcano, with a release in pressure after the eruption.  相似文献   

6.
Melson WG 《Science (New York, N.Y.)》1983,221(4618):1387-1391
The Mount St. Helens eruptive sequence of 1980 through 1982 reflects the tapping of successively less water-rich, more highly crystallized, and more viscous, highly phyric dacitic magmas. These changes reflect both syn- and preeruption processes. The decreasing water content points to a continued decline in the volume and intensity of explosive pyroclastic activity. This decreasing water content appears to be composed of a long-term trend established during a long period of repose (about 130 years) imposed on short-term trends established during short periods (about 7 to 100 days) of repose between eruptions in the present eruptive cycle. The last two eruptive cycles of this volcano, the T (A.D. 1800) and W cycles (about A. D. 1500), exhibited similar trends. These changes are inferred from a combination of petrographic, bulk chemical, and electron- and ion-microprobe analyses of matrix and melt-inclusion glasses.  相似文献   

7.
Historic dry fogs in Europe, acid precipitation in Greenland, and major explosive volcanic eruptions correlate well with each other between 1500 B.C. and A.D. 1500. European (Mediterranean and Icelandic) volcanic eruptions appear to be the source of at least five of the nine largest acidity signals found in Greenland ice for this period. Between 152 B.C. and A.D. 43, eruptions of sulfur-rich Mount Etna probably supplied about 15 percent of the smaller acidity signals.  相似文献   

8.
An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River.  相似文献   

9.
Twenty years of atmospheric transmission data from Mauna Loa Observatory show secular decreases at irregular intervals. In addition, a regular annual variation is present during unperturbed as well as perturbed periods. These variations in transmission can be measured to a few tenths of a percent from the data record. Transient decreases in transmission are strongly correlated with explosive volcanic eruptions that inject effluent into the stratosphere. Recovery from these ejections takes as much as 8 years and the recovery curve is linear. Observations in 1977 at Mauna Loa show that, for the first time since the Mount Agung eruption in 1963, the atmospheric transmission of direct-incidence solar irradiation at Mauna Loa returned to values measured in 1958 to 1962.  相似文献   

10.
Before and during the first week of the March-April 1980 eruptions of Mount St. Helens, Washington, infrared thermal surveys were conducted to monitor the thermal activity of the volcano. The purpose was to determine if an increase in thermal activity had taken place since an earlier airborne survey in 1966. Nine months before the eruption there was no evidence of an increase in thermal activity. The survey during the first week of the 1980 eruptions indicated that little or no change in thermal activity had taken place up to 4 April. Temperatures of ejected ash and steam were low and never exceeded 15 degrees C directly above the vent.  相似文献   

11.
New material from the dacite lava dome of Mount St. Helens, collected soon after the start of each successive extrusion, is subjected to rapid chemical and petrologic analysis. The crystallinity of the dacite lava produced in 1981 and 1982 is 38 to 42 percent, about 10 percent higher than for products of the explosive 1980 eruptions. This increase in crystallinity accompanies a decrease in the ratio of hornblende to hornblende plus orthopyroxene, which suggests that the volatile-rich, crystal-poor material explosively erupted in 1980 came from the top of a zoned magma chamber and that a lower, volatile-poor and crystal-rich region is now being tapped. The major-element chemistry of the dacite lava has remained essentially constant (62 to 63 percent silica) since August 1980, ending a trend of decreasing silica seen in the products of the explosive eruptions of May through August 1980.  相似文献   

12.
Crystalline silica (mostly cristobalite) was produced by vapor-phase crystallization and devitrification in the andesite lava dome of the Soufriere Hills volcano, Montserrat. The sub-10-micrometer fraction of ash generated by pyroclastic flows formed by lava dome collapse contains 10 to 24 weight percent crystalline silica, an enrichment of 2 to 5 relative to the magma caused by selective crushing of the groundmass. The sub-10-micrometer fraction of ash generated by explosive eruptions has much lower contents (3 to 6 percent) of crystalline silica. High levels of cristobalite in respirable ash raise concerns about adverse health effects of long-term human exposure to ash from lava dome eruptions.  相似文献   

13.
Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.  相似文献   

14.
Linking petrology and seismology at an active volcano   总被引:1,自引:0,他引:1  
Many active volcanoes exhibit changes in seismicity, ground deformation, and gas emissions, which in some instances arise from magma movement in the crust before eruption. An enduring challenge in volcano monitoring is interpreting signs of unrest in terms of the causal subterranean magmatic processes. We examined over 300 zoned orthopyroxene crystals from the 1980-1986 eruption of Mount St. Helens that record pulsatory intrusions of new magma and volatiles into an existing larger reservoir before the eruption occurred. Diffusion chronometry applied to orthopyroxene crystal rims shows that episodes of magma intrusion correlate temporally with recorded seismicity, providing evidence that some seismic events are related to magma intrusion. These time scales are commensurate with monitoring signals at restless volcanoes, thus improving our ability to forecast volcanic eruptions by using petrology.  相似文献   

15.
The south flank of Kilauea volcano has experienced two large [magnitude (M) 7.2 and M 6.1] earthquakes in the past two decades. Global Positioning System measurements conducted between 1990 and 1993 reveal seaward displacements of Kilauea's central south flank at rates of up to about 10 centimeters per year. In contrast, the northern side of the volcano and the distal ends of the south flank did not displace significantly. The observations can be explained by slip on a low-angle fault beneath the south flank combined with dilation deep within Kilauea's rift system, both at rates of at least 15 centimeters per year.  相似文献   

16.
Gerst A  Savage MK 《Science (New York, N.Y.)》2004,306(5701):1543-1547
The orientation of crustal seismic anisotropy changed at least twice by up to 80 degrees because of volcanic eruptions at Ruapehu Volcano, New Zealand. These changes provide the basis for a new monitoring technique and possibly for future midterm eruption forecasting at volcanoes. The fast anisotropic direction was measured during three seismometer deployments in 1994, 1998, and 2002, providing an in situ measurement of the stress in the crust under the volcano. The stress direction changed because of an eruption in 1995-1996. Our 2002 measurements revealed a partial return to the pre-eruption stress state. These changes were probably caused by repeated filling and depressurizing of a magmatic dike system.  相似文献   

17.
Sulfur dioxide (SO(2)) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO(2) released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO(2) is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO(2)-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO(2) that is released during many volcanic eruptions.  相似文献   

18.
Dome growth at the Soufriere Hills volcano (1996 to 1998) was frequently accompanied by repetitive cycles of earthquakes, ground deformation, degassing, and explosive eruptions. The cycles reflected unsteady conduit flow of volatile-charged magma resulting from gas exsolution, rheological stiffening, and pressurization. The cycles, over hours to days, initiated when degassed stiff magma retarded flow in the upper conduit. Conduit pressure built with gas exsolution, causing shallow seismicity and edifice inflation. Magma and gas were then expelled and the edifice deflated. The repeat time-scale is controlled by magma ascent rates, degassing, and microlite crystallization kinetics. Cyclic behavior allows short-term forecasting of timing, and of eruption style related to explosivity potential.  相似文献   

19.
During an eruption of the Alaskan volcano Mount St. Augustine in the spring of 1986, there was concern about the possibility that a tsunami might be generated by the collapse of a portion of the volcano into the shallow water of Cook Inlet. A similar edifice collapse of the volcano and ensuing sea wave occurred during an eruption in 1883. Other sea waves resulting in great loss of life and property have been generated by the eruption of coastal volcanos around the world. Although Mount St. Augustine remained intact during this eruptive cycle, a possible recurrence of the 1883 events spurred a numerical simulation of the 1883 sea wave. This simulation, which yielded a forecast of potential wave heights and travel times, was based on a method that could be applied generally to other coastal volcanos.  相似文献   

20.
Ash from the massive 18 May 1980 eruption of Mount St. Helens readily gave off large amounts of carbonyl sulfide and carbon disulfide gases at room temperature. These findings suggest that the sulfur that enhances the Junge sulfate layer in the stratosphere after volcanic eruptions could be carried directly to the upper atmosphere as carbonyl sulfide and carbon disulfide adsorbed on ash particles from major volcanic eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号