首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of 15NH4 + assimilation into free amino acids and total reduced nitrogen were monitored in both roots and shoots of two week old tomato seedlings supplied with 5 mM 99% (15NH4)2SO4 via the aerated root medium in hydroponic culture, in the presence and absence of a 2 h pre‐incubation with 1 mM methionine sulfoximine (MSX). The labeling kinetics of amino acids in roots of tomato plants in the presence of MSX show that continued assimilation of 15NH4 + can occur when the GS/GOGAT cycle is inhibited. In the presence of MSX, three amino acids [glutamate, alanine, and y‐amino butyrate (GABA)] of the root tissue continue to become labeled with 15N under conditions where labeling of the amino‐N moiety of glutamine is completely inhibited. This indicates primary ammonia assimilation via GDH, or alternatively, assimilation of ammonia into alanine via alanine dehydrogenase. Free ammonia accumulates rapidly in both shoots and roots of tomato in response to MSX. The labeled ammonia accumulated in the roots in the presence of MSX must be largely derived from the medium whereas in shoots this ammonia appears to be derived from catabolism of unlabeled amino acids and proteins. The pools of glutamine, glutamate and alanine after 24 h exposure to 15NH4 + were, on the average, 5‐ to 10‐fold lower in the MSX‐treated than in the control (‐MSX) shoots and roots. In contrast, the pools of valine, leucine, isoleucine, proline, threonine, phenylalanine, lysine, and tyrosine increased 5‐ to 10‐fold above the control values in the shoots of MSX‐treated plants, and 2‐ to 4‐fold above control values in the roots of MSX‐treated tomato plants after 24 h. The latter amino acids all exhibited low isotope abundance, and presumably were derived from protein turnover.  相似文献   

2.
Glutamine synthetase and glutamte dehydrogenase activity, free ammonia, and changes in free amino acid pools in tissue of three maize genotypes differing in enzyme activity were measured after 0, 2, 6, 12, and 24 hour incubation with 1 mM methionine sulfoximine (MSX) and 10 mM NH4+ in nutrient solution. Glutamine synthetase activity was almost nil in roots and decreased about 80 percent in shoots after six hr incubation with MSX. Glutamate dehydrogenase activity was not affected by MSX, but was very low in tissue of the ‐GDH maize mutant. In general, total amino acids decreased with time in MSX. Glutamate in root tissues of the Illinois N6 wild type decreased 80 percent after 24 hr incubation with MSX while it was reduced only 60 percent in the Illinois N6 mutant.  相似文献   

3.
Intraspecific differences in the activities of nitrate reductase (NR), glutamine synthetase (GS), NADH dependent glutamate synthase (NADH‐GOGAT), and glutamate dehydrogenase (GDH) under contrasting forms of nitrogen (N) supply were studied in tissues of three spinach (Spinacia oleracea L.) cultivars. The varieties (Viroflay, Butterflay, and Giant) were smooth, curly and semicurly leaved, respectively. The plants were grown in nutrient solutions containing NO3 as the sole source of N (100:0) and NO3 plus NH4 (80:20). Giant, the NH4 tolerance of which had been evaluated in growth and on the basis of nutrient uptake, had much higher GS and GDH activities in the roots and higher NR and NADH‐GOGAT levels in the leaves of plants grown on NO3 and NH4 than that grown on NO3 alone. On the level of N assimilating enzymes of Butterflay, mixed N nutrition caused an increase of GDH and NADH‐GOGAT in leaves and roots and at the same time a decrease of GS in the roots and NR in the leaves. An inverse relationship between GS and GDH activities was detected in the leaves and foots of Virofiay grown with both N sources. Finally, Viroflay gave the highest levels of GDH irrespective of the NO3:NH4 assayed, whereas the leaves of Giant were GDH deficient in comparison with the other cultivars. In addition, the GS activity approached zero in the roots of spinach cultivars characterized by hardly any NH4 tolerance, whereas in those of Giant it increased remarkably with the supply of NO3 plus NH4.  相似文献   

4.
增硝营养对不同基因型水稻苗期氮素吸收同化的影响   总被引:21,自引:7,他引:21  
利用控制条件下的溶液培养方法,研究了增硝营养(NH4+∶NO3-比例为100∶0和50∶50)对4种不同的基因型水稻(常规籼稻、常规粳稻、杂交籼稻、杂交粳稻)苗期生长和氮素吸收同化的影响。结果表明,增NO3-营养可以增加水稻叶片的光合速率,促进水稻对氮素的吸收,提高氮素利用率,进而促进水稻生长;不同基因型水稻在增NO3-营养下氮积累量增幅不同主要是由于其生物量增幅不同,而整株氮素含量增幅差异不大;NO3-的存在可增强谷氨酰胺合成酶和硝酸还原酶的活力,促进水稻对NH4+和NO3-的同化利用,从而增加了氮素在植株地上部的积累同化;籼稻与粳稻相比,杂交粳稻与杂交籼稻相比,前者在氮素吸收利用上均表现出更为明显的优势。  相似文献   

5.
The quality of green tea is highly dependent on the concentration of free amino acids, whose profile is dominated by the unique amino acid theanine (N5‐ethyl‐glutamine). A high quality is associated with a high amino acid–to–catechin ratio, but previous results indicated that excessive chloride (Cl) supply is detrimental for amino acid accumulation. Several experiments were conducted to investigate the effect of chloride on growth and concentrations of free amino acids in young tea plants. Soil‐grown tea plants supplied with different levels of potassium (K) as K2SO4 or KCl exhibited increased concentrations of free amino acid in young shoots only when supplied with K2SO4, and the negative effect of KCl supply was mainly due to a reduced concentration of theanine. Concentrations of other nutrients in plant tissues were not influenced. The uptake of Cl and its interaction with nitrogen (N) uptake were further investigated in a second experiment, in which soil‐cultivated tea plants were supplied with varying amounts of Cl. Chloride application reduced yield of young shoots, and severity of leaf damage was related to the concentration of Cl in leaves. Nitrogen uptake was reduced by Cl addition. To verify whether the decrease of free amino acids was simply a result of inhibited NO assimilation, a third experiment was conducted, in which tea plants were NH ‐fed in the absence or presence (equivalent to the NH concentration) of Cl. Again, concentrations of theanine and total free amino acids in young shoots were reduced by Cl supply, but changes of the free–amino acid pool did not contribute to the maintenance of charge balance. However, concentration of theanine in roots, where it is synthesized, was not influenced by Cl. Total N concentrations of roots and mature leaves, uptake rate of NH , and activity of glutamine synthetase in fibrous roots and young leaves were all unaffected by Cl as well. It is suggested that translocation of theanine from root to shoot and its catabolism in young shoots might be influenced by Cl.  相似文献   

6.
Ammonium (NH4+), an important nitrogen (N) source for microorganisms, is assimilated via two major pathways. One route is catalyzed by glutamate dehydrogenase (GDH), while the other mechanism involves two enzymes, glutamine synthetase (GS) and glutamate synthase (GOGAT). The GS/GOGAT enzyme system requires more energy to operate, but has a much higher affinity for NH4+ than GDH. We describe procedures to determine potential GS and GDH activity in soil samples. GS and GDH are intracellular enzymes. We used chloroform fumigation to make cell membranes permeable for substrates and products of the enzymes. Fumigation for 4 h increased GS activity almost ten-fold compared to the unfumigated control. Under optimized assay conditions, GS activity increased linearly for at least 80 min, indicating that the substrates were not limiting. In contrast to what was found for GS activity, direct addition of substrates to the soil to assay GDH activity did not result in a linear increase in GDH activity over time. A linear response for 3 h, however, resulted when the soil samples were first extracted with buffer solution and the reagents were added after centrifugation. The differences between the assays explain why fumigation for 3 d prior to the assay increased GDH activity by only 60%. In a microcosm study with glucose and NH4+ addition, the activity of the two enzymes depended on the carbon (C) to N ratio of the amendment. With increasing C to N ratios from 5 to 120, GS activity doubled, while C to N ratios higher than 120 did not further increase GS activity. In contrast, GDH activity decreased by 13% with increasing C to N ratios from 5 to 200. The GDH to GS activity ratio in soil may therefore yield valuable information about the availability of N relative to C at a specific time.  相似文献   

7.
采用溶液培养试验,研究了氮素不同形态配比对菠菜茎叶中游离氨基酸含量及3种主要氮代谢酶活性的影响。结果表明:1)随着营养液中铵硝比(NH4+-N/NO3--N)的降低,菠菜茎叶中游离氨基酸的总量呈下降趋势。在全硝营养下(NH4+-N/NO3--N=0∶100)下,菠菜茎叶中游离氨基酸的总量只有全铵营养(NH4+-N/NO3--N=100∶0)的34.4%。2)在全铵营养下,菠菜茎叶中游离氨基酸的主要组分是谷氨酰胺、精氨酸和谷氨酸,三者占游离氨基酸总量的百分比依次为39.8%、20.2%和8.9%;在全硝营养下,菠菜茎叶中游离氨基酸以谷氨酸、天冬氨酸和丝氨酸为主,三者占游离氨基酸总量的百分比分别为30.3%1、8.6%和8.5%。3)提高营养液中硝态氮的比例,可以显着提高菠菜茎叶中硝酸还原酶(NR)的活性,同时降低了谷氨酸脱氢酶(GDH)的活性,谷氨酰胺合成酶(GS)活性则呈现先升后降的抛物线状变化规律。4)菠菜茎叶中NR活性与谷胺酰胺含量之间存在着显著负相关关系(r=-0.968)。  相似文献   

8.
In the study of terrestrial N cycling, NH4+ concentration and 15N enrichment are routinely determined by colorimetric continuous flow analysis and microdiffusion methods. Amino acids can interfere in these determinations; consequently the aim of the present study was to evaluate the significance of the interference. Glycine and glutamine are key amino acids in soil and were therefore used as ‘models’. Both glycine and glutamine interfered during continuous flow analysis, whereas interference during microdiffusion was of little importance. The effects of interference can be significant, e.g. estimates of gross mineralisation rate were reduced up to 33%, where we allowed for amino acid interference during determination of NH4+ concentration. The potential influence of amino acid interference emphasises that development of continuous flow analysis to increase NH4+ specificity is needed.  相似文献   

9.
Herbicide application is an efficient method to control weed growth in modern agriculture production, but there is concern about the ecological impact of unwanted herbicide residues in the soil. Rapeseed varieties ZS11 and D148 were used to evaluate the phytotoxic effects of residual glufosinate on the assimilation of nitrogen (N) in rapeseed seedlings transplanted to untreated [0 g hm?2 glufosinate] or treated [450 g hm?2 and 900 g hm?2 glufosinate] soils. Glutamine synthetase (GS) and glutamate dehydrogenase (GDH) activities, the contents of ammonium (NH4+), free amino acids (FAA), and soluble protein (SP), and seedling dry weight (DW) were determined at 5, 8, 11, 20, 40, and 70 d post-transplant. Both concentrations of glufosinate induced physiological phytotoxicity on the N assimilation of transplanted seedlings of both varieties, as their leaves and roots presented reduced GS activities and SP contents, and increased GDH activities, and NH4+ and FAA content. Glufosinate phytotoxicity on the N assimilation of transplanted seedlings reached a plateau at 11 to 20 d. further, GDH in roots and GS in leaves were still significantly different at 70 d. Meanwhile, ZS11 might be more sensitive to glufosinate than D148 since ZS11 had more variation than D148 at the same treatment, and the overdose of glufosinate more strongly inhibited N assimilation than the recommended dose. Therefore, it is essential to apply a suitable glufosinate dose to the transplanted variety, to minimize adverse effects on crops and the environment.

Abbreviations: N, Nitrogen; GS, Glutamine synthetase; GDH, glutamate dehydrogenase; NH4+, ammonium; FAA, free amino acids; SP, soluble proteins; DW, Dry weight; ANOVA, one-way analysis of variance; NO3?, nitrate; OECD, Organisation for Economic Co-operation and Development; PPT, phosphinothricin; USEPA, United States Environmental Protection Agency  相似文献   


10.
Tomato plants were grown in sand culture with NO3 or NH4 N at two levels of light. Foliar sprays at three levels of N as well as combinations of foliar and root feeding were used.

Shade increased NH4 toxicity in plants sprayed with NH4 but decreased the toxicity in plants receiving NH4 through the roots. NH4‐N greatly reduced growth and cation uptake when supplied through the roots but not with foliar application. Plants sprayed with NH4 showed better growth, higher K, Ca, and Mg content and lower free NH4 in shoot, compared to plants receiving NH4 through the roots.

The overall free amino acid contents of shoots was higher for NH4‐fed plants regardless of how the N was applied. Plants sprayed with NH4 incorporated a greater amount of N into insoluble compounds compared with NO3 nutrition. The N uptake per unit of leaf area was higher for plants grown under full sun light whereas N content was higher for plants grown under hade. N content in tissue increased with N concentration in foliar spray, although plants supplied with N through the roots had higher levels of free amino acids and total nitrogen.  相似文献   


11.
Abstract

An upland rice variety IAC‐47 was grown in a greenhouse to determine the effect of foliar nitrogen (N) supplementation during grain development on the activity of the N assimilation enzymes, nitrate reductase (NR) and glutamine synthetase (GS), on free amino‐N content and leaf soluble sugars, and on grain crude protein content. At 10 and 20 days after anthesis (DAA), the leaves were fertilized with a liquid fertilizer containing 32% N as 12.8% urea, 9.6% ammonium (NH4), and 9.6% nitrate (NO3) in increasing rates corresponding to 0,20+20, 40+40, and 60+60 kg N ha‐1. Leaves were collected twice (at 12 DAA and 14 DAA for GS activity, sugar and amino‐N content, and at 11 and 13 DAA for NRA) after each application of leaf N. The late foliar application of N increased significantly grain crude protein without a corresponding decrease in grain weight. The NR activity (NRA) increased after the foliar application of N. In the flag leaf, 60+60 kg N ha‐1 (21 DAA) resulted in higher NRA (20x over the control), while GS activity was smaller than the control. At 22 DAA there was an increase in GS activity in the flag leaf at 20+20 N level. However, the GS activity decreased as applied N levels increased. Also at the 20+20 level, there were increases in free amino‐N in the flag leaf and second leaf at the final harvest. Throughout the experiment, plants at the 60+60 N level had the lowest levels of soluble sugars. Increases in crude protein were highest at 40+40 N level (27.9%), followed by 60+60 (18.7%).  相似文献   

12.
Uptake and assimilation of inorganic N in young rice plants has been studied with labelled N (N-15). Depletion of the plants' carbohydrate content, obtained by a preceding dark period, resulted in a drastic reduction of NH4 +-N uptake. Plants exposed to low light intensity showed diminishing NH4 +-N uptake rates as compared with plants exposed to full light intensity, the latter showing constant NH4 +-N uptake rates during the whole experimental period. The percentage of labelled insoluble N in total labelled N was not significantly affected by a preceding dark period, whereas the low light intensity resulted in a lower proportion of insoluble N in roots and shoots. The incorporation of labelled N into the insoluble fraction (proteins, nucleic acids) was higher in plants fed with NH4 +-N than in those fed with NO3 -.

The uptake of NH4 +-N was not significantly affected by NO3 -, whereas the NO3- uptake rate was considerably reduced in the presence of NH4 +-N. Low energy status of plants affected the nitrate uptake more than the uptake of NH4 +-N. The results show that uptake and assimilation of inorganic N depend much on the energetic status of plants. Nitrate uptake and assimilation is more sensitive to low energy conditions than NH4 +-N.  相似文献   

13.
李祎  杨顺瑛  郝东利  苏彦华 《土壤》2021,53(1):21-29
以拟南芥野生型Col-0、谷氨酰胺合成酶敲除突变体gs1.1和gs1.2为实验材料,采取土培试验,比较正常培养液(4 mmol/L NH4+)培养(CK)、正常培养液(4 mmol/L NH4+)下外源添加5%蔗糖(T1)、高NH4+胁迫(20 mmol/L)(T2)以及高NH4+胁迫(20 mmol/L)下外源添加5%蔗糖(T3)对拟南芥各株系各生理指标的影响;通过测定地上部分的鲜重、叶绿素、游离NH4+、可溶性糖、可溶性蛋白、谷氨酰胺合成酶(GS)、谷氨酸脱氢酶(GDH)、矿质元素含量等指标,研究外源蔗糖对NH4+胁迫拟南芥碳氮代谢的影响。结果表明,高NH4+胁迫下,拟南芥生长受到严重的抑制,鲜重、GS、GDH酶活性降低,游离NH4+含量、叶绿素含量、可溶性糖和可溶性蛋白含量增加,植株的N、P、K、Ca的含量增加,Mg、Fe的含量减少,其中gs1.1和gs1.2在高NH4+处理下受到的抑制比Col-0更为显著。外源添加5%蔗糖显著缓解了高NH4+毒害,提高了可溶性糖和可溶性蛋白含量,提高了GS和GDH的活性,降低了叶绿素和游离NH4+的含量,提高了植株体内的N、P、K、Ca,Mg的含量,降低了植株Fe的含量,其中,外源蔗糖对gs1.1和gs1.2高NH4+毒害的缓解更为显著。  相似文献   

14.
To evaluate the role of NH4 + assimilates in dark carbon fixation in roots in providing carbon skeletons expended for NH4 + assimilation, the rate of dark carbon fixation in roots was measured using NaH14CO3. The 14C-metabolites were analyzed in wheat (Triticum aestivum L.) plants grown in NH4 + media for various periods of time with or without methionine sulfoximine (MSX) treatment. The dark carbon fixation rate in the roots of wheat plants that had been grown with NH4 + for 1 d was approximately 6-fold higher than the rate in control roots. The stimulation of dark carbon fixation in NH4 +-grown plants, however, was not observed in MSX-treated roots. In the roots of NH4 +-grown plants, the concentration and 14C-Iabeling of acidic metabolites such as citrate and malate considerably decreased whereas those of basic metabolites, especially asparagine, increased noticeably. With MSX treatment, the incorporation of 14C into basic metabolites was negligible. In response to NH4 +, phosphoenolpyruvate carboxylase (PEPC) activity increased, and PEPC proteins accumulated in wheat roots. Neither activity nor amounts of PEPC in roots increased in the presence of MSX. These findings suggest that primary assimilation of NH4 + in roots is essential for the stimulation of dark carbon fixation, which coincides with the increased activity of root PEPC, to sufficiently replenish carbon skeletons necessary for NH4 + assimilation.  相似文献   

15.
Plant growth and metabolism is impaired under stress conditions, resulting in decreased crop yields. The purpose of this investigation was to evaluate the NaCl stress effects on NH+ 4 metabolism in cotton plants at vegetative and reproductive stages of growth.

Cotton (Gossypium hirsutum L.) plants grown in normal (control) and NaCl treated Hoagland solutions were analyzed for distribution of N15 in NH+ 4 plus amide‐N, free α‐amino‐N, total soluble‐N and protein‐N after the plants were provided 15NH4NO3 in nutrient solutions for 6, 12 and 24 h. The concentration of protein‐15N was enhanced under a low level of NaCl (‐0.4 MPa osmotic potential) at the vegetative growth stage. The difference between the protein‐15N concentration of the moderately salinized (‐0.8 MPa) plants and the controls was not significant. A high level of NaCl (‐1.2 MPa) significantly decreased protein‐N content of plants compared with the controls and any other level of salinity. The NaCl increased accumulation of NH4 + plus amide‐N, free (α‐amino‐N, and total soluble‐N in cotton shoots, at both stages of growth. Low osmotic potential (high osmotic pressure) of the nutrient solution induced by excessive amounts of NaCl in nutrient solution inhibited NH+ 4 metabolism and decreased protein synthesis, thus resulting in accumulation of soluble N‐compounds. The ionic effect probably contributed also to inhibition of protein synthesis.  相似文献   


16.
Solutions labelled with 15N were applied as (15NH4)2SO4 or K15NO3 to isolated microplots in the floor of mountain beech forest (Nothofagus solandri var. cliffortioides) and incubated for 135 days under field conditions of moisture and temperature. Solid state 15N CPMAS NMR spectra of the forest litter layer showed that more than 80% of the total signal intensity was attributable to the secondary amide-peptide peak. The degree of 15N enrichment or form of N did not alter the relative intensity of signals attributable to 15N in peptides, nucleic acids and aliphatic amine groups (amino sugars and free NH2 on amino acids). Combinations of 13C and 15N-NMR spectra, edited by a process that exploited differences in proton spin properties between distinct categories of organic matter, indicated incorporation of 15N in humified organic matter rather than partly degraded plant material. This application demonstrated that solid state 15N CPMAS NMR has potential for use in studies of N immobilization under field conditions and with materials containing little N and small 15N enrichment.  相似文献   

17.
ABSTRACT

Interactions between nitrate (NO3 ?), potassium (K+), and ammonium (NH4 +) were investigated using hydroponically grown cucumber (Cucumis sativus L.) plants. Ammonium as the sole nitrogen (N) source at 10 mM was toxic and led to overall growth suppression, chlorosis, and necrosis of leaves. After 20 days, 50% of the plants were dead. However, when NO3 ? was supplied at very low concentration together with high NH4 + (only 1% of total 10 mM N) all seedlings survived and their growth was improved. High K+ concentration (5 mM) also alleviated NH4 + toxicity and increased plant growth several fold compared to intermediate concentration of K+ (0.6 mM). Leaf total N and 15N derived from 15N-labelled NH4 + increased in the presence of NO3 ?, but decreased at high K+ concentration. High K+ supply enhanced total carbon (C) and δ 13C and stimulated GS and PEPCase activities in leaves and roots. Nitrate supplementation had no effect on GS or PEPCase activities. It is concluded that K+ may alleviate NH4 + toxicity, partly by inhibiting NH4 + uptake, partly by stimulating C and N assimilation in the roots.  相似文献   

18.
Uptake of blue-green algal nitrogen (N) and total N uptake by lowland rice (Oryza sativa) was affected by tubificid (Oligochaeta) presence in submerged soils. Recovery of algal 15N by the first crop was 24–43% but only 4–7% for the second, and recovery was determined by both the method of algal application (surface vs buried) and the presence of tubificids. Tubificid activities reduced recovery of algal N by rice, increased its total N content and doubled losses of 15N to the atmosphere. Soil N uptake by rice was increased by tubificid presence. Soil N mineralization, measured as NH4+ production, was doubled over 7 days by their activities and algal mineralization was also apparently enhanced. The NH4+ release rate of Limnodrilus sp. was 4.11 ± 0.06 ng NH4+-N mg ash free dry wt?1 h?1. Effects of tubificids on rice nutrition are discussed.  相似文献   

19.
The availability of inorganic N has been shown to be one of the major factors limiting primary productivity in high latitude ecosystems. The factors regulating the rate of transformation of organic N to nitrate and ammonium, however, remain poorly understood. The aim of this study was to investigate the nature of the soluble N pool in forest soils and to determine the relative rate of inorganic N production from high and low molecular weight (MW) dissolved organic nitrogen (DON) compounds in black spruce forest soils. DON was found to be the dominant N form in soil solution, however, most of this DON was of high MW of which >75% remained unidentified. Free amino acids constituted less than 5% of the total DON pool. The concentration of NO3 and NH4+ was low in all soils but significantly greater than the concentration of free amino acids. Incubations of low MW DON with soil indicated a rapid processing of amino acids, di- and tri-peptides to NH4+ followed by a slower transformation of the NH4+ pool to NO3. The rate of protein transformation to NH4+ was slower than for amino acids and peptides suggesting that the block in N mineralization in taiga forest soils is the transformation of high MW DON to low MW DON and not low MW DON to NH4+ or NH4+ to NO3. Calculated turnover rates of amino acid-derived C and N immobilized in the soil microbial biomass were similar with a half-life of approximately 30 d indicating congruent C and N mineralization.  相似文献   

20.
陈沂岭  赵学强  张玲玉  沈仁芳 《土壤》2019,51(2):243-250
NH_4~+和NO_3~–是对植物有效的两种主要无机氮源。水稻一般被认为是偏好NH_4~+的植物,但是在NO_3~–条件下,水稻也能良好地生长。大多数关于水稻铵硝营养的报道是在pH 6.0左右的水培条件下开展的,但是对于酸性条件下水稻铵硝营养研究很少。随着土壤酸化的加重及一些边际酸性土壤被用作水稻种植,研究酸性条件下水稻的铵硝营养具有重要意义。本文采用水培试验,在pH 5.0的条件下,通过添加和不添加pH缓冲剂MES(2-(N-吗啡啉)乙磺酸),研究了NH_4~+和NO_3~–对水稻生长、氮效率和矿质养分(N、P、K、Ca、Mg、Fe、Zn、Cu、Mn)吸收的影响。结果表明,在不添加MES的条件下,水稻地上部生长(株高、叶绿素含量、干重)在NH_4~+和NO_3~–之间没有显著差异,而添加MES后,NH_4~+处理的水稻地上部生长优于NO_3~–。不管是否添加MES,NO_3~–处理的水稻地下部生长(根长、根表面积和根物质量)优于NH_4~+。水稻含氮量和氮利用效率在不同NH_4~+和NO_3~–处理之间没有显著差异,但是NH_4~+处理的水稻氮吸收效率高于NO_3~–。与NO_3~–相比,NH_4~+增加了水稻地上部P和Fe含量,而降低了水稻地上部Ca、Mg、Zn、Cu和Mn含量,对K含量影响较小。上述结果表明,NH_4~+有利于改善水稻地上部生长,提高氮吸收效率、地上部P和Fe含量,而NO_3~–则有利于水稻发根,提高地上部Ca、Mg、Zn、Cu和Mn含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号