首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
Roots of endophyte‐infected (E+) tall fescue (Festuca arundinacea Schreb.) exude more phenolic‐like reductants than roots of endophyte‐free (E‐) plants when mineral stressed. Phenolic compounds are efficient chelators of aluminum (Al) and may influence Al tolerance in many plant species. The objective of our study was to determine if enhanced release of phenolic compounds by roots of E+ plants contributes to Al tolerance in tall fescue. Two cloned genotypes (DN2 and DN11) of tall fescue infected with their naturally occurring fungal endophyte Neotyphodium coenophialum (Morgan‐Jones and Gams) Glenn, Bacon and Hanlin and their noninfected isolines were grown in nutrient solutions at 0 μM Al (Al‐) and at 640 μM Al (Al+) under controlled environment conditions. Root and shoot dry matter (DM) of endophyte‐infected tall fescue was greater in E+ than E‐ plants by 57% and 40%, respectively, when plants were grown without Al. Endophyte infection did not affect root and shoot DM of tall fescue grown with Al but relative (to Al‐treatment) reduction in root and shoot DM was greater in E+ than E‐ plants. In response to Al stress, more Al (47%) and P (49%) could be desorbed from root surfaces of E+ than E‐ plants. Aluminum concentrations in roots of E+ plants were 35% greater and P concentrations were 10% less than those determined in roots of E‐plants. No differences in mineral concentrations were observed in shoots, regardless of endophyte status, or Al level in nutrient solution. Roots of E+ plants increased pH of both Al‐ and Al+ nutrient solutions to a greater extent than roots of E‐ plants in a 48 h interval. Our results show that more Al can be sequestered on root surfaces and in root tissues of endophyte‐infected tall fescue than in plants devoid of endophyte. Aluminum sequestration was greater on root surfaces and in root tissues of E+ than E‐ plants of a given tall fescue genotype. Our results suggest that increased exudation of phenolic‐like compounds from roots of endophyte‐infected tall fescue may be directly involved in Al tolerance and serves as a mechanism for widespread adaptability and success of endophyte‐tall fescue associations.  相似文献   

2.
Kentucky bluegrass, Poa pratensis L., is generally regarded as an acid‐soil‐sensitive species. However, previous studies in our laboratory showed that cultivars within the species differed widely in tolerance to acid Tatum subsoil (pH 4.6) which is used routinely to screen plants for aluminum (Al) tolerance. In the early studies, specific differential Al tolerance was not demonstrated. The objective of the current study was to test the hypothesis of differential Al tolerance more precisely in nutrient solutions. In one experiment, acid‐soil‐tolerant Victa and Fylking and acid‐soil‐sensitive Windsor and Kenblue cultivars were grown for 35 days in nutrient solutions containing 0, 2, 4, 6, 12, and 24 mg Al L‐1, at initial pH 4.5, with no subsequent adjustment. In a second experiment, Victa and Windsor were grown for 30 days in solutions containing 0, 4, and 6 mg Al L‐1, at initial pH 4.5, with no further adjustment. For Victa and Windsor, tolerance to Al in nutrient solution corresponded with tolerance to acid Tatum subsoil, however, the cultivar difference in tolerance, based on relative root dry weight, was only about 2‐fold, compared with 20‐fold in acid Tatum subsoil. Fylking and Kenblue cultivars, which showed a wide difference in tolerance to acid Tatum subsoil, did not show distinct differences in tolerance to Al in nutrient solutions. Possible reasons for this discrepancy are discussed. Superior Al tolerance of Victa (compared with Windsor) was associated with a greater plant‐induced increase in the pH of its nutrient solutions and a corresponding decrease in concentrations of soluble Al in the filtered solutions at the end of the experiments. Greater Al sensitivity in Windsor (compared with Victa) was not related to reduced uptake of phosphorus (P) or excessive uptake of Al; neither cultivar accumulated appreciable Al concentrations in its shoots. The observed differential acid soil and Al tolerance among bluegrass cultivars appears worthy of further study. Improved understanding of Al tolerance mechanisms would contribute to fundamental knowledge of plant mineral nutrition and could aid plant breeders in tailoring plants for greater tolerance to acid subsoils.  相似文献   

3.
A 3-year field study was conducted to determine the influence of nitrogen (N) application timing on the growth and quality of a turfgrass mixture consisting of perennial ryegrass (Lolium perenne L.), Kentucky bluegrass (Poa pratensis L.), creeping red fescue (Festuca rubra var. rubra L.), and chewings fescue (Festuca rubra var. commutata Gaud.) under irrigated conditions. Nitrogen was applied annually at the rate of 30 g m?2 year?1, with six application regimes: control (no N), single spring (30 g m?2), single fall (30 g m?2), spring + fall (15 + 15 g m?2), spring + summer + fall (10 + 10 + 10 g m?2), and monthly from April through September (5 g m?2).

Color, turf quality, clipping weights, and shoot density were correlated with fertilizer rates and application timing in this study. Fertilization monthly or every 2 months resulted in more uniform color and turf quality and less clipping weights than with comparable heavy spring and fall fertilizations. Heavy N applications in the fall did not cause winter injury and produced significantly darker color and more uniform appearance in early spring than other N applications. All N-fertilization regimes increased shoot density, but spring fertilization stimulated density the most. Nitrogen applied monthly or every 2 months was enough to enhance the color, turf quality, and shoot density of the turf during the growing season but did not greatly affect the growth rate.  相似文献   

4.
Aluminum toxicity is a major growth limiting factor for plants in many acid soils of the world. Correcting the problem by conventional liming is not always economically feasible, particularly in subsoils. Aluminum tolerant plants provide an alternative and long‐term supplemental solution to the problem. The genetic approach requires the identification of Al tolerance sources that can be transferred to cultivars already having desirable traits. Thirty‐five cultivars and experimental lines of wheat (Triticum aestivum L. em. Thell) were screened for Al tolerance on acid Tatum soil (clayey, mixed thermic, typic Hapludult) receiving either 0 or 3500 mg CaCO3/kg (pH 4.1 vs. pH 7.1). Entries showed a wide range of tolerance to the acid soil. On unlimed soil at pH 4.3, absolute shoot dry weights differed by 5‐fold, absolute root dry weights by 6.5‐fold, relative shoot weights (wt. at pH 4.3/wt. at pH 7.1 %) by 4.7‐fold and relative root dry weights by 7‐fold. Superior acid soil (Al) tolerance of ‘BH‐1146’ from Brazil and extreme sensitivities of cultivars ‘Redcoat’ (Indiana, USA) and ‘Sonora 63’ (Mexico) were confirmed. Seven experimental (CNT) lines from Brazil showed a range of acid soil tolerance but were generally more tolerant than germplasm from Mexico and the USA. One line, ‘CNT‐1’, was equal to BH‐1146 in tolerance and may be useful in transferring Al tolerance to existing or new cultivars. Five durum cultivars (Triticum, durum, Desf.) were extremely sensitive to the acid Tatum subsoil at pH 4.3 compared with pH 7.1.  相似文献   

5.
Aluminum (Al) toxicity is a growth‐limiting factor in acid soils for many turfgrasses. The genetic diversity among turfgrass cultivars for Al tolerance is not well known. One hundred‐fifty Kentucky bluegrass (Poa pratensis L.) genotypes (cultivars, selections, and breeding lines) belonging to seven ecotypes were selected to screen for Al tolerance under greenhouse conditions using solution culture, sand culture, and an acid Tatum subsoil (Clayey, mixed, thermic, typic, Hapludult). This soil had 69% exchangeable Al and a pH of 4.4. An Al concentration of 320 μM and a pH of 4.0 in a modified 1/4 strength Hoagland nutrient solution was used in solution screening and sand screening. The grasses were seeded and grown four to five weeks before harvesting. Differences were identified among cultivars and the seven ecotypes by measuring relative growth. ‘Battan’, ‘Viva’, and ‘Nassau’ were the most Al‐tolerant cultivars based on the rank average of the three screening methods. Among the seven ecotypes, BVMG, which refers to cultivars such as ‘Baron’, ‘Victa’, ‘Merit’, and ‘Gnome’, were most Al tolerant while Midwest ecotypes, which are frequently referred to as common Kentucky bluegrasses, consistently exhibited the least Al tolerance. The results indicate that the Kentucky bluegrass cultivars vary genetically in Al tolerance and that there is potential to improve such tolerance with breeding and to refine cultivar‐specific management recommendations regarding soil pH.  相似文献   

6.
Abstract

Lines of Leucaena leucocephala (Lam.) de Wit were grown in greenhouse pots of an acid, Al‐toxic Tatum subsoil (clayey, mixed, thermic typic Hapludult) treated with 0 or 3000 ppm CaCO3 to give final soil pH values of 4.1 and 5.3, respectively. Lines of L. leucocephala, plus those of other Leucaena species, were also tested on an acid, Monmouth soil (clayey, mixed, mesic, typic Hapludult) treated with 0 or 1500 ppm CaCO3 to give final soil pH values of 4.8 and 6.6, respectively. The major index of acid soil tolerance used was relative root yield (unlimed/limed %).

Relative root yields of 117 L. leucocephala lines on Tatum soil ranged from 34 to 246%. Hence, liming the soil from pH 4.1 to 5.3 was highly beneficial to some lines and highly detrimental to others. Because Tatum subsoil is 89% Al saturated at pH 4.1, line tolerance to unlimed soil indicates tolerance to Al. Causes of yield depression at pH 5.3 were not determined.

On Monmouth soil, in a test involving 148 lines of 6 Leucaena species, relative root yields (unlimed/limed %) ranged from 23 to 386%. The line showing highest tolerance to the acid soil (P.I. 279578) and that showing lowest tolerance (P.I? 281636) are both L,. leucocephala. The majority of lines used on Monmouth soil (124 of a total of 148) were from this species. Average performances of the 6 species indicated that L. diversifolia Benth. (5 lines) was most tolerant to the acid Monmouth soil and liming the soil from pH 4.8 to 6.6 actually decreased root yields. The species L.. leucocephala (124 entries) and L. pulverulenta Benth. (4 lines) were intermediate, and L. lanceolata S. Wats. (3 lines) and I., retusa Benth. (1 line) appeared more sensitive to acid Monmouth soil. The Al saturation of Monmouth soil at pH 4.8 was only 23% (compared with 89% for Tatum at pH 4.1). The major growth limiting factor in acid Monmouth soil is believed to be Al toxicity, but this soil has not been as throughly characterized as has Tatum, and other factors may well be involved in explaining differential tolerances of Leucaena lines on the unlimed versus limed soil.

Results of these studies indicate that Leucaena species and lines within species differ significantly in tolerance to acid soils having high levels of exchangeable Al. Acid soil tolerant lines of Leucaena may be useful in expanding the acreage of this crop on oxisols and ultisols of the tropics and subtropics.  相似文献   

7.
Catastrophic soil erosion has resulted in the desertification of vast areas in Iceland. Barren lands are revegetated on a large scale by aerial broadcasting of commercial grass seed of Festuca rubra cv. Leik (red fescue) and subsequent regular fertilizer application for five years. Vegetation cover following aerial seeding of F. rubra was recorded in three reclaimed sites, which were two, ten and 25 years old, in an inland area in southern Iceland. As a comparison, vegetation cover was also recorded on barren land. Plant succession was inferred from these records. Vegetation cover was recorded using the point-intercept method. Spores of arbuscular mycorrhizae fungi (AMF) were recorded from each site. Barren lands have characteristically low (<5%) vegetation cover. The highest cover of F. rubra was found two years after revegetation was initiated. Non-dependent AMF forbs also colonized and increased their cover rapidly in the second year due to fertilizer application, but after a decade their cover declined. Ten years after the aerial seeding, F. rubra disappeared and the area was dominated by the native grass Agrostis stolonifera (creeping bent grass). A cover of mosses and plant litter was also recorded on the ten-year-old site. AMF spores were low in all studied sites, and colonization of AMF was only found in the roots of A. stolonifera. After 25 years, it appeared that the cover of native forbs started to increase again and salix bushes were established. Aerial seeding of F. rubra failed to create a long-lasting cover to facilitate natural rapid succession. Alternative revegetation practices, taking into consideration the dynamics of the mutualistic microorganisms (Rhizobium and AMF)/plant association, are suggested for a better and more economic management of reclamation strategies. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Aluminum toxicity, associated with soil acidity, is a major growth‐limiting factor for plants in many parts of the world. More precise criteria are needed for the identification of potential Al toxicity in acid soils. The objective of the current study was to relate the acid soil tolerances of two wheat cultivars to three characteristics of an acid Tatum subsoil (clayey, mixed, thermic, typic Hapludult): pH in a 1:1 soil to water suspension; KCl‐extractable Al; and degree of Al saturation. Aluminum‐tolerant ‘BH 1146’ (Brazil) and Al‐sensitive ‘Sonora 63’ (Mexico) wheat cultivars were grown in greenhouse pots of soil treated with CaCO3 to establish final soil pH levels of 4.1, 4.6, 4.7, 4.9, 5.2 and 7.3. Soil Al, Ca and Mg were extracted with 1 N KCl, and Al saturation was calculated as KCl‐Al/KCl Al + Ca + Mg%.

Within the soil pH range of 4.1 to 4.9, BH 1146 tops and roots produced significantly more dry matter than did those of Sonora 63; however, at pH 5.2 and 7.3, the top and root yields of the two cultivars were not significantly different. Significant cultivar differences in yield occurred over a range of 36 to 82% saturation of the Tatum soil. Graphs of relative top or root yields against soil pH, KCl‐extractable Al and Al saturation indicated that the two cultivars could be separated for tolerance to Tatum soil under the following conditions: pH less than 5.2 (1:1 soil‐water); KCl‐Al levels greater than 2 c mole kg‐1 and Al saturations greater than 20%. Results demonstrated that any soil test used to predict Al toxicity in acid soils must take into account the Al tolerances of the plant cultivars involved.  相似文献   

9.
Because rangelands in the Xinjiang Autonomous Region of thePeople's Republic of China (PRC) and Mongolia are typicallyseverely overgrazed, bilateral (U.S./ PRC, U.S./Mongolia)efforts have been initiated to expedite capture of the remaining geneticdiversity. The current study was designed to evaluate selected germplasm of thefollowing forage species collected in these threatened areas: Bromusinermis Leyss., Dactylis glomerata L.,Festuca arundinacea Schreb., Festucaovina L., Festuca rubra L., Phleumphleoides (L.) Karsten, Phleumpratense L., Poa palustris L., Poapratensis ssp. angustifolia (L.) H.Lindb., Medicago sativa ssp. falcataArcengeli, Medicago sativa L. ssp. sativa, Medicago lupulina L.,Medicago ruthenica (L.) Ledebour,Trifolium fragiferum L., Trifoliumlupinaster L., Trifolium pratense L., andTrifolium repens L. Accessions were evaluated in the fieldat Beltsville MD (USA) on an Iuka sandy loam(coarse-loamy, siliceous, acid, thermic, Aquic Udigluvent; pH6.5) in a two-year study. Comparative check cultivars were included.There was significant variation in days to 50% heading (grassspecies) or flowering (legume species), leaf texture (grassspecies), growth habit, spring vigor, and dry matter yield among accessionsof at least some genera. Accessions did not demonstrate higher diseasesusceptibility relative to check cultivars, except in the case of severalF. arundinacea and oneM. sativa ssp.falcata entries. There was no significant variation in leafshape among the legume accessions, nor were leaf shapes significantly differentfrom those of the check cultivars. Several F.ovina, F. rubra,and Poa pratensis accessions may have potential in turfgrass breeding programs. There were apparent positive relationships amongupright growth habit, spring vigor, late development, and yield.  相似文献   

10.
New breeding lines of Phalaris (Phalaris aquatica), cocksfoot (Dactylis glomerata) and tall fescue (Festuca arundinacea = syn. Lolium arundinaceum) are currently under evaluation for the selection of new cultivars for low rainfall environments. The aim was to test the relative tolerance of six elite genotypes of Phalaris, cocksfoot and tall fescue to aluminium and manganese toxicities in solution culture. Two solution culture experiments were conducted at aluminium concentrations of 0, 50, 100, 200 and 300 µM, or manganese (Mn) concentrations of 0, 2, 4, 6 and 8 mM in a basal nutrient solution at pH 4.5. Elite genotypes of cocksfoot, AVH48 Selection and Moroccan Fine, exist with improved tolerance to aluminium and Mn toxicities. Elite genotypes of Phalaris, particularly Northern Retainer, were superior to Sirolan at moderate to high aluminium concentrations in solution. There was little difference in the tolerance to aluminium and manganese toxicities between the elite genotypes and existing cultivars of tall fescue.  相似文献   

11.
Species of Amaranthus are grown extensively as leafy green vegetables in tropical Africa and Asia and as high yielding grain crops in Western South America, Central America, Northern India, Western Nepal, and Pakistan. The crop is often grown on acid, marginal soils, under subsistence conditions, where liming even the soil plow layer may not be economically feasible. Hence, the identification or development of strains with high tolerance to acid soils would be beneficial. Aluminum and Mn toxicities are the most important growth‐limiting factors in many acid soils. The objective of our research was to determine the tolerances of selected Amaranthus strains to high levels of these elements in acid soils.

Fifteen strains, representing five species, were grown in greenhouse pots of an acid, Al‐toxic Tatum soil limed to pH 4.8 and 5.8. Strains differed significantly in tolerance to the acid soil. Relative yields (pH 4.8/pH 5.8%) ranged from 50.1 to 6.3% for tops and from 54.5 to 5.7% for roots. Four strains of A. tricolor L. (vegetable type) were significantly more tolerant than six strains of A. cruentus L. (seed and vegetable type). Strains of A. hypochondriacus L. and A. caudatus L. studied were intermediate in tolerance.

Twelve strains, representing four species, were grown on an acid, Mn‐toxic Zanesville soil at pH 4.6 and 6.3. Strains also differed significantly in tolerance to this acid soil; however, overall growth was better and strain differences were smaller than on Al‐toxic Tatum soil at pH 4.8. On Zanesville soil the relative top yields (pH 4.6/pH 6.3%) ranged from 74.1 to 18.6%. The most tolerant group included three strains of A. tricolor and one strain of A. hypochondriacus, but four strains of A. cruentus were also fairly tolerant. The sensitive end of the scale included one strain of A. cruentus and two strains of A. hypochondriacus.

In general, strains that were most tolerant to the Al‐toxic Tatum soil were also among the most tolerant to the Mn‐toxic Zanesville soil. Likewise, those most sensitive to the high Al soil were most sensitive to the high Mn soil. But some strains that were sensitive to excess Al in Tatum soil were fairly tolerant to high Mn in Zanesville soil.

Results suggest that superior strains of Amaranthus can be selected or developed for use on acid soils.  相似文献   


12.
Abstract

‘Merion’ Kentucky bluegrass (Poa pratensis L.), ‘Pennfine’ perennial ryegrass (Lolium perenne L.), ‘Seaside’ creeping bent‐grass (Agrostis palustris Huds.), ‘Dawson’ slender creeping red fescue (Festuca rubra trichophylla (L.) Gaud.), ‘Fults’ weeping alkaligrass (Puccinellia distans (L.) Parl.), and ‘common’ Lemmon alkaligrass (Puccinellia lemmoni (Vasey) Scribn.) were evaluated for germination and seedling survival in the greenhouse and laboratory under saline conditions. Overall results indicated that weeping and Lemmon alkaligrass were superior performers under saline and/or sodic conditions. Among the remaining four species, none appeared clearly superior in overall performance.  相似文献   

13.
Screening cultivars for aluminum (Al) tolerance is often conducted in acid soils or in complete nutrient solutions. The former method lacks precise measurements of Al, and the second requires high Al concentrations because of precipitation and chelation of the Al and is less representative of the actual environmental stresses to which plants must adapt. These experiments were designed to determine Al tolerance of wheat (Triticum aestivum L. em Thell) and sorghum (Sorghum bicolor L. Moench) using incomplete solutions with very low Al concentrations. Six wheat and five sorghum cultivars were screened for Al tolerance in solution culture with 0 to 10 μM Al and only Ca, K, Mg, NO3, and Cl in the solutions. Plants were subjected to the solutions for 4 d, and the change in relative root length was measured. Solution Al levels and pH were measured after the termination of the experiments. ‘Atlas’ 66 and ‘Stacy’ were the most tolerant wheat cultivars ('Atlas 66’ = ‘Stacy’ ≥ ‘Monon’ ≥ ‘Scout 66’ ≥ ‘Arthur 71’ = ‘Oasis'). The wheat cultivars were effectively separated on a genetic response basis at 2 μM Al. Sorghum cultivars were uniform in their Al tolerance, but did show some separation at 1 μM Al (SC56 > Tx430 > ‘Funk GS22DR’ > SC283 = SC599). The pH and Al variations did not account for any of the differences observed, indicating that root length differences were caused by genetic control of response to high Al.  相似文献   

14.
Field experiments were conducted to assess the influence of plant growth and amendment addition on phytostabilisation of copper (Cu), lead (Pb), manganese (Mn) and zinc (Zn) along highway soil in southwest British Columbia, Canada. The plant species tested were Lolium perenne L (perennial rye grass), Festuca rubra L. (creeping red fescue) and Poa pratensis L. (Kentucky blue grass) and the amendments, lime and phosphate. The treatment efficiencies were assessed during different seasons as a completely randomized factorial experiment in split plot design. The research tasks involved: (1) quantifying the seasonal extent of metal accumulation in soil and assessing the seasonal impact on metal speciation for different soil amendments and plant species; (2) determining seasonal accumulation differences between sampling periods in plant parts; and (3) assessing the influence of root–soil interactions on metal dynamics. The amendments decreased the exchangeable fraction and plant uptake of all four metals. The lowest mobile fractions (exchangeable and carbonate bound) were found in soils growing Festuca for Cu, Lolium for Mn and a Lolium/Poa/Festuca combination for Pb and Zn. Metal accumulation and metal dynamics in the rhizosphere soil are compared with those of the bulk soil. The final outcome was the development of a remediation strategy for all four metals involving suitable plants and amendments and incorporating seasonal and rhizosphere influences.  相似文献   

15.
Previous studies with one cultivar of each of two Lotus species showed that L. pedunculatus cv. Grasslands Maku is Al‐tolerant while L. corniculatus cv. Maitland is Al‐sensitive. However, little information exists on the relative Al‐tolerance of other lines in these species or on the variability within lines in response to Al. Two solution culture experiments were conducted to study these aspects. The Al tolerance of Grasslands Maku was confirmed, plant dry mass increasing by > 40 % with 10 to 30 μM monomeric Al in solution. In contrast, the yield of Maitland was decreased by > 80 % at 30 μM Al, as was that of the other two L. corniculatus lines tested, AT‐I and AT‐U. The F1 of a cross between a L. pedunculatus line and a L. corniculatus line (G4712) was intermediate with respect to Al tolerance. Also, there was a wide range of response to Al in the F2, which appeared to have similar morphological characteristics to Maitland. Thus, there would appear to be considerable benefit in selecting for Al tolerance and good agronomic characters in this interspecific cross.  相似文献   

16.
Two genotypes of Old world bluestems from the species Bothriochloa intermedia (R. Br.), A. Camus, shown earlier to differ in tolerance to acid, Al‐toxic Tatum subsoil at pH 4.1, were characterized further with respect to growth in pots of Tatum soil over a wider pH range and tolerance to Al in nutrient solutions. The two genotypes studied were acid‐soil tolerant P. I. 300860 (860) and acid soil sensitive P. I. 300822 (822).

The soil experiment confirmed earlier rankings of acid soil tolerance in these two genotypes. For example, with 0, 375 or 750 ug CaCO3 g‐1 soil (final pH 4.0, 4.3 and 4.6), the 860 genotype produced significantly more dry top weight than 822, but these differences were precluded with 1500 or 3000 ug g‐1 CaCO3 added (pH 4.7 and 5.4). At pH 4.3 and 4.6, the root dry weights of the two genotypes were also significantly different and weights were equalized at pH 4.7 and 5.4. The 860 genotype made fairly good top growth (67% of maximum) at pH 4.3 and a soil Al saturation of 63%; this situation was lethal for 822. When grown in greenhouse pots, the acid‐soil tolerant 860 genotype required only about one fourth as much CaCO3 as 822 to produce good growth of forage on acid Tatum subsoil. If confirmed under field conditions, such a difference could be economically significant in reclaiming acidic marginal land and in producing forage at low cost.

Differential Al tolerance in the two genotypes was confirmed in nutrient solutions. For example, with 8 mg Al L‐1 added, both top and root dry weights of 860 were significantly higher than those of 822, but with no Al added, these growth differences disappeared.

Mineral analyses of plants did not shed much light on mechanisms of differential acid soil or Al tolerance. For example, Al concentrations in plant tops associated with toxicity varied from 33–43 ug g‐1 in nutrient solutions containing Al to 119–283 ug g‐1 in acid soil It appears that elucidation of Al‐adaptive mechanisms will require physiological and biochemical studies at the cellular level.  相似文献   

17.
Laboratory and greenhouse studies were conducted on several forage grasses, bermudagrass (Cynodon dactylon), creeping red fescue (Festuca rubra), Kentucky 31-tall fescue (Festuca arundinacea), oat (Avena sativa), orchardgrass (Dactylis glomerata), perennial ryegrass (Lolium perenne), sorghum (Sorghum bicolor), triticale (X. triticosecale Wittmack), and winter wheat (Triticum aestivum) grown on three Alabama acid mine spoils to study heavy metal accumulation, dry matter yield and spoil metal extractability by three chemical extractants (Mehlich 1, DTPA, and 0.1 M HCl). Heavy metals removed by these extractants were correlated with their accumulation by several forage grasses. Among the forages tested, creeping red fescue did not survive the stressful conditions of any of the spoils, while orchard grass and Kentucky 31-tall fescue did not grow in Mulberry spoil. Sorghum followed by bermudagrass generally produced the highest dry matter yield. However, the high yielding bermudagrass was most effective in accumulating high tissue levels of Mn and Zn from all spoils (compared to the other grasses) but did not remove Ni. On the average, higher levels of metals were extracted from spoils in the order of 0.1 M HCl>Mehlich 1>DTPA. However, DTPA extracted all the metals from spoils while Mehlich 1 did not extract Pb and 0.1 M HCl did not extract detectable levels of Ni. All of the extractants were quite effective in determining plant available Zn from the spoils. For the other metals, the effective determination of plant availability depended on the crop, the extractant, and the metal in concert.  相似文献   

18.
Eastern gamagrass, Tripsacum dactyloides L., has been reported to tolerate a wide variety of soil conditions, including drought, flooding, and acidity, but its specific tolerance to aluminum (Al) has not been tested. One strain of this species, PMK Select Lot 94 SFG‐1, was tested for its tolerance to excess Al in an acid, Al‐toxic Tatum subsoil (clayey, mixed, thermic, Typic Hapludult) and in nutrient solutions containing Al. Roots were able to penetrate unfertilized Tatum subsoil at pH levels as low as 4.1–4.2 (1:1 soil‐water), at Al saturations of 64 to 77% of CEC, and to tolerate Al concentrations in nutrient solution that would be lethal for many crop plants. For example, with 4 mg Al L‐1 and a final solution pH of 4.67, shoot and root dry weights were 75 and 76%, respectively, of those with no Al. Even with 24 mg Al L‐1 and a final solution pH of 4.13, shoot and root dry weights were 45 and 46%, respectively, of those for the no Al check treatment. Hence, this strain of gamagrass shows promise for use on soils having acidic, Al‐toxic subsoil layers that act as root barriers and predispose plants to injury by drought. Roots of gamagrass are also reported to penetrate hard clay pans and to create root channels for subsequent crops that lack this ability. Current studies indicate that the strain tested was susceptible to a chlorosis resembling iron (Fe) deficiency when grown in a Jiffy Mix potting mixture or with excess Al in nutrient solutions. Hence, gamagrass is tentatively being classified as a calcifuge [Al tolerant‐Fe‐inefficient]. In the current experiment, considerable plant to plant variability was noted regarding susceptibility to this chlorosis factor and to a purpling symptom resembling phosphorus (P) deficiency. Results indicate that an exhaustive screening of gamagrass populations could identify strains that are more suitable for specific soil situations.  相似文献   

19.
Growth, nutrient uptake and nutrient uptake efficiency differences in orchardgrass (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb), and timothy (Phleum pratense L.) were evaluated at 0, 100, 200, and 300 μM Al. In each of the species, cultivar differences were also compared. In the absence of Al stress, cultivars of orchardgrass outperformed other grasses. The presence of Al reduced shoot and root growth; however, the magnitude of the growth reduction depended upon the species and cultivars. The growth of shoots and roots showed a significant difference with respect to species, cultivars, treatment Al and their Interactions. Aluminum reduced the uptake of many essential nutrients. At 100 μM Al Potomac orchardgrass had the highest and climax timothy had the lowest mineral content. The efficiency ratio (ER) assisted in classifying grass entries into efficient and inefficient utilizers of the absorbed nutrients. The ER is defined as milligrams of dry shoot weight produced per milligram of element in the shoot. The ER for P, K, Cu and Zn gave a positive correlation with shoot weight; however, in general, negative relationships were observed for shoot growth and ER for Mg, Fe, and Mn. In all the species increasing Al concentration from 0 to 100 μM increased ER for Mg and decreased ER for K and Zn. With the exception of tall fescue cultivars, the ER for P was reduced by 100 μM Al. The species and cultivars used in this study showed inter‐ and intraspecific differences in growth, uptake, and ER for nutrients in the presence or absence of Al stress. Significant reduction in growth, even at 100 μM Al by all the three species of grass indicates that these grass species are far more sensitive to Al than the field crops. Therefore, experiments with levels of Al lesser than 100 μM would have given a better outlook on the performances of these grass species.  相似文献   

20.
Lolium and Festuca are two important genera of cool-season forage and turf grasses worldwide. Lolium temulentum L. (darnel ryegrass) has been proposed as a model species for genomics studies of cool-season forage and turf grasses. A study with 41 darnel ryegrass, three tall fescue (Festuca arundinacea Schreb.), two tetraploid fescue (F. glaucescens), and two meadow fescue (F. pratensis) genotypes was initiated to (i) identify a set of microsatellite (simple sequence repeats) markers useful for L. temulentum L., and (ii) to utilize such markers for assessing the genetic variability of L. temulentum accessions collected from different geographical regions of the world. A total of 40 tall fescue (TF) EST-SSRs and 60 Festuca–Lolium (F × L) genomic SSRs were screened on a subset of eight genotypes. The selected 30 tall fescue EST-SSRs and 32 F × L genomic SSRs were used for further analysis of genotypes. The TF-EST- and the F × L genomic-SSRs identified 10.3 and 9.3 alleles per marker, respectively with an average polymorphic information content (PIC) value of 0.66. The phenogram based on 319 EST-SSR and 296 genomic SSR fragments, grouped L. temulentum accessions into three major clusters except for accession ABY-BA 8892.78. Lolium temulentum accession ABY-BA 8892.78 did not cluster with any other accession. The Festuca clusters were distantly related with darnel ryegrass clusters with a similarity coefficient of 0.26. The selected set of tall fescue EST- and F × L genomic SSRs were useful in assessing L. temulentum genetic diversity and could benefit the genetic improvement of members of the Festuca–Lolium complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号