首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neotyphodium coenophialum, (Morgan‐Jones & Gams) Glenn, Bacon & Hanlin, infected tall fescue (Festuca arundinacea Schreb.) plants perform better than non‐infected isolines on phosphorus (P)‐deficient soils. Our objective was to characterize growth and P uptake dynamics of tall fescue in response to endophyte infection and P source at low P availability in soil. Two tall fescue genotypes (DN2 and DN4) infected with their naturally occurring N. coenophialum strains (E+), and in noninfected (E‐) forms were grown in Lily soil (fine loamy siliceous, mesic Typic Hapludult) in a greenhouse for 20 weeks. Three soil P treatments were imposed: no P supplied (control) and P supplied as commercial fertilizer (PF) or as phosphate rock (PR) at the level of 25 mg P kg‐1 soil. Interaction of tall fescue genotype and endophyte status had a significant influence on mineral element uptake suggesting high specificity of endophyte‐tall fescue associations. Endophyte infection did not affect root dry matter (DM) when no P was supplied but shoot DM was reduced by 20%. More biomass was produced and greater P uptake rate occurred in PR than PF treatment. Root DM was greater in E+ DN4 than E‐DN4 when supplied with either PF or PR. In contrast, endophyte infection did not affect root DM of DN2, regardless of P source. Relative growth rate (RGR) of E+ plants grown with PR was 16% greater than that of E‐plants. Endophyte infection did not improve growth or P uptake in PF treatment. When PR was supplied, P uptake rate was 24% greater in E+ DN2 than E‐ DN2, but endophyte infection did not benefit DN4. Phosphorus‐use efficiency was 6% less in E+ DN2 but 16% greater in E+ DN4 compared to E‐ plants, regardless of P source. Root exudates of E+ DN2, but not E+ DN4 solubilized more P from PR than those of E‐ plants. The correlation between root RGR and P uptake rate was relatively high for E‐ plants (r=0.76), but low for E+ plants (r=0.27) grown with PR. Results suggest that P uptake by E+ tall fescue might rely on mechanisms other than an increase in root biomass (surface area). Endophyte infection modified tall fescue responses to P source. This phenomenon was associated with modes of P acquisition which included enhanced activity of root exudates in releasing P from PR in E+ plants (DN2), and increased root biomass (DN4). The dominant means of P acquisition may be determined by a specific association of endophyte and tall fescue genomes. Endophyte‐tall fescue association plasticity contributes to widespread success of symbiotic in marginal resource conditions.  相似文献   

2.
Infection with Neotyphodium spp. endophytes increases resistance to drought stress and soil mineral imbalances in tall fescue (Festuca arundinacea Schreb. = Lolium arundinaceum (Schreb.) S. J. Darbysh.) and meadow fescue (Festuca pratensis Huds. = Lolium pratense (Huds.) Darbysh.). We hypothesized that resistance of these grasses to salinity stress may also be attributed to endophyte infection. Two tall fescue genotypes, Fa75 and Fa83, and one meadow fescue genotype, Fp60, infected (E+) with their endophytic fungi, Neotyphodium coenophialum (Glenn, Bacon and Hanlin) and N. uncinatum (Glenn, Bacon and Hanlin), respectively, and their noninfected counterparts (E–) were cultured in nutrient solution at three salinity levels of 0, 85, and 170 mM NaCl. Except for genotype Fa75, E+ plants exhibited higher leaf survival rates than E– clones at a high salinity level (170 mM). Root dry matter was higher in E+ than in E– plants, but shoot dry matter was not affected by endophyte infection. This resulted in a lower shoot‐to‐root ratio in E+ plants (1.63) compared with E– plants (2.40). Sodium (Na+) and chloride (Cl) concentrations were greater in roots of E– than in E+ clones. In shoots, Na+ and Cl concentrations were not affected by the endophyte. In contrast, E+ plants accumulated more potassium (K+), which resulted in a greater K+ : Na+ ratio in shoots of E+ than in those of E– plants. Our results show that endophyte infection reduced Na+ and Cl concentrations in tall fescue and meadow fescue roots but increased K+ concentrations in the shoots. Based on these results, we conclude that endophyte‐infected grasses may thrive better in salinity‐stress environments.  相似文献   

3.
Aluminum (Al) has many detrimental effects on plant growth, and shoots and roots are normally affected differently. A study was conducted to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes with broad genetic backgrounds for growth traits of plants grown at 0,200,400,600, and 800 μM Al in nutrient solutions (pH 4.0). Genotypes were categorized into “Al‐sensitive”, “intermediate Al‐tolerant”, “Al‐tolerant”, and SC 283 (an Al‐tolerant standard). As Al increased, shoot and root dry matter (DM), net main axis root length (NMARL), and total root length (TRL) became lower than controls (0 Al). Aluminum toxicity and/or nutrient deficiency symptoms become more severe, and shoot to root DM ratios and specific RL (TRL/root DM) values also changed as Al in solution increased. Root DM had greater changes among genotypes than shoot DM, and NMARL at 400 μM Al, and TRL at 200 μM Al had greater differences among genotypes than root DM, ratings for toxicity and/or deficiency symptoms, and other DM and RL traits. The wide differences among genotypes for NMARL and TRL could be used more effectively to evaluate sorghum genotypes for tolerance to Al toxicity than the other growth traits.  相似文献   

4.
ABSTRACT

An experiment was conducted to evaluate the effect of endophyte Neotyphodium coenophialum (Morgan-Jones and Gams) Glenn, Bacon, and Hanlin on the mineral content of tall fescue (Lolium arundinaceum Schreb., SJ Darbyshire) ecotypes (Fukaura, Koiwai, and Showa) grown on two Andisols (Black Andisol and Red Andisol) with different fertilities. Black Andisol, with a naturally low content of phosphorus, was high in other nutrients, while Red Andisol, with a naturally high content of phosphorus, was low in other nutrients. Shoot dry weight was significantly higher in endophyte-infected (E+) than endophyte-free (E?) plants grown in Black Andisol. On the other hand, in Red Andisol, only Fukaura showed higher shoot dry matter production in E+ plants as compared to E- plants. In general, greater concentrations of phosphorus and manganese were found in endophyte-infected (E+) plants than non-infected (E?) plants. Accumulation of all nutrients in E+ plants was remarkably higher than in E? plants. Excluding the plant ecotype effect, the nutrient concentration and accumulation pattern for plants in the two soils was different in E+ and E? plants. Plants growing in Black Andisol had greater concentrations of phosphorus (P), copper (Cu), and zinc (Zn) in E+ plants than those of E? plants whereas for plants in Red Andisol the reverse was true. Significantly higher concentration of manganese (Mn) was found in E+ plants irrespective of soils. Regardless of endophyte and ecotypes, plants grown in Black Andisol showed significantly higher values for both nutrient concentration and accumulation than those in Red Andisol. Apart from the plant ecotype Showa, all other ecotypes had the greatest accumulation and concentration of phosphorus in E+ plants. In two types of soil and among the three plant ecotypes, endophyte infection had different effects on nutrients acquisition. Giving emphasis on nutrient accumulation, endophyte played an overall negative role on plants grown in Red Andisol. There may be a metabolic cost of harboring endophytes offset its benefit in Red Andisol. Since the same species of endophyte infected all three ecotypes, our results show that the host/endophyte interaction depends on plant ecotype as well as the ability of the soil to supply nutrients.  相似文献   

5.
Abstract

Fine fescues (Festuca spp.) are generally considered acid tolerant compared to other cool‐season turfgrasses. However, there is little information on aluminum (Al) tolerance of fine fescues at both the species and cultivar levels. The objectives of this study were to identy cultivars of fine fescues with superior ability to tolerate Al, and compare the Al tolerance of endophyte infected and endophyte‐free cultivars in Al tolerance. A total of 58 cultrvars of fine fescues belonging to five species or subspecies [14 hard fescue (F. longifolia Thuill), 25 Chewings fescue (F. rubra L. ssp. commutata Gaud), 15 strong creeping red fescue (F. rubra L. ssp. rubra), two slender creeping red fescue (F. rubra L. ssp. trichophylla), and two sheep fescue (F. ovina L.)] were selected from the 1993 National Fineleaf Fescue Test and screened under greenhouse conditions using solution culture, sand culture, and acid Tatum soil (Clayey, mixed, thermic, typic, Hapludult). The acid Tatum soil had 69% exchangeable Al and a pH of 4.4. An Al concentration of 640 μM and a pH of 4.0 were used in solution culture and sand culture screening. The grasses were seeded and grown for three weeks before harvesting. Aluminum tolerance was assessed by measuring relative root length, shoot length, root weight, shoot weight, and total dry matter. Differences in Al tolerance were identified at both the species and cultivar level based on relative growth were as follows: i) hard fescue and Chewings fescue were more Al tolerant than strong creeping red fescue; ii) within species or subspecies, significant differences were found among cultvars of Chewings fescue, strong creeping red fescue, slender creeping red fescue, and sheep fescue; whereas no difference was observed among the hard fescue cultivars; and iii) the cultivars containing endophyte exhibited greater Al tolerance compared the eudophyte‐free cultivars. The results indicate that fine fescues vary in Al tolerance and there is potential to improve Al tolerance with breeding and to refine their management recommendations regarding soil pH.  相似文献   

6.
Growth, nutrient uptake and nutrient uptake efficiency differences in orchardgrass (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb), and timothy (Phleum pratense L.) were evaluated at 0, 100, 200, and 300 μM Al. In each of the species, cultivar differences were also compared. In the absence of Al stress, cultivars of orchardgrass outperformed other grasses. The presence of Al reduced shoot and root growth; however, the magnitude of the growth reduction depended upon the species and cultivars. The growth of shoots and roots showed a significant difference with respect to species, cultivars, treatment Al and their Interactions. Aluminum reduced the uptake of many essential nutrients. At 100 μM Al Potomac orchardgrass had the highest and climax timothy had the lowest mineral content. The efficiency ratio (ER) assisted in classifying grass entries into efficient and inefficient utilizers of the absorbed nutrients. The ER is defined as milligrams of dry shoot weight produced per milligram of element in the shoot. The ER for P, K, Cu and Zn gave a positive correlation with shoot weight; however, in general, negative relationships were observed for shoot growth and ER for Mg, Fe, and Mn. In all the species increasing Al concentration from 0 to 100 μM increased ER for Mg and decreased ER for K and Zn. With the exception of tall fescue cultivars, the ER for P was reduced by 100 μM Al. The species and cultivars used in this study showed inter‐ and intraspecific differences in growth, uptake, and ER for nutrients in the presence or absence of Al stress. Significant reduction in growth, even at 100 μM Al by all the three species of grass indicates that these grass species are far more sensitive to Al than the field crops. Therefore, experiments with levels of Al lesser than 100 μM would have given a better outlook on the performances of these grass species.  相似文献   

7.
Arbuscular mycorrhizal (AM) colonized plants often have greater tolerance to drought than nonmycorrhizal (nonAM) plants. Wheat (Triticum durum Desf.), whose roots were colonized with Glomus mosseae (Gms) and G. monosporum (Gmn), were grown in a greenhouse to determine effects of water stress (WS) on shoot and root dry matter (DM), root length (RL), and shoot phosphorus (P), zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe) concentrations and contents. Mycorrhizal colonization was higher in well‐watered (nonWS) plants colonized with both AM isolates than WS plants, and Gms had greater colonization than Gmn under both soil moisture conditions. Shoot and root DM were higher in AM than in nonAM plants irrespective of soil moisture, and Gms plants had higher shoot but not root DM than Gmn plants grown under either soil moisture condition. Total RL of AM plants was greater than nonAM plants, but was consistently lower for plants grown with WS than with nonWS. The AM plants had similar shoot P and Mn concentrations as nonAM plants, but contents were higher in AM than in nonAM plants. The AM plants had higher shoot Zn, Cu, and Fe concentrations and contents than nonAM plants. The Gms plants grown under nonWS generally had higher nutrient contents than Gmn plants, but nutrient contents were similar for both Gms and Gmn plants grown under WS. The results demonstrated a positive relationship between enhanced growth and AM root colonization for plants grown under nonWS and WS.  相似文献   

8.
Abstract

This study was conducted to evaluate the effect of vesicular‐arbuscular mycorrhizal (VAM) fungus Glomus etunicatum on growth, absorption, and distribution of calcium (Ca), magnesium (Mg), phosphorus (P), and aluminum (Al) in one Al‐tolerant and one Al‐sensitive barley cultivar. The plants were grown in sand daily irrigated with nutrient solution containing 0 or 600 μM Al at pH 4.8. Significant interaction (P=0.05) among variety, mycorrhiza, and aluminum (VxMxAl) were noted for both shoot and root dry matter (DM); shoot concentration and content of Al, P, Ca, and Mg; root concentration of Al, P, and Mg; and root content of Al, P, Ca, and Mg. With VAM inoculation: i) root colonization degree was about 50% in all treatment, ii) shoot DM yield increased between 30 and 70%, iii) Al concentration and content decrease down to a half both in shoots and roots of sensitive barley, iv) Ca concentration in shoots of sensitive barley showed a high increase at 600 μM Al, and v) P concentration and content in shoots of both varieties increased significantly.  相似文献   

9.
HiMag is an experimental cultivar derived from Missouri 96 (Mo96) and Kentucky 31 (K31) tall fescue (Festuca arundinacea Schreb.) parentage for increased calcium (Ca), magnesium (Mg), and reduced potassium (K)/ (Ca+Mg). Our objective was to determine productivity and mineral characteristics of endophyte‐free (E‐) HiMag in relation to standard tall fescue cultivars when grown in the Southern Piedmont Land Resource Area. In experiment 1, HiMag (E‐) and K31 (E‐) were grown at two levels of phosphorus (P), K, and lime additions to both severely eroded, and non‐eroded Cecil soil (clayey, kaolinitic, thermic family of Typic Hapludults). Herbage Ca and Mg were greater and K/(Ca+ Mg) and yield were less for HiMag than for K31. Phosphorus and K concentrations were not different. Herbage yields, P, Ca, and Mg concentrations were increased by P, K, and lime additions. In experiment 2, HiMag(E‐), K31(E‐), endophyte‐infected K31(E+), Mo I(E+), Mo II (E+), and AU Triumph (E‐) were planted either in a prepared seedbed or planted without tillage into the Cecil soil. HiMag yields were not different from Mo‐I, Mo‐II or K31(E±), but were less than those of AU Triumph (E‐). HiMag yield response to no‐till planting, past soil erosion, and fertilizer level was similar to that of K31 (E±). Fertilizer level, and soil condition affected the magnitude of differences in mineral levels in HiMag and K31 (E±), but K/(Ca+Mg) values were more favorable in HiMag. All tall fescue cultivars established equally well in no‐till or prepared seedbeds. Aside from a slightly lower first harvest yield there were no important effects of planting no‐till versus planting in a prepared seedbed. HiMag's agronomic attributes, while not superior to other cultivars, were sufficient to justify further testing to improve Mg nutrition of grazing animals.  相似文献   

10.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

11.
Beneficial effects of aluminum (Al) on plant growth have been reported for plant species adapted to acid soils. However, mechanisms underlying the stimulatory effect of Al have not been fully elucidated. The aim of this study was to determine the possible contribution of photosynthesis, antioxidative defense, and the metabolism of both nitrogen and phenolics to the Al‐induced growth stimulation in tea (Camellia sinensis [L.] Kuntze) plants. In hydroponics, shoot growth achieved its maximum at 50 μM Al suply (24 μM Al3+ activity). A more than threefold increase of root biomass was observed for plants supplied with 300 μM Al (125 μM Al3+ activity). Total root length was positively related to root Al concentrations (r = 0.98). Chlorophyll a and carotenoid concentrations and net assimilation rates were considerably enhanced by Al supply in the young but not in the old leaves. Activity of nitrate reductase was not influenced by Al. Higher concentrations of soluble nitrogen compounds (nitrate, nitrite, amino acids) and reduction of protein concentrations suggest Al‐induced protein degradation. This occurred concomitantly with enhanced net CO2‐assimilation rates and carbohydrate concentrations. Aluminum treatments activated antioxidant defense enzymes and increased free proline content. Lowering of malondialdehyde concentrations by Al supply indicates that membrane integrity was not impaired by Al. Leaves and roots of Al‐treated plants had considerably lower phenolic and lignin concentrations in the cell walls, but a higher proportion of soluble phenolics. In conclusion, Al‐induced growth stimulation in tea plants was mediated by higher photosynthesis rate and increased antioxidant defense. Additionally, greater root surface area may improve water and nutrient uptake by the plants.  相似文献   

12.
Tall fescue (Schedonorus arundinaceous (Schreb.)) is often infected with a common toxic fungal endophyte (Neotyphodium coenophialum) capable of producing alkaloids that affect grazing animal health, insect herbivory, plant production, and litter decomposition. The strength of these endophyte-associated effects is thought to depend on the abiotic and biotic conditions of a specific site. Prior work from Georgia, USA, has demonstrated that fungal endophyte infection can increase soil carbon pools of tall fescue pastures; however, for endophyte infection to contribute substantially to regional carbon sequestration, this result would have to hold true across the broad range of environmental conditions that support tall fescue growth. In this study, we evaluated whether endophyte infection consistently alters various soil parameters, including carbon storage, of tall fescue stands located throughout the southeastern United States. Soil samples were collected from nine sites with established paired high- and low- endophyte-infected tall fescue stands. These samples were analyzed for basic soil parameters, soil organic carbon (SOC), soil total nitrogen (TN), particulate and non-particulate organic matter-C and -N (POM, n-POM), C and N mineralization rates, and microbial biomass and community composition. Averaged across all sites, endophyte-infected tall fescue stands had 6% greater SOC and 5% greater TN pools in surface soil than adjacent endophyte-free stands. The lack of a significant interaction between site and endophyte infection status indicated that this result was relatively consistent across sites, despite differences in stand age, climate, and other environmental conditions. While POM C and POM N tended to be higher in endophyte-infected than endophyte-free stands, this result was not significant. However, greater pools of n-POM C and N were observed in endophyte-infected vs. endophyte-free stands when averaged across all the sites, suggesting increased retention of recalcitrant substrates occurred in response to fungal endophyte infection. Total microbial biomass, measured via phospholipid fatty acid (PLFA) analysis, was greater in endophyte-infected than endophyte-free soils when averaged across sites, reflecting the trends observed with SOC and TN. Microbial community composition shifted somewhat in response to fungal endophyte infection: significantly higher fungal to bacterial ratios were observed in endophyte-free compared to endophyte-infected stands. However, ordinations of the PLFA data demonstrated only slight separation of endophyte-infected and endophyte-free microbial communities at some sites and no clear separation at others. Enhanced SOC, TN, recalcitrant n-POM C and N pools, and altered microbial biomass and communities suggest that this aboveground fungal endophyte symbiosis has widespread effects on soil biology and biochemistry, and that high prevalence of the aboveground endophyte increases C sequestration capacity of tall fescue stands throughout the southeastern USA.  相似文献   

13.
Associations between vesicular‐arbuscular mycorrhizal (VAM) fungi and manganese (Mn) nutrition/toxicity are not clear. This study was conducted to determine the effects of excess levels of Mn on mineral nutrient uptake in shoots and roots of mycorrhizal (+VAM) and non‐mycorrhizal (‐VAM) sorghum [Sorghum bicolor (L) Moench, cv. NB9040]. Plants colonized with and without two VAM isolates [Glomus intraradices UT143–2 (UT1 43) and Gl. etunicatum UT316A‐2 (UT316)] were grown in sand irrigated with nutrient solution at pH 4.8 containing 0, 270, 540, and 1080 μM of added Mn (as manganese chloride) above the basal solution (18 μM). Shoot and root dry matter followed the sequence of UT316 > UT143 > ‐VAM, and shoots had greater differences than roots. Shoot and root concentrations and contents of Mn, phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and copper (Cu were determined. The +VAM plants generally had higher mineral nutrient concentrations and contents than ‐VAM plants, although ‐VAM plants had higher concentrations and contents of some minerals than +VAM plants at some Mn levels. Plants colonized with UT143 had higher concentrations of shoot P, Ca, Zn, and Cu and higher root Mg, Zn, and Cu than UT316 colonized plants, while UT316 colonized plants had higher shoot and root K concentrations than UT143 colonized plants. These results showed that VAM isolates differ in enhancement of mineral nutrient uptake by sorghum.  相似文献   

14.
Nonnodulated soybean plants (Glycine max. [L.] Merr. ‘Lee') were supplied with nutrient solutions containing growth limiting concentrations of N or P to examine effects on N‐ and P‐uptake efficiencies (mg nutrient accumulated/gdw root) and utilization efficiencies in dry matter production (gdw2/mg nutrient). Nutritional treatments were imposed in aerial environments containing either 350 or 700 μL/L atmospheric CO2 to determine whether the nutrient interactions were modified when growth rates were altered.

Nutrient‐stress treatments decreased growth and N‐ and P‐uptake and utilization efficiencies at 27 days after transplanting (DAT) and seed yield at maturity (98 DAT). Atmospheric CO2 enrichment increased growth and N‐ and P‐utilization efficiencies at 27 DAT and seed yield in all nutritional treatments and did not affect N‐ and P‐uptake efficiencies at 27 DAT. Parameter responses to nutrient stress at 27 DAT were not altered by atmospheric CO2 enrichment and vice versa. Nutrient‐stress treatments lowered the relative seed yield response to atmospheric CO2 enrichment.

Decreased total‐N uptake by P‐stressed plants was associated with both decreased root growth and N‐uptake efficiency of the roots. Nitrogen‐utilization efficiency was also decreased by P‐stress. This response was associated with decreased plant growth as total‐N uptake and plant growth were decreased to the same extent by P stress resulting in unaltered tissue N concentrations. In contrast, decreased total P‐uptake by N‐stressed plants was associated with a restriction in root growth as P‐uptake efficiency of the roots was unaltered. This response was coupled with an increased root‐to‐shoot dry weight ratio; thus shoot and whole‐plant growth were decreased to a much greater extent than total‐P uptake which resulted in elevated P concentrations in the tissue. Therefore, P‐utilization efficiency was markedly reduced by N stress.  相似文献   

15.
Toxic effects of aluminium (Al) on root tips are considered to decrease export of cytokinins to shoots, and deficiency of cytokinins has been made responsible for Al‐induced inhibition of shoot growth. But no experimental data on the influence of Al on endogenous cytokinin levels in higher plants have been reported. In this study, the endogenous levels of zeatin riboside (ZR) and dihydrozeatin riboside (DHZR) of roots, stems, and leaves of two bean cultivars (Phaseolus vulgaris L. cv Contender and cv Strike) exposed to Al in continuously flowing nutrient solution (pH 4.5) was analysed. The supply of a high Al concentration (sum of monomeric Al species, 127 μM) caused severe inhibition of root elongation in both cultivars. The cv Strike was more affected by both Al‐induced mineral nutrient disorders and Al‐induced alteration of leaf water relationships. In both cultivars Al‐supply significantly increased ZR and DHZR. Leaves of Al‐treated plants exhibited a more than three times higher concentration of ribosylated cytokinins than controls. Nevertheless, stomatal resistance was significantly increased by Al in both cultivars. Our results support the hypothesis that Al affects plants not by inducing deficiency of cytokinins but of some other factor necessary for the manifestation of cytokinin action.  相似文献   

16.
To assess the potential effects of Al toxicity on the roots of young European beech (Fagus sylvatica L.), seeds were sown in soil monoliths taken from the Ah and B horizons of forest soils with very low base saturation (BS) and placed in the greenhouse. The Ah horizons offered a larger supply of exchangeable cation nutrients than the B horizons. After 8 weeks of growth under optimal moisture conditions, the seedlings were further grown for 14 d under drought conditions. Root‐growth dynamics were observed in rhizoboxes containing soils from the Ah and B horizons. The concentrations of Al3+, base cations, and nitrate in the soil solution and element concentrations in the root tissue were compared with above‐ and belowground growth parameters and root physiological parameters. There was no strong evidence that seedling roots suffered from high soil‐solution Al3+ concentrations. Within the tested range of BS (1.2%–6.5%) our results indicated that root physiological parameters such as O2 consumption decreased and callose concentration increased in soils with a BS < 3%. In contrast to the B horizons, seedlings in the Ah horizons had higher relative shoot‐growth rates, specific root lengths, and lengths and branching increments, but a lower root‐to‐shoot ratio and root‐branching frequency. In conclusion, these differences in growth patterns were most likely due to differences in nutrient availability and to the drought application and not attributable to differences in Al3+ concentrations in the soil solution.  相似文献   

17.
Background: The low fertility of sandy soils in South‐Western Australia is challenging for the establishment of temperate perennial pastures. Aims: To assess whether microbial consortium inoculant may improve plant growth by increasing nutrient supply, root biomass and nutrient uptake capacity. Methods: Five temperate perennial pasture grasses–cocksfoot (Dactylis glomerata L. cv. Howlong), phalaris (Phalaris aquatica L. cv. Atlas PG), tall fescue (Festuca arundinacea L. cv. Prosper), tall wheatgrass (Thinopyrum ponticum L. cv. Dundas), and veldt grass (Ehrharta calycina Sm. cv. Mission) were tested in a controlled environment on the growth and nutrition with the microbial consortium inoculant and rock mineral fertiliser. Results: Veldt grass produced the highest shoot and root growth, while tall fescue yielded the lowest. Rock mineral fertiliser with or without microbial consortium inoculant significantly increased root and shoot biomass production across the grass species. The benefit of microbial consortium inoculation applied in conjunction with rock mineral fertiliser was significant regarding shoot N content in tall wheatgrass, cocksfoot and tall fescue. Shoot P and K concentrations also increased in the five grass species by microbial consortium inoculation combined with rock mineral fertiliser in comparison with the control treatment. Arbuscular mycorrhizal (AM) colonisation decreased with rock mineral fertilisation with or without microbial consortium inoculant except in cocksfoot. Conclusions: The response to microbial consortium inoculation, either alone or in combination with rock mineral fertiliser, was plant species‐dependent, indicating its potential use in pasture production.  相似文献   

18.
Primary determinants of crop production in arid/semiarid regions are lack of moisture and infertility, especially phosphorus (P) deficiency or unavailability. The effects of P and water stress (WS) levels on shoot and root dry matter (DM), leaf area, root volume, total root length, and shoot and root P concentrations and contents were determined in two bean [Phaseolus acutifolius Gray, cv ‘Tepary #21’ ("drought‐resistant") and P. vulgaris L., cv “Emerson’ ("drought‐sensitive")] and two sorghum [Sorghum bicolor (L.) Moench, cv SA7078 ("drought‐resistant") and ‘Redlan’ ("drought‐sensitive")] cultivars grown in nutrient solution. Plants were grown with different levels of P (20 and 100 μM for bean and 20, 80, and 160 μM for sorghum) when seedlings were transferred to nutrient solution, and WS levels of 0, 13.8, and 1 6.4% polyethylene glycol (PEG‐8000) introduced after plants had grown in solution 23 days (bean) and 31 days (sorghum). All growth traits were lower when bean and sorghum plants were grown with WS and low P. Growth traits were higher in cultivars grown with high compared to low P regardless of WS. Root P concentration and content and shoot content, but not shoot P concentration, were lower when bean plants were grown with WS compared to without WS. Tepary #21 bean had higher shoot DM, leaf area, total root length, and shoot P concentration than Emerson when plants were grown with WS at each level of P. Sorghum shoot and root P concentrations were higher as P level increased regardless of WS, and WS had little effect on shoot P concentration, but root P concentration was higher. Contents of P were similar for SA7078 and Redlan regardless of P or WS treatment, but SA7078 had greater P contents than Redlan over all P and WS treatments. “Drought‐resistant”; cultivars generally had better growth traits, especially total and specific root lengths, than “drought‐sensitive”; cultivars.  相似文献   

19.
Abstract

Plants grown in acidic soil usually require relatively high amounts of available phosphorus (P) to optimize growth and productivity, and sources of available P are often added to meet these requirements. Phosphorus may also be made available at relatively high rates in native soil when roots are colonized with arbuscular mycorrhizal fungi (AMF). Addition of P to soil usually reduces root‐AMF colonization and decreases beneficial effects ofAMF to plants. In glasshouse experiments, soil treatments of P [0 P (Control), 50 mg soluble‐P kg?1 as KH2PO4 (SP), and 200 mg P kg?1 as phosphate rock (PR)], organic matter (OM) at 12.5 g kg?1, AMF (Glomus darum), and various combinations of these (OM+SP, OM+PR, AMF+SP, AMF+PR, AMF+OM, AMF+OM+SP, and AMF+OM+PR) were added to steam treated acidic Lily soil (Typic Hapludult, pHw=5.8) to determine treatment effects on growth and mineral acquisition by chickpea (Cicer areitinum L.). The various treatment applications increased shoot dry matter (DM) above the Control, but not root DM. Percentage AMF‐root colonization increased 2‐fold or more when mycorrhizal plants were grown with AMF, OM+SP, and OM+PR. Regardless of P source, plant acquisition of P, sulfur (S), magnesium (Mg), calcium (Ca), and potassium (K) was enhanced compared to the Control, and mineral enhancement was greater in PR compared to SP plants. Mycorrhizal plants also had enhanced acquisition of macronutrients. OM+SP and OM+PR enhanced acquisition of P, K, and Mg, but not Ca. Concentrations of Fe, Mn, Cu, and Al were generally lower than Controls in SP, RP, AMF+PR, AMF+SP, and OM plants, and mycorrhizal plants especially had enhanced micronutrients. Relative agronomic effectiveness values for shoot DM and shoot P, Ca, and Mg contents were considerably higher for PR, including OM+PR, AMF+PR, and AMF+OM+PR, than for SP. PR and OM applications to AMF plants are low‐cost attractive and ecologically sound alternatives to intensive use of P fertilizers for crops grown in acidic soils.  相似文献   

20.
The tall fescue (Festuca arundinacea Schreb.) seed collection of the Centro de Investigaciones Agrarias de Mabegondo was surveyed to determine Acremonium infection rates. One hundred seeds from each of 19 accessions were microscopically examined for endophyte. Seventeen accessions (90%) contained endophyte with a range of 7 to 100%. Leaf sheaths of seedlings from the infected accessions were examined to determine the percentage of infection with viable endophyte. Only seven (41%) of the seventeen infected accessions collected and stored in 1995 at 4°C and 45–50% relative humidity contained viable endophyte with a range of 70 to 100%. While existing germplasm collections of Festuca arundinacea can provide only a small basis of Acremonium germplasm for study, newly collected Festuca arundinacea accessions will offer a greater diversity of Acremonium genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号