首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
“Yuchi” arrowleaf clover (Trifolium vesiculosum Sav.) has a potential for high forage productivity with desirable symbiotic nitrogen fixation within most temperate regions. Our objective was to determine the effects of soil fertility on growth, nodulation, nitrogenase and associated enzyme activities of arrowleaf clover. In greenhouse experiments top growth increased with additions of 300 mg K kg?1 soil with and without 100 mg P kg?1 soil to a Cumulic Haplustoll (Port silt loam, pH 6.1). Nodule mass without P fertilizer additions increased linearly up to 400 mg K kg?1 soil. When both P and K fertilizer additions were combined nodule mass increased significantly only up to the 300 mg K addition. However, nodule weight, increased 4-fold with the PK combination treatments. Nitrogenase activity, as measured by C2H2 reduction, more than doubled with P additions and increased linearly up to 400 mg K kg? soil, with and without the P additions. Aspartate amino-transferase (AST) activity of nodule cytosol more than doubled with P additions but increased only with up to 300 mg K without P. Highest AST activities were recorded with the 400 mg K addition when combined with P. Glutamate synthetase (GS) activity increased with up to 300 mg K without P addition, but when combined with P was approximately 3 times higher, increasing linearly to 400 mg K. Differences in glutamate synthetase (GOGAT) activity were not significant with K additions without P, but when combined with P treatments were almost doubled up to the 400 mg K concentrations. Multiple regression for nitrogenase (C2H2 red.) as the dependent variable = 5.89 (AST) + 12.79 (GS) + 21.52 (GOGAT) + 13.53 (GDH); R2 = 0.92 and C.V. = 15.6%. Nodule cytosol P and K compositions reflected soil treatment levels and combinations. Reciprocal effects of monovalent cations were highly significant, with increased K concentrations reducing Na content; nitrogenase = 0.12 (P) + 0.01(K) + 0.14(Ca) ?0.34 (Na); R2 = 0.86 and C.V. = 21.9%.  相似文献   

2.
The tuberous legume, Yam Bean, (Pachyrhizus erosus (L.) Urban, has been utilized as a food crop for many centuries. The large, starchy tubers have higher aitrogen content than potatoes, cassava and taro roots with 20% or more of the N fraction as ureidoglyco‐lates. Yam Bean (Jicama) tuber growth within the neotropical regions of the world is influenced by soil productivity. The objective of this study was to determine effects of soil fertility treatments on tuber yield, nodulation characteristics and nitrogen fixation.

Highly significant increases in growth and tuber production resulted with P additions, and to Ca and K levels when combined with P. Nodule weight and nitrogenase activity were similar in response to factorial soil treatments as were the tuber and total above ground plant growth. Total ureide content of tuber epiperi‐derm tissue increased significantly with P, Ca, and P + Ca treatments and increased quadratically with increased K additions when combined with P, Ca, and P + Ca treatments. Multiple regression for nitrogenase = 3.4 g top wt. + 3.5 g tuber wt. + 4.9 g nodule wt. + 3.7 umol ureide, R2 = 0.88 and C.V. = 16.5%. The percent nonstructural tuber carbohydrates was not significantly influenced by soil treatments although total tuber N content significantly increased with the P treatments. Content of plant nutrient elements within nodule cytosol generally increased significantly with addition of the corresponding element in the soil fertility treatments. Increased K content was quadratic for increased K additions with concomitant decrease in Na content having highly significant negative correlation (r = ‐0.72). Adequate available soil P, Ca and K favorably influenced Yam Bean tuber growth and nitrogen fixation with P a first limiting factor for desirable high tuber yields.  相似文献   

3.
Austrian winter pea (Pisum sativum subspecies arvense (L.) Poir) is grown as a cool season annual to produce high protein seed and forage as well as for soil fertility improvement. This legume is grown on a wide range of soil types with many different cropping systems. The objective of these studies was to determine the influence of K levels, with and without P and Ca fertilization, for increased growth, yield, nodulation and nitrogenase activity. Results were from 3 years’ field and greenhouse experiments with a Psammentic Paleustalf (Eufaula series) utilizing Rhizobium leguminosarum (Frank), ATCC 10314 as inoculum. Soil fertility effects on composition and histology of field‐grown nodules are presented.

Available soil P was a limiting plant nutrient in field studies with significant response to K resulting with PK combinations for top growth, tillers, pods, seed yield, nodule mass, and nitrogenase activity levels (C2H2, red.). Multiple regression for nitrogenase (umol C2H4 h‐1) = 1.09 tiller number + 3.37 nodule weight + 2.29 pod number, R2 = 0.837, C.V. = 29.9%. Results from the greenhouse experiments indicated significant responses with increased K application levels when combined with P and Ca fertilization for top growth, nodule weight, number of nodules and nitro‐genase activity. Highly significant correlations resulted with nitrogenase x nodule weight (r=0.538) and nitrogenase x top growth (r=0.359) with multiple regression of treatment effects for nitrogenase (μmol C2H4 h‐1) = 2.73 P + 1.04 K + 4.92 Ca, R2 = 0.797 and C.V. = 48.8%. Soil addition of plant nutrients resulted in significantly increased concentrations of those elements within nodules. Magnesium content was not consistently influenced by P, Ca, and K amendments. Sodium decreased with increased K fertilization. Multiple regression of elemental composition (mg g‐1 nodule) for nitrogenase (pmol C2H4 h‐1) = 0.21 P + 0.86 K + 2.35 Ca ‐ 2.01 Na, R2 = 0.772, C.V. = 55.6%. The proportion of plant nutrients in nodules contained within the nodule cytosol was highest for K (56.2%) and lowest for Ca (21.4%) with intermediate levels of Mg (50.2%), P (45.4%), and Na (37.2%).

Practical application from these data include the requirement of adequate available soil K for increased yield and nitrogen fixation with favorable P and Ca soil levels in Austrian winter pea production.  相似文献   


4.
Guar (Cyamopsis tetragonoloba (L.) Taub.) is a legume of unusual industrial importance due to increased utilization of Guar gum, ‘Guran,’ in numerous modern manufacturing and food processes. Guar has high tolerance of drought and inhibitory soil characteristics and has been utilized for many centuries within the subhumid regions of the Indo‐Pakistan subcontinent. Nodulation, nitrogen fixation, and yields of high protein seed with desirable Guran content are improved by favorable soil fertility. Plant growth, seed yields, and nodulation are influenced by plant population density.

Top Growth quadratically increased with plant population densities of 10, 25, and 50 plants per meter2 for P and P+K treatments. Highest seed yield and nodule development resulted for all soil fertility treatments with 25 plant per meter2. Ontogenetic response from anthesis to full seed maturity resulted with increased nodulation significantly correlated (r = 0.67) with top growth. However, nitrogenase activity levels plant‘1 declined significantly with plant maturity. Nodule cytosol enzyme activity levels at anthesis were: allantoinase (ALTN) 29.5 IU, aspartate transaminase (AST) 19.3 IU, glutamine synthase 12.5 IU, uricase (URC) 2.25 IU, and allantoicase (ALTC) 0.14 IU g‐1 fresh nodule. Cytosol composition included ureidoglycolates (ureides) 425.8 μmol, amine‐amide content 29.5 μmol, nitrate 1.95 μmol, pyruvate 0.21 μimol, and oketoglutarate 0.09 μmol g‘1 fresh nodule. Plant nutrient composition of nodule cytosol was K 394.9 jig, P 59.4 μg, Ca 48.9 μg, Mg 39. μg, and Na 19.0 μg g‐1 fresh nodule. Precise histology with Giemsa and PAS procedures were essential for microscopy with cellular compartmentalization of purine enzymatic transformations governing nitrogenase activity and nodule development.  相似文献   

5.
Lupine (Lupinus albus L.) has been cultivated as a food‐grain legume for more than 3,000 years. Persistent productivity occurs on low fertility soils within regions of drought and unfavorable temperature extremes. Distinctive rhizosphere characteristics of Proteaceae genera include development of determinate rootlet clusters termed proteoids. This unique morphology contributes to adaptive tolerance with soil‐climate duress prohibitive to most food Leguminosae. Objectives of this study were to determine tripartite components for mycorrhizal colonization and effective Rhizobium symbiosis with proteoid nodulation governing productivity, nitrogenase activity and subsequent nitrogen (N) fixation of Lupine. Highest nitrogenase activity levels with largest top growth, nodulation and seed yield resulted with mycorrhizal colonization plus calcium (Ca) treatments. Mycorrhizal colonization without soil fertility amendments resulted in higher yields and nodulation than all phosphorus (P), Ca, and potassium (K) soil fertility treatment combinations without mycorrhizae. Phosphorus+Ca soil additions were greater than either plant nutrient used separately without mycorrhizal colonization. Nodule histological determinants were highly correlated with governing cytosol enzyme activity levels. Nitrate reductase (NR)was significantly lower and phosphoenol‐pyruvate carboxylase (PEPC) was significantly higher with mycorrhizal colonization. Differences were not significant for cytosol components of amine‐amide N, aspartate transaminase (AST), glutamate dehydrogenase (GDH), glutamine syn‐thetase (GS) and glutamate oxoglutarate transaminase (GOGAT).  相似文献   

6.
Siratro (Macroptilium atropurpureum (DC) Urb.) is a vigorous perennial forage legume with good potential for improving pastures in the extensive neotropical regions of the world. It is well adapted to a wide range of soil and climatic conditions. The objective of these studies was to determine effects of Glomus fasciculatum colonization, rigorous defoliation, and soil fertility treatments to a Psammentic Paleustalf (Eufaula) soil on growth, regrowth, nodulation, and nitrogenase activity (C2H2 red.) of Siratro inoculated with Rhizobium leguminosarum Frank. Top growth increased significantly with soil K and P amendment and with mycorrhiza colonization. Nodulation and nitrogenase activity were correlated with highly significant increases from G. fasciculatum, P treatments and K additions to 300 mg K kg‐1 soil. Growth and peduncles of nonclipped plants increased about 4 fold from 90 to 225 day age with mature seed yield increasing about 10 fold; nodule mass and nitrogenase activity levels approximately doubled. Regrowth response of plants defoliated at 45 day intervals, following their initial 90 day age, was somewhat constant between clippings for magnitude of regrowth 12.3–13.8g, development in number of peduncles 4.0–6.8, seed yield 1.4–2.6g, nodulation 2.9–3.7g, and nitrogenase activity 73.9–95.8μ mol C2H4g‐1 nodule. Multiple regression for nitrogenase = 0.55 g top wt. + 0.63 g nodule wt. + 1.91 day age ‐ 0.07 peduncle no., R2 = 0.85 and C.V. = 14.3%. Favorable tripartite symbiosis with both effective Rhizobium and endophyte mycorrhiza were essential for high levels of symbiotic nitrogen fixation.  相似文献   

7.
Exceptional symbiotic nitrogen fixation with Sesbania has provided high soil fertility for many past centuries of paddy rice production. Unique stem nodulation results in high nitrogenase activity levels of S. rostrata, Brem, during rapid growth in continuously flooded rice fields that greatly disfavor legume root nodulation and this functional development. The objective of this study was to determine plant nutrient interactions that influence contrasting root and aerial stem nodule histology governing effective nitrogenase activity levels and nitrogen fixation. Top growth, nodulation, and nitrogenase activity levels were significantly increased with increased available soil P. Response to K levels and Ca additions resulted only when soil P was adequate in all treatment combinations. However, there was no significant correlation between fresh nodule weight, nitrogenase activity, and nodules plant‐1 for both root nodules and aerial stem nodules. Nodule histology was highly contrastive with nodule type and Rhizobium morphology, cytosol composition, and governing enzyme activity levels. Distinctive nonpleomorphic cocci bacteroids of functional aerial stem nodules have tentative designation as Azorhizobium caulinodans gen. nov. sp. nov.  相似文献   

8.
Acetylene reduction techniques are frequently utilized to estimate legume nodule nitrogenase activity levels. However, the known symbiotic nitrogen fixation reactions have no equivalent for the rapid permeastic transport of C2H4 reduced by nitrogenase of rhyzobial cells through the cortex tissues with the subsequent volatile excretion that is essential for GC quantitation procedures. The objective of this study was to determine interrelationships of nitrogenase (C2H2 reduction) with associated cytosol enzyme components from morphologically homologous nodules of Madison hairy vetch (Vicia villosa, Roth) at anthesis as influenced by soil potassium levels. The vetch plants were grown in a siliceous thermic Psammentic Paleustalf, Eufaula, and inoculated with Rhizobium leguminosarum Frank, ATCC 10314.

Highly significant enhancement of nitrogenase activity progressed from quadratic to linear with increased soil K levels in time‐course samplings at 30, 60, 90 and 120 min. incubations at 27C. Means as C2H4 μmole g‐1 fresh nodule wt. were 25.1, 38.8, 50.1 and 92.2 for 0, 100, 200, and 300 mg K/kg soil, respectively.

Activity levels of four cytosol enzymes, aspartate aminotransferase (AST), glutamate dehydrogenase (GDH) glutamine synthetase (GS) and glutamate synthase (GOGAT), increased significantly with increased K soil levels. These are requisite to enzymatic pathways for fixed N ammonia biotransformations with subsequent xylem translocation from the legume nodule. The transaminase (AST) and ligase (GS) were dominant at all K levels with GS increasing linearly to six fold levels over the check treatment. Cytosol composition of total ureides and αKG increased significantly with increased soil K. levels. Cytosol Ca and Mg increases were not significant but highly significant increased K content with reciprocal decreased Na resulted from increased soil K levels. Multiple regression for the most reliable response surface equation within a general linear model with R2 = 60.3% was: Nitrogenase (C2H2 reduction) = 2.84 nod. wt. + 1.05 GS + 8.08 αKG + 0.11 ureide, CV = 16.2%. Practical application of these data include need for more than single time‐course C2H4 determinations from one culture incubation in order to reliably estimate C2H2 reduction capabilities of legume nodules. Adequate levels of available soil potassium were necessary for sustained high nltrogenase activity levels.  相似文献   


9.
Abstract

The Lablab or Hyacinth bean, Lablab purpureus (L.) Sweet, is a drought tolerant grain‐forage legume widely grown within a wide range of neotropical regions of the world. It has been an important cultivated food grain crop for many centuries within extensive warm humid‐subhumid climatic areas and grown on widely different Ultisol and Oxisol soil types. The objective of these studies was to determine soil fertility effects of Ca, P, and K factorial combinations applied to a Typic Eutrustox on growth, nodulation, and nitrogen fixation of Lablab bean. Stem and nodule xylem components were determined along with soil pH and nitrification within the nodule rhizosphere. Highly significant increases resulted with P fertilization for stem, leaf, seed, nodulation, and nitrogenase activity. With the exception of nitrogenase, all were also increased with K additions. Both stem and seed were significantly increased with Ca treatments. Highly significant increases for total plant N content resulted with P, K, Ca, and P x K interaction. Allantoinates were initially dominant components of stem xylem exudate following decapitation but were not detected after 5 days. Amino‐amide composition remained relatively constant. Nitrates increased from 1.6 to 81.8 ug N ml‐1 exudate during the 8 day collection period. Soil nitrate levels adjunct to decomposing nodules increased from 4.2 to 1661.1 ug g‐1 soil. Initial high levels of ureide transforming enzymes ALTN, ALTC, and URC were not detected after 4 days. Amine‐amide enzymes AST, GS, GOGAT, and GDH were relatively constant with nitrate reductase increasing from 0.12 to 9.35 IU ml‐1 xylem exudate during the 8 d period. Nodule xylem export components were dominated by ureides, 429.8 umol, and amines 30.3 umol ml‐1. Enzyme activity levels were highest for AST 22.17 and GS 13.25 IU ml‐1 with the ureide enzymes URC 2.24, ALTN 0.26, and ALTC 0.15 IU ml‐1 . Nodule exudate composition was K 422.0, P 63.4, Ca 53.8, Mg 42.8, and Na 25.6 ug ml‐1.  相似文献   

10.
Effective mycorrhizal colonization is characteristic for nodulated Cassia genera that are adaptive to subhumid areas throughout the world. Growth, regeneration, and nitrogen (N) fixation occurs within regions of extreme soil and climatic environments that preclude persistent survival of other Leguminosae. Objectives of this study were to determine effective mycobiont components and adjunctive soil fertility factors governing growth, nodulation, and symbiotic N fixation of the important forage species, Showy Partridge Pea [Cassia Chamaecrista fasciculate (L.) Michx.] The perennial foliose lichen, Parmelia incurva, ubiquitous within extreme harsh drought and temperature regions, was utilized for mycorrizal mycobionts. Largest above ground plant growth, nodulation, and nitrogen fixation resulted with mycorrhizal colonization within lichen amended soil that received no other soil fertility treatments. Responses attained with phosphorus (P) and calcium (Ca) plant nutrient soil additions, without mycorrhizal mycobiont additions, were approximately half or less of effective mycorrhizal colonized plants. In general, yield response of mycorrhizal plants was reduced with plant nutrient additions throughout this study. Nitrate reductase (NR) and nitrate‐nitrogen (NO3‐N) levels were significantly higher within nodule cytosol of nonmycorrhizal plants. Ureidoglycolate enzyme transformers and nodule cytosol ureide components were significantly greater for mycorrhizal colonized plants. These included urease (URC), allantoinase (ALTH), allantoicase (ALTC), and total ureides. However, differences were not significant for cytosol contents of pyruvate, amine‐amide N, aspartate transaminase (AST), glutamate dehydrogenase (GDH), glutamine synthetase (GS), and glutamate oxoglutarate trasaminase (GOGAT). Representative histological microscopy of mycorrhizal colonized Showy Partridge Pea are presented. Effective mycobiont propagules associative with lichen associations are apparently opportune commensal species and only functional as site specific sycophants governed by variable environmental conditions with lichen dissipation.  相似文献   

11.
Abstract

The rapidly growing, woody perennial legume, Leucaena (Leucaena leucocephala (Lam.) de Wit), is adaptable to a wide range of neotropical soil conditions. Effective Rhizobium inoculation and endophyte mycorrhizal colonization are essential for high levels of production and symbiotic N2 fixation. The objective of this study was to determine growth, nodulation, nitrogenase activity and nodule composition of inoculated Leucaena as affected by mycorrhizal colonization and factorial soil fertility treatments of a Typic Eutrustox. Highly significant increases in top growth, nodule fresh wt. and nitrogenase activity resulted with Glomus fasciculatum colonization, soil K and linear increases with low‐soluble P fertilization to 300 mg P kg‐1 soil. Highly significant interactions for increased nodulation and nitrogenase activity resulted with K × mycorrhiza. Interactions of all three factors P, K and mycorrhiza were highly significant for nodule fresh wt. However, responses comparing inoculation with G. fasciculatum and with combined G. fasciculatum, G. microcarpus and G. clavium were not significant. Highly significant increases with applied K levels to 300 mg K kg‐1 soil resulted with top and root growth, nodulation and nitrogenase when applied with soluble P at 100 mg kg‐1 soil and 500 mg Ca kg‐1 soil. Significant and highly significant interactions of P, Ca and K level resulted for all parameters. Plant nutrient element composition of nodules increased with the fertilization treatments for P, Ca and increased K levels. A highly significant inverse relation was apparent with decreased Na resulting with increased K levels. Half or more of total nodule K, P and Mg but less than 20% of Ca and Na were within the nodule cytosol. Sodium, Mg, P, and Ca decreased in the cytosol fraction with increased K content.  相似文献   

12.
Summary Following screening, selection, characterization, and symbiotic N2 fixation with 12,5, 25.0, and 40.0 mg N kg–1 in normal and saline-sodic soils, only two Phaseolus vulgaris genotypes (HUR 137 and VL 63) and two Rhizobium spp. strains (ND 1 and ND 2) produced maximum nodulation, nitrogenase activity, plant N contents, and grain yields in saline-sodic soil, with 12.5 mg N kg–1, compared with the other strains. However, interactions between strains (USDA 2689, USDA 2674, and ND 5) and genotypes (PDR 14, HUR 15, and HUR 138) were significant and resulted in more nodulation, and greater plant N contents, nitrogenase activity, and grain yields in normal soils with 12.5 mg N kg–1 compared with salt-tolerant strains. Higher levels of N inhibited nodulation and nitrogenase activity without affecting grain yields. To achieve high crop yields from saline-sodic and normal soils in the plains area, simultaneous selection of favourably interacting symbionts is necessary for N economy, so that bean yields can be increased by the application of an active symbiotic system.  相似文献   

13.
N2 fixation, photosynthesis of whole plants and yield increases in soybeans inoculated with mixed cultures of Bradyrhizobium japonicum 110 and Pseudomonas fluorescens 20 or P. fluorescens 21 as well as Glomus mosseae were found in pot experiments in gray forest soil carried out in a growth chamber. The effects of pseudomonads and vesicular-arbuscular (VA) mycorrhizal fungus on these parameters were found to be the same. Dual inoculation of soybeans with mixed cultures of microorganisms stimulated nodulation, nitrogenase activity of nodules and enhanced the amount of biological nitrogen in plants as determined by the 15N dilution method in comparison to soybeans inoculated with nodule bacteria alone. An increased leaf area in dually infected soybeans was estimated to be the major factor increasing photosynthesis. P. fluorescens and G. mosseae stimulated plant growth, photosynthesis and nodulation probably due to the production of plant growth-promoting substances. Increasing phosphorus fertilizer rates within the range of 5–40 mg P 100 g-1 1:1 (v/v) soil: sand in a greenhouse experiment led to a subsequent improvement in nodulation, and an enhancement of N2 fixation and yield in soybeans dually inoculated with B. japonicum 110 and P. fluorescens 21. These indexes were considerably higher in P-treated plants inoculated with mixed bacterial culture than in plants inoculated with nodule bacteria alone.  相似文献   

14.
Summary Field experiments were carried out to determine the effects of single and mixed inoculations with Rhizobium and vesicular-arbuscular mycorrhiza (VAM) on nodulation, symbiotic N2 fixation and yield of soybeans in six Taiwan subtropical-tropical sites. Inoculation with Rhizobium alone significantly increased nodulation, nodule weight and nitrogenase activity of nodules in three out of six experimental fields, and affected soybean yields in the range –13% to + 134%. Inoculation with VAM fungi alone did not have a significant effect on nodulation and nitrogenase activity. Mycorrhiza inoculation affected soybean yields in the range –13% to + 65%, but only the yield increases at one out of six sites with N application were statistically significant. Mixed inoculation with Rhizobium and mycorrhiza affected yields in the range –8% to + 145% A synergistic effect from mixed inoculation of Rhizobium-mycorrhiza on soybean yields was found in one out of six experimental fields. The yield response to N application (40 kg N ha–1) in these six paddy-field trials was not significant. These results suggest that single or mixed inoculation of rhizobia can greatly assist soybean grain yields and can replace N fertilizers.  相似文献   

15.
Fababean (Vicia faba L.) is one of the oldest known important grain legume food crops grown within the temperate and subtropical regions of the world. This species is adapted for both forage and food grain production as a cool season annual crop on a wide range of soil and climatic conditions with effective tripartite symbiosis. Both Rhizobium and endophyte mycorrhiza are essential for high levels of production and symbiotic N2 fixation. The objective of these greenhouse and field studies was to determine effects of Glomus fasciculatum colonization with soil fertility treatments to a Psammentic Paleustalf (Eufaula series) on growth, nodulation, nitrogenase activity and nodule composition for V. faba, var. Major, fuh Rumi (Nile) inoculated with R. leguminosarum Frank.

Top growth and nodule mass were increased approximately 10 fold and nitrogenase activity about 7 fold with the highly significant effect of mycorrhiza and response to low soluble Ca3(PO4)2 fertilization in greenhouse studies. With both effective mycorrhiza and Rhizobium inoculation in the field experiments, seed yields were correlated with top growth (r = 0.841). Phosphorus and Ca fertilization resulted in highly significant increases in seed yields. Nitrogenase activity was correlated with nodule wt. (r = 0.958) and highly significant increases resulted with P and Ca soil amendment. Plant nutrient element composition of nodules increased with the fertilization treatments for P, Ca and increased K levels. Sodium content decreased significantly with increased K fertilization (r = ‐0.846). Potassium composition increased significantly with P content (r = 0.523). Enhanced N2‐fixation along with increased high protein forage and food grain production with Fababeans have much potential. However, soil fertility and management techniques for improved production include effective mycor‐rhizal colonization.  相似文献   


16.
Summary The influence of three inoculum rates on the performance of three chickpea (Cicer arietinum L.) Rhizobium strains was examined in the field on a Mollisol soil. Increasing amounts of inoculum improved the performance of the strains. A normal dose (104 cells per seed) applied at different intervals gave non-significant increases in nodulation, nitrogenase activity (acetylene reduction assay), nitrogen uptake and grain yield. A ten-fold increase in inoculum increased nodule number, shoot dry weight, nitrogenase activity (ARA) and grain yield, but increases over the control were significant only for nodule dry weight and nitrogen uptake by shoot and grain. The highest level of inoculum (100 × normal) significantly increased nodule dry weight, grain yield, total nitrogenase activity (ARA) and nitrogen uptake by shoot and grain. Strain TAL 620 was more effective than the other two. Combined nitrogen (60 kg N ha–1) suppressed nodulation and nitrogenase activity (ARA).Research paper No. 4345 from the Experiment Station, G. B. P. U. A. & T., Pantnagar, Nainital, U. P.  相似文献   

17.
Abstract

This research was undertaken on a paleudult soil in southern Brazil, 30° south latitude, to quantify lime and P effect upon soybean (Glycine max (L.) Merrill). A lime x P factorial experience with lime treatments of 0, 0.5, 1, and 2 times SMP interpretation to pH 6.5, and 0, 44, 88, 132, and 176 kg P/ha with 3 replications were installed. The experiment was conducted for 2 years (1973–74, 1974–75), with leaf‐N, P, and K; yield; seed‐N, P, and K; Bray P2 (0.03N NH4F + 0.1N HC1) avail‐able‐P and soil pH measurements completed each year. Data was evaluated with linear, quadratic, logarithmic, polynomial, segmented line, and multiple regression using the coefficient of determination as goodness of fit.

The best model fit between P treatment and Bray P2 available‐P was a quadratic equation; the model between relative yield and Bray P2‐P with 54% of the relative yield attributed to Bray P2 available‐P, a sigmented line. This model indicated point of maximum yield (91% relative yield) was obtained at 7.4 ppm‐P, with no increase in relative yield with increasing levels of soil available‐P. To calculate the P fertilizer necessary to increase available soil‐P to the level of maximum yield of equation Yp = [1639(7.4 ‐ xs)]1/2, where Yp = kg P/ha fertilizer needed; and xs = initial Bray P2 soil available‐P in ppm's. The lime effect upon soil pH was best described as a linear relationship. Yield increase with lime at this site was not significant at the 5% level.

The leaf‐N, P, and K increased significantly with soil available‐P levels. A second degree polynomial with logarithmic function best defined these relationships. The calculated DRIS indices and sum proved useful to evaluate the plant‐N, P, and K balance of each treatment.

Only seed‐P level was directly related to soil available‐P. Both seed‐N and seed‐K were highly correlated with indirect effects of soil available‐P levels.

Results from this study suggest the segmented line model would best interpret soybean yield response to Bray P2 available‐P for this soil. To obtain maximum yield using this model rather than the second degree polynomial would require less fertilizer P. Foliar analyses interpretation confirmed adequate plant‐P level would be supplied for maximum yield at this level of fertilization.  相似文献   

18.
Abstract

The effect of P deficiency on nodulation, nodule P content, nodule O2 permeability and N fixation rates in Phaseolus vulgaris–rhizobia symbiosis was studied under glasshouse conditions. Four recombinant inbred lines (L34, L83, L115 and L147) and one variety cultivated in Morocco (Concesa) were inoculated with Rhizobium tropici CIAT 899 in hydroaeroponic culture. Two P levels i.e. 75 (deficient level) and 250 µmol plant?1 week?1 P (sufficient level) were applied and the trial was assessed 42 days after transplanting that coincide with plant flowering stage. Under P-deficiency, decrease of plant growth (18%) and nodule biomass (19%) was detected and significantly pronounced in the sensitive line L147 compared with the remaining genotypes. Additionally, under P-deficiency, the efficiency in use of rhizobial symbiosis, estimated by the slope of the regression model of shoot biomass as a function of nodule biomass, was significantly increased in the four lines. This constraint did not significantly influence nodule P content in Concesa, but it was 24 and 41% lower in the tolerant and in the sensitive lines, respectively. Nodule P content was positively correlated to nodule biomass, r=0.75, and shoot N, r=0.92. These genotypic variations were associated with variability in nodule O2 permeability that was significantly affected by the P level-bean genotype interaction. Under P-deficiency, nodule O2 permeability was significantly reduced in the tested genotypes and accompanied with a decrease in shoot N content, especially in the sensitive lines (35%). Moreover, the ratios plant N fixed: nodule P content and plant N fixed:nodule dry weight were affected under P-deficiency in four lines with an exception observed in Concesa. Depending on the observed data we concluded that N2 fixation efficiency could be influenced by nodulation and level of nodule P requirement which depend on both bean genotypes and P level.  相似文献   

19.
Plant growth performance, the P content in root and nodule tissues, and nodulation and N2-fixing ability were studied in four provenances of Acacia mangium from Papua New Guinea following different levels of P fertilizer application. A. mangium did not seem to need high levels of P for growth and N2 fixation. The response by this leguminous tree to the P supply varied significantly according to provenance and to P concentrations in the culture solution. The provenances of A. mangium were classified into three types according to their P response: (1) Growth performance, nodulation, and N2 fixation of plants were stimulated as concentrations of P increased (provenance PH 482); (2) the maximal effect of P on plant growth was found only at P concentrations higher than 500 M (provenance PH 484); and (3) the plant response to P fertilization was low, even with nutrient solutions containing P concentratins higher than 500 M (provenances PH 483 and PH 485). Provenance PH 483 was distinguished by its low nodulating ability. However, this provenance grew well, probably because of its high N2 fixation efficiency as expressed by specific acetylene reduction activity and its high P content in nodule tissues. Therefore, in certain cases, these two parameters may be useful criteria in selecting leguminous plants for field use. Statistical analyses of the study results showed that the effect of the factor P supply on N2 fixation efficiency and nodule development was only significant at P concentrations lower than 250 M whereas the effect of the factor plant provenance was significant regardless of the P concentration used. This observation emphasizes the value of provenance screening in the identification of plants for use in a wide range of soil types.  相似文献   

20.
Legume plants are an essential component of sustainable farming systems. Phosphorus (P) deficiency is a significant constraint for legume production, especially in nutrient-poor soils of arid and semi-arid regions. In the present study, we conducted a pot experiment to evaluate the effects of a phosphorus-mobilizing plant-growth promoting rhizobacterial strain Bacillus cereus GS6, either alone or combined with phosphate-enriched compost (PEC) on the symbiotic (nodulation-N2 fixation) performance of soybean (Glycine max (L.) Merr.) on an Aridisol. The PEC was produced by composting food waste with addition of single super phosphate. The bacterial strain B. cereus GS6 showed considerable potential for P solubilization and mobilization by releasing carboxylates in insoluble P (rock phosphate)-enriched medium. Inoculation of B. cereus GS6 in combination with PEC application significantly improved nodulation and nodule N2 fixation efficiency. Compared to the control (without B. cereus GS6 and PEC), the combined application of B. cereus GS6 with PEC resulted in significantly higher accumulation of nitrogen (N), P, and potassium (K) in grain, shoot, and nodule. The N:P and P:K ratios in nodules were significantly altered by the application of PEC and B. cereus GS6, which reflected the important roles of P and K in symbiotic performance of soybean. The combined application of PEC and B. cereus GS6 also significantly increased the soil dehydrogenase and phosphomonoesterase activities, as well as the soil available N, P, and K contents. Significant positive relationships were found between soil organic carbon (C) content, dehydrogenase and phosphomonoesterase activities, and available N, P, and K contents. This study suggests that inoculation of P-mobilizing rhizobacteria, such as B. cereus GS6, in combination with PEC application might enhance legume productivity by improving nodulation and nodule N2 fixation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号