首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A factorial experiment based on a completely randomized design with three replicates was conducted to evaluate effects of sixteen different mixtures of organic nitrogen sources and antibiotics which were supplemented to an Murashige and Skoog (MS) medium containing 4 mg L?1 2,4-Dichlorophenoxyacetic acid (2,4-D), 0.4 mg L?1 benzyl-aminopurine (BAP), 30 g L?1 sucrose, 8 g L?1 Agar-agar on fresh weight and dry weight (assessed after three days of drying at 70°C) of calli and in vitro callogenesis from scutellum of four indigenous Iranian Indica rice (Oryza sativa L.) cultivars, including ‘Hashemi’, ‘Gerdeh’, ‘Hasani’, and ‘Gharib’. It was found that proline at 2.8 g L?1 is the most effective source of organic nitrogen in enhancing growth, whereas asparagine at 0.75 g L?1 inhibited the calli growth. Hygromycin at 50 mg L?1, with slight differences between the cultivars, could effectively stunt the growth of untransformed calli. Mixture of cefotaxime (250 mg L?1) and vancomycin (250 mg L?1) did not have any significant effects on calli growth, although this treatment was slightly phytotoxic.  相似文献   

2.
Cadmium (Cd) is a common impurity in phosphate fertilizers and application of phosphate fertilizer may contribute to soil Cd accumulation. Changes in Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input were investigated in this study. A field experiment was conducted on Haplaquept to investigate the influence of calcium superphosphate on extractable and total soil Cd and on growth and Cd uptake of different Komatsuna (Brassica rapa L. var. perviridis) cultivars. Four cultivars of Komatsuna were grown on the soil and harvested after 60 days. The superphosphate application increased total soil Cd from 2.51 to 2.75?mg?kg?1, 0.1?mol?L?1 hydrochloric acid (HCl) extractable Cd from 1.48 to 1.55?mg?kg?1, 0.01?mol?L?1 HCl extractable Cd from 0.043 to 0.046?mg?kg?1 and water extractable Cd from 0.0057 to 0.0077?mg?kg?1. Cd input reached 5.68?g?ha–1 at a rate of 240?kg?ha–1 superphosphate fertilizer application. Superphosphate affected dry-matter yield of leaves to different degrees in each cultivar. ‘Nakamachi’ produced the highest yield in 2008 and ‘Hamami No. 2’ in 2009. Compared with the control (no phosphate fertilizer), application of superphosphate at a rate of 240?kg?ha–1 increased the Cd concentration in dry leaves by 0.14?mg?kg?1 in ‘Maruha’, 1.03?mg?kg?1 in ‘Nakamachi’, 0.63?mg?kg?1 in ‘SC8-007’ in 2008, and by 0.19?mg?kg?1 in Maruha’, 0.17?mg?kg?1 in ‘Hamami No. 2’, while it decreased by 0.27?mg?kg?1 in ‘Nakamachi’ in 2009. Field experiments in two years demonstrated that applications of different levels of calcium superphosphate did not influence Cd concentration in soil and Komatsuna significantly. However, there was a significant difference in Cd concentration of fresh and dry Komatsuna leaves among four cultivars in 2008 and 2009. The highest Cd concentration was found in the ‘Nakamachi’ cultivar (2.14?mg?kg?1 in 2008 and 1.91?mg?kg?1 in 2009). The lowest Cd concentration was observed in the ‘Maruha’ cultivar (1.51?mg?kg?1?dry weight (DW)) in 2008 and in the ‘Hamami No. 2’ cultivar (1.56?mg?kg?1?DW) in 2009. A decreasing trend in Cd concentration was found in ‘Nakamachi’, followed by ‘SC8-007’, ‘Hamami No. 2’ and ‘Maruha’ successively. It is necessary to consider a low-uptake cultivar for growing in a Cd polluted soil. In these two years’ results, ‘Maruha’ cultivar was the lowest Cd uptake cultivar compared to the others.  相似文献   

3.
《Journal of plant nutrition》2013,36(10):1535-1550
Variations of nitrogen and phosphorus levels in reproductive shoots and their leaves of self-rooting olive (Olea europaea) cultivars ‘Amfissis’ (A), ‘Kalamon’ (K), ‘Manzanillo’ (M), and ‘Chalkidikis’ (C) were monitored from the end of harvest until the emergence of the inflorescences. This 90-days period was divided into three sub-periods: before (pre-BD), during (BD), and after (post-BD) bud differentiation. The nitrogen (N)-content in leaves of the reproductive shoots varied between 10–20 mg g?1 and among cultivars the order of decreasing concentration levels was C > K > A > M. The N-content in reproductive shoots varied between 6–14 mg g?1 (K > A > C > M). Patterns of time-course variations are presented. Partitioning of N between leaves and shoots (NL:NS) varied with time, with a ratio between 1.5–2. The fluctuations in the NL:NS ratio over the 90 days showed two distinct phases: during pre-BD either increased (‘Amfissis’ and ‘Chalkidikis’) or remained relatively constant (‘Kalamon’ and ‘Manzanillo’), while during BD and post-BD decreased in all cultivars. The order of decreasing NL:NS ratio among cultivars was K > C > M > A.

Phosphorus (P) content in leaves of the reproductive shoots varied between 0.1–2.5 mg g?1, (A > C > K > M). Phosphorus content in reproductive shoots varied between 0.2–1.6 mg g?1, with the highest levels in ‘Amfissis’ compared to the other cultivars. Patterns of P partitioning between leaves and shoots were similar in all cultivars. The PL:PS ratio varied between 0.9–2 (A > C > K > M).

The N:P ratio varied between 5:1–20:1 in reproductive shoots and 10:1–35:1 in their leaves, increasing over the examined period. The increase rate of the N:P ratio varied between the three sub-periods, the lowest rate being during BD. The pattern of changes in the N:P ratio was similar in both leaves and shoots and an increase of N:P ratio in leaves was highly correlated with the corresponding increase of N:P in shoots.  相似文献   

4.
Seedlings of two bush bean cultivars (Phaseolus vulqaris L. cvs. Mn‐sensitive ‘Wonder Crop 2’ and Mn‐tolerant ‘Green Lord') were grown for 14 days in full strength Hoagland No. 2 nutrient solution containing 0.05 ‐ 2 mg L‐1 of vanadium (V) as ammonium vanadate.

Increasing V concentration in the solution decreased total dry weight of both cultivars. Plant tops were stunted and leaf color became dark green at 1 ‐ 2 mg L‐1 V, especially in ‘Green Lord’. Veinal necrosis similar to that of Mn toxicity was observed in the primary leaves of ‘Wonder Crop 2’ at 0.2 mg L‐1 V or above, but not in those of ‘Green Lord’.

The V concentrations in the roots increased exponentially with increasing V concentration in the solution; however, V concentrations in the leaves and stems were not affected. The Mn concentrations in the primary leaves increased under the higher V treatment in ‘Wonder Crop 2'; but not in ‘Green Lord’. In contrast, Fe concentration in the leaves of ‘Wonder Crop 2’ decreased markedly with increasing V concentration in the solution. Enhanced Mn uptake and greater reduction of Fe uptake by ‘Wonder Crop 2’ may explain the incidence of V‐induced Mn toxicity.  相似文献   


5.
ABSTRACT

Influences of nickel (Ni) concentrations in the nutrient solution on yield, quality, and nitrogen (N) metabolism of cucumber plants (Cucumis sativus cv ‘RS189’ and ‘Vikima’) were evaluated when plants were grown either with urea or nitrate as the sole N source. The cucumber plants were treated with two N sources, urea and nitrate as sodium nitrate (NaNO3) at 200 mg L?1, and three concentrations of Ni as nickel sulfate (NiSO4·6H2O; 0, 0.5, and 1 mg L?1). Treatments were arranged in a randomized block design with six replicates. The highest concentration of Ni in the leaves (1.2 mg kg?1 Dwt) was observed in the urea-fed plants at 1 mg L?1 Ni concentration. Additions of Ni up to 0.5 mg L?1 had no effect on the fruit Ni concentration in the both urea and nitrate-fed plants. Yield significantly (p < 0.05) increased with the Ni supplements from 0 to 0.5 mg L?1 (10 and 15% in ‘RS189’ and ‘Vikima’, respectively), but decreased when 1 mg L?1 Ni applied to the solutions in urea-fed plants. Nitrate-fed plants had a higher percentage of total soluble solids compare to those urea-fed plants. Nitrate concentrations of the fruits in urea-fed plants in both cultivars were reduced by approximately 50% compared to those nitrate-fed plants. The reduction of nitrate concentration in the fruits became more pronounced as the Ni concentration increased in the solution. The rate of photosynthesis (Pn) increased with the increase of the Ni concentration in the solution with urea-fed plants. Both N concentration and nitrate reductase (NR) activity of young leaves were higher in urea-fed plants at 0.5 mg l?1 Ni concentration. Ni supplements enhanced the growth and yield of urea-fed plants by increasing Pn, N concentration and NR activity. It can be concluded that Ni supplements (0.5 mg l?1) improve yield, quality, and NR activity in urea-fed cucumber plants.  相似文献   

6.
ABSTRACT

Indian mustard (Brassica juncea Czern) is a promising species for the phytoextraction of zinc (Zn), but the effectiveness of this plant can be limited by iron (Fe) deficiency under Zn-contaminated conditions. Our objectives were to determine the effects of root-applied Fe and Zn on plant growth, accumulation of Zn in plant tissues, and development of nutrient deficiencies for B. juncea. In the experiment, B. juncea was supplied 6 levels of iron ethylenediamine dihydroxyphenylacetic acid (Fe-EDDHA; 0.625 to 10.0 mg L?1) and two levels of Zn (2.0 and 4.0 mg L?1) for 3 weeks in a solution-culture experiment. Nutrient solution pH decreased with decreasing supply of Fe and increasing supply of Zn in solution, indicating that B. juncea may be an Fe-efficient plant. If plants were supplied 2.0 mg Zn L?1, plant growth was stimulated by increases in Fe supply, but plant growth was not influenced by Fe treatments if plants were supplied 4.0 mg Zn L?1. Zinc concentration in roots and shoots was suppressed by increasing levels of Fe in solution. Leaf concentrations of Cu, Mn, and P were suppressed also as Fe supply in solutions increased. Iron additions to the nutrient solution were not effective at increasing the Zn-accumulation potential of B. juncea unless plants were supplied the higher level of Zn in solution culture. Even under these conditions, Fe additions were effective only if supplied at low levels in solution culture (1.25 mg Fe L?1). Results suggest that Fe fertility has limited potential for enhancing Zn phytoextraction by B. juncea, even if plants suffer a suppression in growth from Fe deficiency.  相似文献   

7.
Five poinsettia (Euphorbia pulcherrima Willd.), ‘Freedom Red’, ‘Angelika Red’, ‘Nutcracker Red’, ‘Maren’, and ‘Red Splendor’ received the following treatments of a commercial fertilizer based on nitrogen (N) concentrations of: 75 mg L‐1 to anthesis; 75 mg L‐1 first 4 weeks then 125 mg L‐1 to anthesis; 125 mg L‐1 first 4 weeks then 200 mg L‐1 to anthesis; and 200 mg L‐1 to anthesis. Plants were fertigated to appearance of leachate from the bottom of the pot. Treatment concentrations greater than 125/200 and 200 mg.L‐1 significantly increased plant width of ‘Red Splendor’, height of ‘Nutcracker Red’ and dry weight of ‘Angelika Red’, ‘Nutcracker Red’, and ‘Maren’. Tissue concentrations of N, phosphorus (P), magnesium (Mg), and sulfur (S) increased as fertilizer treatment concentration increased for some cultivars. Significant differences between elemental concentrations of poinsettia cultivars occurred, specifically ‘Nutcracker Red’. Although tissue nutrient concentrations were at or below the critical level, general observations of each cultivar indicated that all plants were of commercial quality and almost indistinguishable between treatments. Poinsettia stem strength was not significantly affected by any fertilizer treatment used in this study.  相似文献   

8.
Field studies were conducted to assess boron (B) requirement, critical concentrations in diagnostic parts based on yield response curves and genotypic variation by growing three peanut (Arachis hypogaea L.) cultivars (‘Golden’, ‘BARD-479’, ‘BARI-2000’) on two B-deficient calcareous soils. Boron application significantly increased pod yield of all the cultivars over control. Maximum pod yield increases were: ‘Golden’, 16?23%; ‘BARD-479’, 21?27%; and ‘BARI-2000’, 25?31%. The cultivars varied in B efficiency and cv. ‘Golden’ was the most B efficient (81?86%) while cv. ‘BARI-2000’ was the least efficient (76?80%). Boron requirements for near-maximum (95%) dry pod yield were 0.65 kg ha?1 for ‘Golden’, 0.75 kg ha?1 for BARD-479 and 0.80 kg ha?1 for BARI-2000. Critical B concentrations in shoots and seeds were: ‘Golden’, 33 mg kg?1 and 26 mg kg?1; ‘BARD-479’, 38 mg kg?1 and 31 mg kg?1; and ‘BARI-2000’, 42 mg kg?1 and 33 mg kg?1.  相似文献   

9.
To compare the growth performance of Brassica in a phosphorus (P) stress environment and response to added P, six Brassica cultivars were grown in pots for 49 days after sowing, using a soil low in P [sodium bicarbonate (NaHCO3)–extractable P = 3.97 mg kg?1, Mehlich III–extractable P = 6.13 mg kg?1] with (+P = 60 mg P kg?1 soil) or without P addition (0P). Phosphorus‐stress markedly reduced biomass accumulation and P uptake by roots and shoots. However, root–shoot ratio remained unaffected, implying that relative partitioning of biomass into roots and shoots had little role to play in shoot dry matter (SDM) production by cultivars. Biomass correlated significantly (P < 0.01) with total P uptake. Under P stress, the cultivars that produced greater root biomass were able to accumulate more total P content (r = 0.95**), which in turn was related positively to SDM and total biomass (r > 0.89**) and negatively to P‐stress factor (r = ?0.91**). There was no correlation between P efficiency (PE) (relative shoot growth) and plant P, but PE showed a very significant correlation with shoot P content and SDM. Wide differences in growth and better performance of cultivars such as ‘Brown Raya’ and ‘Con‐1’ under P stress encouraged screening of more germplasm, especially in the field, to identify P‐tolerant cultivars.

In another study, potential relative agronomic effectiveness (RAE) of sparingly soluble P sources was investigated by growing two contrasting cultivars. The P sources incorporated into soil at 0, 10, 25, 50, and 100 mg P Kg?1 were (i) powdered Jordan rock P (RP), (ii) triple superphosphate (TSP), (iii) powdered low‐grade TSP [TSP(PLG)], (iv) a mixture of RP + TSP compacted into pellets at 50:50 P ratio [RP + TSP(PelC)], and (v) a mixture of powdered RP + TSP at 50:50 P ratio [RP + TSP(PM)]. The RP was low in RAE and only 5 and 29% as effective as TSP in producing dry matter (DM) of P‐sensitive ‘B.S.A.’ and P‐tolerant ‘Brown Raya’ cultivars, respectively. There were no significant differences between TSP and RP + TSP(PelC) in DM yield of ‘Brown Raya,’ whereas, in the case of ‘B.S.A.’ RP + TSP(PM) was significantly less effective than RP + TSP(PelC) compared with TSP. Combined utilization of superior genome and P sources [such as TSP(PLG) and RP + TSP(PelC)] produced from low‐grade RP (that cannot be used either for direct application or acidulated P fertilizers) can be used as an alternative strategy for sustainable crop production, especially in resource‐poor environments. Further field trials at the level of cropping systems are needed.  相似文献   

10.
Our study analyzed the effect of foliar tissues and seed tissue for determining the micronutrient status of a crop. Zinc (Zn) requirements of onion (Allium cepa L.) leaves and seeds were estimated from yield response curves based on field experiment conducted on a Zn-deficient calcareous soil. Three onion cultivars, i.e., ‘Swat-1’, ‘Phulkara’, and ‘Sariab Red’ were grown by applying 0, 2, 4, 8, and 16 kg Zn ha?1. Zinc application significantly increased seed yield of all the three cultivars of onion. The order of seed yield response to Zn fertilization was: ‘Swat-1’ < ‘Phulkara’ < ‘Sariab Red’. Fertilizer Zn requirement for near-maximum seed yield was 2 kg Zn ha?1. Zinc concentration in mature onion seed also appeared to be a good indicator of soil Zn availability status. Critical Zn concentration in seed was 18 mg Zn kg?1, and in matured leaves was 21 mg kg?1.  相似文献   

11.
Four volumes of spent mushroom compost were exposed to synthetic coal mine drainage (pH 3.5, 48 mg L?1 Fe, 22 mg L?1 Mn) under oxidizing conditions (Eh 300 to 400 mV) at a relatively high rate of flow. After 15 days, the compost lost its ability to elevate pH, to lower the redox potential, to lower outlet iron concentrations, and to lower manganese concentrations, with larger volumes retaining more Fe and H+, but less Mn. Estimated retention maxima per liter of spent mushroom compost were 281 μeq H+, 5.56 g Fe, and 0.15 g Mn. These values are similar to those reported elsewhere for peat. The ‘saturated’ compost was then mixed and exposed to mine water in order to eliminate ‘dead zones’ in the compost. Subsequently, the compost was re-exposed to synthetic mine water (pH 4.0, 60 mg L?1 Fe, O mg L?1 Mn) under a much lower flow rate and less oxidizing regime for a period of 114 days. Under the low flow regime, iron was first exported from the compost as reducing conditions were established, and then retained on a stable basis. In addition, Eh was lowered and pH was elevated by the compost. On a net basis, the capacity of the compost to retain iron was increased and apparently stable under the decreased flow conditions.  相似文献   

12.
ABSTRACT

Spinach (Spinacia oleracea L.) has one of the highest United States per capita consumption rates among leafy vegetable crops, and also ranks second for lutein and β-carotene carotenoid concentration. The objectives of this study were to determine the effects of nitrogen (N) concentration on elemental and pigment accumulation in spinach. Two spinach cultivars (‘Melody’ and ‘Springer F1’) were greenhouse grown in nutrient solution culture under N treatments of 13, 26, 52, and 105 mg L? 1. Leaf tissue biomass increased from 45.6 to 273.2 g plant? 1 and from 127.0 to 438.6 g plant? 1 as N increased from 13 to 105 mg L? 1 for ‘Springer F1’ and ‘Melody’, respectively. Leaf tissue N, phosphorus (P), calcium (Ca), magnesium (Mg), copper (Cu), and zinc (Zn) responded to N treatments. Lutein accumulations, expressed on a fresh weight basis, responded quadratically to increasing N treatments for ‘Springer F1’. Maximum lutein values were 110 and 76 μ g g? 1 on a fresh weight basis, and maximum β-carotene values were 85 and 57 μ g g? 1 on a fresh weight basis for ‘Springer F1’ and ‘Melody’, respectively. Interestingly, N levels had a significant effect on carotenoid accumulation in both ‘Springer F1’ and ‘Melody’ when the pigments were expressed on a dry weight basis. Leaf tissue lutein increased from 0.59 to 1.06 mg g? 1 and from 0.59 to 0.90 mg g? 1 on a dry weight basis with increasing N treatments for ‘Springer F1’ and ‘Melody’, respectively. Reporting lutein and β-carotene on both a fresh and dry weight basis may be the most accurate way to express the carotenoid values of spinach.  相似文献   

13.
In vitro, applications of nanosilicon dioxide (SiO2) and chitosan were investigated for their effects on growth and proliferation of apple (Malus domestica Borkh. ‘Gala’) explants under osmotic stress induced by agar to simulate drought stress and under non-stressed conditions. The experiment included five levels of SiO2 (0, 25, 50, 100, and 200 mg L?1), two levels of chitosan (0 and 40 mg L?1), and two levels of agar (7 g L?1 and 9 g L?1) added to Murashige and Skoog medium. Under non-stressed conditions (7 g L?1 agar), application of SiO2 at 50 or 100 mg ?1 increased proliferation of apple explants. Use of 50 or 100 mg L?1 SiO2 or 40 mg L?1 chitosan increased growth of apple explants under osmotic stress (9 g L?1 agar). This research suggests that use of SiO2 or chitosan may improve plant growth and tolerance to stress.  相似文献   

14.
ABSTRACT

Iron (Fe) deficiency is one of the serious nutritional disorders in aerobically grown rice on upland alkaline and calcareous soils, which leads to a decline in productivity. With a view to resolve the Fe-deficiency syndrome in aerobic rice, the influence of soil moisture regimes, farmyard manure (FYM) and applied Fe on the release of Fe was assessed under an incubation study. A field experiment was also conducted to evaluate the relative effectiveness of soil and foliar applications of Fe in alleviating Fe deficiency using four rice cultivars (‘IR 36’, ‘IR 64’, ‘IR 71525-19-1-1’ and ‘CT 6510-24-1-2’). Results of incubation study indicated that the application of FYM marginally improved the diethylene triamine pentaacetic acid (DTPA)-Fe status of soil over control. However, application of iron sulfate (FeSO4 · 7H2O) at 14 mg Fe/kg with FYM released as much Fe as did the application of 27 mg Fe/kg as FeSO4 7H2O alone. Comparatively higher amounts of Fe were released under water saturation than that under drier soil moisture regimes and the effect of incubation period in releasing Fe was pronounced only under water saturation.

Under field study, supplementation of Fe through integrated or inorganic source caused improvement in the DTPA and ammonium acetate (NH4OAc) extractable Fe similar to that recorded under incubation. The foliar application of Fe (3% FeSO4 7H2O solution, thrice at 40, 60, and 75 days after sowing of rice, i.e., 45 kg FeSO4.7H2O/ha) was most effective and economical in correcting Fe deficiency in aerobic rice, followed by soil application of 150 kg FeSO4.7H2O + 10 t FYM/ ha and 305 kg FeSO4.7H2O/ha. Among the rice cultivars, ‘CT 6510-24-1-2’ and ‘IR 71525-19-1-1’ performed better under aerobic condition compared to ‘IR 36’ and ‘IR 64’. Differential response of rice cultivars to applied Fe was not related to Fe-nutrition; rather it was apparently related with inherent ability of cultivars to grow under water-stress condition. Ferrous iron (FeII) content in rice plants proved to be a better index of Fe-nutrition status compared to total plant Fe and chemically extractable soil Fe. The FeII concentration of ≥ 37 mg kg?1 in plants (on dry weight basis) appeared to be an adequate level at 60 days after sowing for direct seeded rice grown under upland aerobic condition.  相似文献   

15.
Iron deficiency in dicots is accompanied by an increased potential for Fe uptake and translocation. The mechanisms responsible for these changes in metabolism (Fe‐stress response) provide for the adaptation of Fe‐efficient genotypes to conditions which limit the availability of Fe. Previous studies indicated that when Fe‐stress response is initiated, the uptake of Mn, as well as Fe, is enhanced in Fe efficient species such as sunflower. The present study was conducted to determine the relationship between Fe‐stress response and Mn uptake in snapbean (Phaseolus vulgaris L., cvs. Bush Blue Lake 290, Bush Blue Lake 274). The plants were grown in complete nutrient solutions containing 0.02 to 0.52 mg L‐1 Mn, at acid or alkaline pH. Iron stress was induced with 0.22 mg l‐1 Fe(EDDHA) (molar ratio 1:1 or 1:2), high P (14.3 mg L‐1) and excess CaCO3. Bush Blue Lake 290 ('BBL 290') was more sensitive than Bush Blue Lake 274 ('BBL 274') to Mn toxicity in acid (pH 5.2) nutrient solutions with adequate Fe. Under alkaline conditions, Mn accumulation by ‘BBL 290’ snapbean was increased dramatically with Fe stress, while a moderate Increase was found for ‘BBL 274’. Foliar symptoms of Mn toxicity, observed on Fe stressed ‘BBL 290’, increased in severity at higher Mn (0.06 to 0.26 mg L‐1 ) concentrations. It was concluded that the magnitude of the enhanced Mn uptake was related to the intensity of Fe stress response as well as the cultivar sensitivity to Mn.  相似文献   

16.
This study determined the potential to increase Zn density of lettuce (Lactuca sativa L.) through cultivar selection and nutrient management. Organic fertilizer and Hoagland and Arnon no.1 solution factored with three zinc (Zn) levels provided as zinc sulfate (ZnSO4) were the fertilizer regimes in a greenhouse experiment. Modern cultivars had a 32% higher fresh head weight than heritage cultivars, but each accumulated the same Zn concentration (65 mg kg?1 dry wt). Butterhead phenotypes had a 38% lower yield than loose-leaf and had the highest Zn concentration (78 mg kg?1 dry wt) followed by romaine (66 mg kg?1 dry wt) and loose-leaf (53 mg kg?1 dry wt). Concentration of Zn did not differ between fertility regimes, being about 66 mg kg?1 dry wt with each regime. Differences in Zn concentrations were significant among individual cultivars with ranges from 42 mg g?1 dry wt to 91 mg kg?1 dry wt. ‘Tom Thumb’, ‘Adriana’, ‘Claremont’, and ‘Focea’ were the top in cultivar ranking, with mean Zn concentration of 63 mg kg?1 dry wt. The results signify that selection of cultivars may be utilized to increase Zn accumulation in lettuce but that nutritional regimes had little effect on accumulation.  相似文献   

17.
Silicon (Si) is the second most abundant element in the soil and can alleviate several abiotic stresses in many plant species. However, the mechanisms involved in alleviating ferrous iron (Fe2+) toxicity by Si are still largely unknown, and no study has investigated the role of Si on the Fe2+‐induced oxidative stress and antioxidant system in rice. Four cultivars of Asian and African rice (Oryza sativa L. and Oryza glaberrima Steud) were grown for 4 weeks under hydroponic conditions with or without Fe2+ (250 mg Fe2+ L?1) and with or without Si (250 mg SiO2 L?1). The plants that were treated with Fe2+ suffered Fe2+ toxicity, and Si helped to alleviate the toxicity symptoms. The bronzing index and the Fe concentration in the foliar tissue increased in the presence of Fe2+ but decreased significantly with the application of 250 mg SiO2 L?1. The concentration of malonyldialdehyde, that is commonly used as an indicator of oxidative stress, increased in the foliar tissue in the presence of 250 mg Fe2+ L?1 in the nutrient solution. The application of 250 mg SiO2 L?1 in the plant nutrient solution treated with Fe2+ considerably limited the increase of malonyldialdehyde. However, no significant effect of Si application on the activities of antioxidant enzymes (catalase and ascorbate peroxidase) and non‐enzymatic antioxidants (total ascorbate, reduced ascorbate, oxidized ascorbate, and the ratio of the reduced to oxidized forms) was observed in the rice plants that were grown in the presence of Fe2+. These results suggest that Si does not act directly on the antioxidant defense system of rice but reduces the plant Fe2+ concentration, which reduces the oxidative stress.  相似文献   

18.
Abstract

Canola (Brassica napus L.), is the most important oilseed crop due to high oil contents and low concentration of erucic acid and glucosinolates. In Pakistan, oil seed production is not sufficient to fulfill the needs of the country. Thus, the planned experiment was aimed to evaluate the performance of different canola cultivars i.e. Faisal Canola, Pakola, PARC Canola hybrid and Rainbow at grown under various soil applied boron (B) levels viz., 0, 1, 2?kg ha?1 under a rainfed environment. The experiment was laid out in randomized complete block design with four replications. Among the canola cultivars, the maximum seed oil contents were recorded in cultivar ‘Pakola’ whereas, higher linolenic acid and protein were recorded in cultivar ‘Faisal canola’ as compared to other cultivars. A synergistic effect was found between various levels of B and quality parameters of the canola seed; as higher concentration of oil contents were found when B was applied 2?kg ha?1. Conversely the linolenic acid showed the antagonistic behavior with the various B levels. On the other hand, protein contents, oleic acid and erucic acid revealed non-significant differences under different B application rates. In conclusion, the cultivar ‘Pakola’ provided the highest oil content when the B was applied at 2?kg ha?1; the low concentration of unsaturated fatty acid was observed in ‘PARC canola’ cultivar in the Pothwar region of Punjab, Pakistan.  相似文献   

19.
ABSTRACT

Zinc (Zn) deficiency is a global nutritional problem in crops grown in calcareous soils. However, plant analysis criteria, a good tool for interpreting crop Zn requirement, is scarcely reported in literature for onion (Allium cepa L.). In a greenhouse experiment, Zn requirement, critical concentrations in diagnostic parts and genotypic variation were assessed using four onion cultivars (‘Swat-1’, ‘Phulkara,’ ‘Sariab Red,’ and ‘Chilton-89’) grown in a Zn-deficient (AB-DTPA extractable, 0.44 Zn mg kg?1), calcareous soil of Gujranwala series (Typic Hapludalf). Five rates of Zn, ranging from 0 to 16 mg Zn kg?1 soil, were applied as zinc sulphate (ZnSO4·7H2O) along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and boron (B). Four onion seedlings were transplanted in each pot. Whole shoots of two plants and recently matured leaves of other two plants were sampled. Zinc application significantly increased dry bulb yield and maximum yield was produced with 8 mg Zn kg?1. Application of higher rates did not improve yield further. The cultivars differed significantly in Zn efficiency and cv. ‘Swat-1’ was most Zn-efficient. Fertilizer requirement for near-maximum dry bulb yield was 2.5 mg Zn kg?1. Plant tissue critical Zn concentrations were 30 mg kg?1 in young whole shoots, 25 mg kg?1 in matured leaves, 16 mg kg?1 in tops and 14 mg Zn kg?1 in bulb. Zinc content in mature bulb also appeared to be a good indicator of soil Zn availability status.  相似文献   

20.
《Journal of plant nutrition》2013,36(10):2315-2331
ABSTRACT

Split root solution culture experiments were conducted to study the effects of the rare earth element lanthanum (La) on rice (Oryza sativa) growth, nutrient uptake and distribution. Results showed that low concentrations of La could promote rice growth including yield (0.05 mg L?1 to 1.5 mg L?1), dry root weight (0.05 mg L?1 to 0.75 mg L?1) and grain numbers (0.05 mg L?1 to 6 mg L?1). High concentrations depressed grain formation (9 mg L?1 to 30 mg L?1) and root elongation (1.5 mg L?1 to 30 mg L?1). No significant influence on straw dry weight was found over the whole concentration range except for the 0.05 mg L?1 treatment. In the pot and field experiments, the addition of La had no significant influence on rice growth.Lanthanum had variable influence on nutrient uptake in different parts of rice. Low concentrations (0.05 mg L?1 to 0.75 mg L?1) increased the root copper (Cu), iron (Fe), and magnesium (Mg), and grain Cu, calcium (Ca), phosphorus (P), manganese (Mn), and Mg uptake. High concentrations (9 to 30 mg L?1) decreased the grain Ca, zinc (Zn), P, Mn, Fe and Mg, and straw Ca, Mn, and Mg uptake. With increasing La concentration, root Zn, P, Mn, Cu, and Ca concentrations increased, and grain Ca and Fe, and straw Mn, Mg, and Ca concentrations decreased. Possible reasons are discussed for the differences between the effects of La in nutrient solutions and in pot and field experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号