首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant dry matter accumulation rate (DMAR), relative water content (RWC), electrolyte leakage percentage (ELP), chlorophyll content, osmotic adjustment ability (OAA), and osmotica accumulation in leaves of sunflower (Helianthus annuus L.) seedlings under different levels of dehydration and salinity stress induced by iso-osmotic PEG (polyethylene glycol) or sodium chloride (NaCl) were evaluated. Plants were subjected to four stress treatments for 10 days: ?0.44 MPa PEG6000, ?0.44 MPa NaCl, ?0.88 MPa PEG6000, ?0.88 MPa NaCl. Results showed that PEG and NaCl treatments decreased the plant's DMAR and RWC, and NaCl treatments had more severe inhibitory effect on the plants than PEG treatments. Leaf ELP in sunflower seedlings increased after NaCl and PEG treatments. However, leaf ELP under salt stress was higher than that under dehydration stress (PEG treatment). All stress treatments increased OAA in plant leaves. Leaf OAA was enhanced significantly as PEG concentration increases, while leaf OAA was less enhanced at higher concentration of NaCl. OAA of sunflower leaves under dehydration stress was due to an increase in potassium (K+), calcium (Ca2+), amino acid, organic acid, magnesium (Mg2+), and proline content. OAA of sunflower leaves under moderate salt stress was owing to an increase in K+, chlorine (Cl?), amino acid, organic acid, sodium (Na+), and proline content, and was mainly due to an accumulation of K+, Cl?, Na+, and proline under severe salt stress.  相似文献   

2.
Calcium (Ca2+) amelioration of the plant's growth response to salinity depends on genetic factors. In this work, supplemental Ca2+ did not improve growth in Phaseolus vulgaris L. cv. Contender under high‐saline conditions and negatively affected several physiological parameters in nonsalinized plants. The response to supplemental Ca2+ was examined using plants grown in 25% modified Hoagland solution at different Na+ : Ca2+ ratios. In control plants (1 mM Ca2+; 1 mM Na+) surplus Ca2+ (4 or 10 mM) was associated with stomatal closure, decrease of hydraulic conductivity, sap flow, leaf specific dry weight, leaf K+ and leaf Mg2+ concentrations, and inhibition of CO2 assimilation. Leaf water content was enhanced, while water‐use efficiency and dry matter were unaffected during the 15 d experimental period. The Ca2+ effect was not cation‐specific since similar results were found in plants supplied with high external Mg2+ or with a combination of Ca2+ and Mg2+. Relative to control plants, salinization (50 and 100 mM NaCl) caused a decrease in dry matter, hydraulic conductivity, sap flow, leaf Mg2+ activity, and inhibition of stomatal opening and CO2 assimilation. However, NaCl (50 and 100 mM NaCl) enhanced leaf K+ concentration and water‐use efficiency. At 100 mM NaCl, leaf water content also significantly increased. Supplemental Ca2+ had no amelioration effect on the salt‐stress response of this bean cultivar. In contrast, the 50 mM–NaCl treatment improved stomatal conductance and CO2‐assimilation rate in plants exposed to the highest Ca2+ concentration (10 mM). Phaseolus vulgaris is classified as a very NaCl‐sensitive species. The similarities in the effects caused by supplemental Ca2+, supplemental Mg2+, and NaCl salinity suggest that P. vulgaris cv. Contender has a high non‐ion‐specific salt sensitivity. On the other hand, the improvement in gas‐exchange parameters in Ca2+‐supplemented plants by high NaCl could be the result of specific Na+‐triggered responses, such as an increase in the concentration of K+ in the leaves.  相似文献   

3.
Physiological responses to salt stress were investigated in two cotton (Gossypium hirsutum L.) cultivars (Pora and Guazuncho) grown hydroponically under various concentrations of NaCl. Dry matter partitioning, plant water relations, mineral composition and proline content were studied. Proline and inorganic solutes were measured to determine their relative contribution to osmotic adjustment. Both leaf water potential (Ψw) and osmotic potential (Ψs)decreased in response to NaCl levels. Although Ψwand Ψs decreased during salt stress, pressure potential Ψp remained between 0.5 to 0.7 MPa in control and all NaCl treatments, even under 200 mol m?3 NaCl. Increased NaCl levels resulted in a significant decrease in root, shoot and leaf growth biomass. Root / shoot ratio increased in response to salt stress. The responses of both cultivars to NaCl stress were similar. Increasing salinity levels increased plant Na+ and Cl?. Potassium level remained stable in the leaves and decreased in the roots with increasing salinity. Salinity decreased Ca2+ and Mg2+ concentrations in leaves but did not affect the root levels of these nutrients. The K/Na selectivity ratio was much greater in the saline treated plants than in the control plants. Osmotic adjustment of roots and leaves was predominantly due to Na+ and Cl? accumulation; the contribution of proline to the osmotic adjustment seemed to be less important in these cotton cultivars.  相似文献   

4.
ABSTRACT

The present work was aimed at determining the limits of tolerance to sodium chloride (NaCl) of a halophyte, Beta macrocarpa Guss (wild Swiss chard). Five week-old plants were cultivated with a nutritive solution to which was added 0, 100, 200, and 300 mM NaCl. Plants were harvested after four weeks of treatment. The growth (fresh and dry weight, leaf surface area, and leaf number), water contents, and the mineral composition (meq · g?1 DW) of roots and leaves (reduced nitrogen (N), K+, Ca2 +, Na+, Cl?) were determined on individual plants. Results show that Beta macrocarpa can tolerate up to 200 mM NaCl. A significant decrease in biomass production (to 50% of control) was observed only for 300 mM NaCl. In the latter treatment, leaf mean surface area was 25% of control. The shoot-to-root ratio was not changed. Leaf hydration was not modified by salt treatment. This ability of the plant to maintain the hydric equilibrium of its leaves seemed associated with an efficient intracellular compartmentalization of Na+ and Cl? ions. Salt treatment had little effect on N content (80% of control), but decreased significantly K+ and Ca2 + contents. These three essential elements could be limiting for growth of leaves and roots of plants challenged by NaCl.  相似文献   

5.
The phytotoxicity of salts in composted sewage sludge (CSS) was evaluated. Concentrations of sodium (Na+), chloride (Cl?1), calcium (Ca2+), and magnesium (Mg2+) were present at levels that would induce salt stress in plants. Nutrient imbalances were also found that would adversely affect the use of CSS as a growth medium. To further understand the phytotoxic nature of these salts, sodium chloride (NaCl), calcium nitrate [Ca(NO3)2] and magnesium nitrate [Mg(NO3)2] solutions were used to simulate the composition of salts found in CSS in an investigation of radish (Raphanus sativus L.) seed germination. High concentrations of Ca2+ (92.1 mmol.L?1) and Mg2+ (27.4 mmol.L?1) inhibited seed germination to an equal extent as did Na+ (40.6 mmol.L?1). The lower concentration of Ca2+ (10 mmol.L?1), however, significantly relieved the stress caused by NaCl. These results indicated that the composition and total amount of Na+, Cl?1, Ca2+, and Mg2+ in CSS should be carefully monitored before it is used as a soil amendment or growth medium.  相似文献   

6.
Leguminous plant Alhagi pseudoalhagi was subjected to 0 (control), 50, 100, and 200 mM NaCI treatments during a 30 d period to examine the mechanism of tolerance to salinity. Plant dry weight, net CO2 assimilation rate, leaf stomatal conductance, intercellular CO2 concentration, and solute concentration in leaves, stems, and roots were determined. Total plant weight in the 50 mM treatment was 170% of that of the control after 10 d of treatment. Total plant weight was lower in the 100 and 200 mM treatments than in the control. The leaf CO2 assimilation rate was approximately 150% of that of the control in the 50 mM treatment, but was not affected significantly by 100 mM of NaCI, while it was reduced to about 60% of that the control in the 200 mM treatment. Similarly stomatal conductance was consistent with the CO2 assimilation rate regardless of the treatments. Intercellular CO2 concentration was lower in the NaCI-treated plants than in the control. Changes in CO2 assimilation rate due to salinity stress could be mainly associated with stomatal conductance and the carboxylation activity. Although the leaf Na+ concentration increased to 900 mmol kg-1 dry weight in the 200 mM treatment compared to 20 mmol kg-1 in the control, the plants did not die and continued to grow at such a high leaf Na+ concentration. Uptake and transportation rates of Na+, Ca2+, Mg2+, and K+, and the accumulation of N were promoted by 50 mM NaCI. Na+ uptake rate continued to increase in response to external NaCI concentration. However, the uptake and transportation rates of Ca2+, Mg2+, and K+ behaved differently under 100 and 200 mM salt stress. The results suggest that A. pseudoalhagi is markedly tolerant to salinity due mainly to its photosynthetic activity rather than to other physiological characteristics.  相似文献   

7.
The salinity tolerance of loquat grafted onto anger or onto loquat was studied. The plants were irrigated using solutions containing 5, 25, 35, 50, or 70 mM sodium chloride (NaCl) for five months. Different parameters of vegetative growth were studied, all of them showing that plants grafted onto loquat are much less salinity-tolerant than those grafted onto anger. Thus, the concentration of NaCl that produced a growth reduction of 50% (C50) for the growth parameters of the shoot was around 35 mM for loquat plants grafted onto loquat. With the NaCl levels employed, loquat-anger plants did not reach the C50. Lower chloride (Cl?) and sodium (Na+) uptake, higher potassium (K+)-Na+ selectivity and a lower reduction in the leaf magnesium (Mg2+) concentration for the loquat-anger combination can explain the higher salinity tolerance compared to loquat-loquat.  相似文献   

8.
ABSTRACT

The interactions between salinity and different nitrogen (N) sources nitrate (NO3 ?), ammonium (NH4 +), and NO3 ? + NH4 + were investigated on Indian mustard (Brassica juncea cv. RH30). Treatments were added to observe the combined effect of two salinity levels (8 and 12 ds m? 1) and three nitrogen sources (NO3 ?, NH4 +, and NO3 ? + NH4 +) on different growth parameters and mineral composition in different plant parts, i.e., leaves, stem, and root. Salinity has been known to affect the uptake and assimilation of various essential nutrients required for normal growth and development. Different growth parameters, i.e., leaf area, dry weight of different plant parts, absolute growth rate (AGR), relative growth rate (RGR), and net assimilation rate (NAR) declined markedly by salinity at pre-flowering and flowering stages. All growth indices were less sensitive to salinity (12 d s m? 1) with the nitrate form of nitrogen. It is pertinent mention that a high dose (120 kg ha? 1) of nitrogen in ammonium form NH4 +, acted synergistically with salinity in inhibiting growth. Plants fed with combined nitrogen (NO3 ? + NH4 +) had an edge over individual forms in ameliorating the adverse effects of salinity on growth and yield. Under salt stress, different nutrient elements such as N, phosphorus (P), potassium (K+), and magnesium (Mg2 +) were decreased in different plant parts (leaves, stem, and root). The maximum and minimum reduction was observed with ammoniacal and combined form of nitrogen, respectively, while the reverse was true of calcium (Ca2 +), sodium (Na+), chloride (Cl?), and sulfate (SO4 2?) at harvest. Nitrogen application (120 Kg ha? 1) in combined form had been found to maintain highest concentrations of N, P, Mg2 +, and Ca2 + along with reduced concentrations of Na+, Cl?, and SO4 2 ?. However, reverse was true with ammoniacal form of nitrogen.  相似文献   

9.
The effect of alkali stress on crop production has gained importance around the world. Avocado (Persea americana Mill.) is considered a salt-sensitive species, but the effect of alkaline water on avocados has not been sufficiently studied. Plant growth, leaf damage, and chemical analysis were evaluated in response to alkali salt (NaHCO3) and neutral salt (NaCl) stresses on six clonally propagated avocado rootstocks. All plants exhibited exclusion mechanisms by the accumulation of Na+ and Cl? in their root systems, Na+ was concentrated to a greater extent than Cl?. The accumulation of Na+ in the leaves was greater when applied as NaHCO3 compared to the NaCl treatment. Although Cl? toxicity is more commonly observed under usual field conditions, in our experiments when Na+ reached the leaves it caused nearly two times more leaf necrosis.  相似文献   

10.
To explore the possibility that saline wastewaters may be used to grow commercially acceptable floriculture crops, a study was initiated to determine the effects of salinity on two pollen-free cultivars of ornamental sunflower (Helianthus annuus L.). ‘Moonbright’ and ‘Sunbeam’ were grown in greenhouse sand cultures irrigated with waters prepared to simulate wastewaters commonly present in two inland valley regions of California: 1) San Joaquin Valley (SJV) where saline-sodic drainage waters are dominated by sodium (Na+) and sulfate (SO 2? 4 ) and 2) Coachella Valley (CV) where major ions in tailwaters are Na+, chloride (Cl?), SO 2? 4 , magnesium (Mg2+), calcium (Ca2+), predominating in that order. Ten-day-old seedlings were subjected to five salinity treatments of each water composition, each replicated three times. Electrical conductivities (EC) of the irrigation waters were 2.5, 5, 10, 15, and 20 dS·m?1. Flowering stems were harvested when about 75% of the ray flowers were nearly horizontal. Stem length and fresh weight, flower and stem diameter were measured. Mineral ion concentrations in upper and lower stems, upper and lower leaves were determined. Sodium was excluded from the young tissues in the upper portions of the shoot and retained in the basal stem tissue. Inasmuch as sunflower is also a strong potassium (K)-accumulator, K+/Na+ selectivity coefficients were unusually high in the younger shoot organs. Despite a five-fold increase in substrate Ca2+ in both solutions, shoot-Ca decreased as salinity increased and this cation was retained in the older leaves. A few of the lower leaves of plants irrigated with ICV waters at EC = 10 dS·m?1 and higher, exhibited necrotic margins which were undoubtedly caused by high concentrations of Cl? in the tissues. Flowering stems produced in all treatments met florist quality standards in terms of diameters for stems (0.5 to 1.5 cm) and blooms (8 to 15 cm). Across treatments, stem lengths ranged from 60 to 175 cm. Both ornamental sunflower cultivars proved to be good candidates for production of marketable flowering stems using moderately saline wastewaters.  相似文献   

11.
The effect of sodium chloride (NaCl), sodium sulfate (Na2SO4), and potassium chloride (KCl) on growth and ion concentrations of faba bean (Vicia faba L. cv. Troy) was studied. After 14 or 15 d of isoosmotic treatment with 100 mM NaCl or 75 mM Na2SO4, respectively, plants developed toxicity symptoms. These symptoms were characterized by local and nonchlorotic wilting spots, which later turned to black, necrotic spots. In contrast to NaCl or Na2SO4 treatment, plants treated with 100 mM KCl did not show these symptoms. The symptoms occurred on those leaves that accumulated highest concentrations of Na+ and showed highest Na+ : K+ ratios. Our results indicate that Na+ toxicity inducing K+ deficiency is responsible for the spot necrosis of faba bean. Additionally, chlorotic symptoms occurred. The concentrations of Na+ and Cl were determined in chlorotic leaves and in isolated chloroplasts. The reduction of chlorophyll in leaves after NaCl exposure may be explained in terms of high Cl concentrations in the chloroplasts and appears to depend on high Na+ concentrations. Chlorotic toxicity symptoms can be avoided by additional Mg2+ application.  相似文献   

12.
This study investigated the effects of foliar application of normal and nano-sized zinc oxide on the response of sunflower cultivars to salinity. Treatments included five cultivars (‘Alstar’, ‘Olsion’, ‘Yourflor’, ‘Hysun36’ and ‘Hysun33’), two salinity levels [0 and 100 mM sodium chloride (NaCl)], and three levels of fertilizer application. Fertilizer treatments were the foliar application of normal and nano-sized zinc oxide (ZnO). Foliar application of ZnO in either forms increased leaf area, shoot dry weight, net carbon dioxide (CO2) assimilation rate (A), sub-stomatal CO2 concentration (Ci), chlorophyll content, Fv/Fm, and Zn content and decreased Na content in leaves. The extent of increase in chlorophyll content, Fv/Fm and shoot weight was greater as nano-sized ZnO was applied to the normal form. The results show that the nano-sized particles of ZnO compared to normal form has greater effect on biomass production of sunflower plants.  相似文献   

13.
Salinity can affect germination of seeds either by creating osmotic potentials that prevent water uptake or by toxic effects of specific ions. This work was carried out to evaluate the germination of sunflower (Helianthus annuus L.) seeds under increasing salinity by using the most abundant salts in China. Potassium (K+), sodium (Na+), and calcium (Ca2+) contents in hypocotyls were determined on the fifth day. At same concentration of salt solution, the adverse effect of ions is in the following sequence: carbonate radical (CO3 2?) > sulfate radical (SO4 2?), chloride (Cl?) > bicarbonate radical (HCO3 ?), magnesium (Mg2+) > Ca2+, and Na+ > K+. The effect of salinity on the germination phase of development is mainly due to its osmotic component other than the ion toxicity. Calcium decreased as increasing of the concentration of salt solutions, and cannot act as the role of enhancing cell division and membrane permeability.  相似文献   

14.
A greenhouse experiment was conducted to investigate the impact of water and salt stress in Quinoa plants (Chenopodium quinoa Willd.). Irrigation treatments using saline solutions of 0 (control), 50(T1), 200(T2), 400(T3), 600(T4), and 800(T5) mM sodium chloride (NaCl) were adopted. The results indicated that quinoa plants can tolerate water stress (50%FC) when irrigated with moderately saline water (T1 and T2, respectively). Salinity stress increases quinoa drought tolerance in terms of biomass production. Neither osmotic stress nor ions deficiency/toxicity seems to be determinant under T1 and 100%FC. Salinity induced a significant increase of sodium (Na+) and chloride (Cl?), while reduced magnesium (Mg2+) and calcium (Ca2+) in stems, leaves, seed’s coating, and seeds. The potassium (K+)/Na+ ratio never fell below 1 with T1; yet, fell to 0.78 and 0.89 with T2 for 100% and 50%FC, respectively. The seed coat limited the passage of possibly toxic concentrations of Na+ and Cl? to seed interior, as high Na+ and Cl? was found in the seed coat.  相似文献   

15.
Abstract

Groups of “Kallar”; grass plants were subjected to various treatments of 100 mM NaCl simultaneously labelled with 22Na+ and 36Cl?. On the basis of the specific activity, the distribution of Na and Cl? in the tissue was followed during and after treatment, i.e. after transfer of some groups to an identical but inactive solution. Sequential collections of leaf washes showed that both Na and Cl? were extruded at a somewhat constant rate. Leaf sheaths accumulated more Na+ and Cl? than the leaf blades and the amounts of Na+ and Cl? in the leaf sheaths as a percentage of their total plant content (i.e. 28% and 31%) approximated the amounts of Na and Cl? extruded by the leaves (i.e. 23%). Moreover, almost equivalent amounts of Na+ (21%) and Cl? (29%) were removed by root efflux which continued even several days after transfer of the plants to the inactive, saline solution. Part of the Na+ and Cl? was retranslocated from the tops to the roots and was attributed to phloem export.

Tolerance of Kallar grass to NaCl was thus related to preventing the tissue from accumulating high concentration by extrusion of both Na+ and Cl? by the leaves and their efflux by the roots in addition to an equivalent retention in the leaf sheaths.  相似文献   

16.
柴达木盆地弃耕地成因及其土壤盐渍地球化学特征   总被引:7,自引:0,他引:7  
柴达木盆地弃耕地土壤pH值一般都在 8左右 ,属于碱性土壤。土壤含盐量较高 ,其全盐量随着土层深度的增大而减少。 0~ 10cm土层中的含盐量最大 ,一般在 1~ 45gkg- 1之间。弃耕地土壤阳离子主要以K 、Na 、Mg2 、Ca2 为主 ,各阴离子在三层土体中的含量为Cl- >SO2 -4>HCO-3 >CO2 -3 。经相关分析表明 ,弃耕地土壤全盐量与Cl- 呈极显著的正相关 (p <0 0 1) ,其次为Mg2 和Ca2 (p <0 0 5) ,而与HCO-3 呈负相关 ;Cl- 与Mg2 和Ca2 呈极显著的正相关 (p <0 0 1) ,与CO2 -3 和SO2 -4呈弱的正相关 ,而与HCO-3 呈负相关 ;从而进一步说明 ,柴达木盆地弃耕地土壤为氯化物盐化土。柴达木盆地弃耕地土壤中有机质含量较少 ,0~ 3 0cm土层中有机质平均含量为 11 46gkg- 1;全氮、全磷的含量极低 ,全钾的含量较为丰富。示范试验结果分析认为 ,柴达木盆地荒漠绿洲土地退化及土壤盐碱化的发生与当地自然条件和人为不合理利用等因素有紧密的联系  相似文献   

17.
There is a paucity of information on the critical content, threshold levels, uptake, transport, and accumulation of sodium (Na+) and chloride (Cl?) ions in young sunflower plants. Effect of salinity was analyzed in root, stem, leaves, and buds by raising plants in fine sand irrigated with Hoagland's solution and supplemented with 10–160 mM sodium chloride (NaCl) for 30 days. Maximum sensitivity index, reduction in growth, and water content were observed in buds. Maximum Na+ and Cl? contents were obtained in old leaves and stems under low salinity but in roots at high salinity. Uptake, transport, and accumulation rate of Cl? were more than those of Na+, and for both ions they increased with increasing NaCl concentration but decreased with increasing exposure time. Growth reduction at low salinity seems to be because of Cl? toxicity, but Na+ toxicity and water deficiency could also be the causes at high salinity.  相似文献   

18.
Abstract

The effects of exogenous NaCl and silicon on ion distribution were investigated in two alfalfa (Medicago sativa. L.) cultivars: the high salt tolerant Zhongmu No. 1 and the low salt tolerant Defor. The cultivars were grown in a hydroponic system with a control (that had neither NaCl nor Si added), a Si treatment (1 mmol L?1 Si), a NaCl treatment (120 mmol L?1 NaCl), and a Si and NaCl treatment (120 mmol L?1 NaCl + 1 mmol L?1 Si). After 15 days of the NaCl and Si treatments, four plants of the cultivars were removed and divided into root, shoot and leaf parts for Na+, K+, Ca2+, Mg2+, Fe3+, Mn2+, Cu2+ and Zn2+ content measurements. Compared with the NaCl treatment, the added Si significantly decreased Na+ content in the roots, but notably increased K+ contents in the shoots and leaves of the high salt tolerant Zhongmu No.1 cultivar. Applying Si to both cultivars under NaCl stress did not significantly affect the Fe3+, Mg2+ and Zn2+ contents in the roots, shoots and leaves of Defor and the roots and shoots of Zhongmu No.1, but increased the Ca2+ content in the roots of Zhongmu No.1 and the Mn2+ contents in the shoots and leaves of both cultivars, while it decreased the Ca2+ and Cu2+ contents of the shoots and leaves of both cultivars under salt stress. Salt stress decreased the K+, Ca2+, Mg2+ and Cu2+ contents in plants, but significantly increased Zn2+ content in the roots, shoots and leaves and Mn2+ content in the shoots of both cultivars when Si was not applied. Thus, salt affects not only the macronutrient distribution but also the micronutrient distribution in alfalfa plants, while silicon could alter the distributions of Na+ and some trophic ions in the roots, shoots and leaves of plants to improve the salt tolerance.  相似文献   

19.
The effects of different forms and concentrations of N in the rooting medium on the CO2/H2O gas exchange of leaves of the pedunculate oak (Quercus robur L.) were investigated. Two-year-old seedlings were grown in nutrient solutions containing low (1.8 mM) or high (4.8 mM) concentrations of NH4+, 3.6 mM NO3?, or both NH4+ and NO3? (1.8 mM + 1.8 mM). In various sets of plants subjected to these N treatments, the following parameters were determined: biomasses of leaves and fine roots, leaf area-related net photosynthesis at light saturation (A) and leaf conductance (g), foliar concentrations of chlorophylls, N, Ca2+, Mg2+ and K+ and the ash alkalinity of the leaves (as a measure of the carboxylate content). In all treatments, the leaves were equally well supplied with nutrients. Oaks grown in high NH4+ concentrations produced significantly smaller leaf and root biomasses. Compared to oaks cultivated with both N forms or with low NH4+ concentration, oaks grown with high NH4+ supply showed lower values of A and g, but no significant differences in ash alkalinity and leaf area-related chlorophyll concentrations. Oaks fed with NO3? as the only N form had an intermediate biomass production, but low values of A and g. The time courses of A in the different treatments closely followed the patterns of g. In all N treatments, the same linear relationship was found between A and g, indicating that, within a rather wide range, the variation in the form and amount of supplied N does not affect the instantaneous water use efficiency of young pedunculate oaks.  相似文献   

20.
In this study, we evaluated how increased cation supply can alleviate the toxic effects of NaCl on plants and how it affects essential oils (EOs) and phenolic diterpene composition in leaves of rosemary (Rosmarinus officinalis L.) plants grown in pots. Two concentrations of the chloride salts KCl, CaCl2, MgCl2, and FeCl3 were used together with 100 mM NaCl to study the effects of these nutrients on plant mineral nutrition and leaf monoterpene, phenolic diterpene, and EO composition. The addition of 100 mM NaCl, which decreased K+, Ca2+, and Mg2+ concentrations with increasing Na+ in leaves, significantly altered secondary metabolite accumulation. Addition of MgCl2 and FeCl3 altered leaf EO composition in 100 mM NaCl–treated rosemary plants while KCl and CaCl2 did not. Furthermore, addition of CaCl2 promoted the accumulation of the major phenolic diterpene, carnosic acid, in the leaves. The carnosol concentration was reduced by the addition of KCl to salt‐stressed plants. It is concluded that different salt applications in combination with NaCl treatment may have a pronounced effect on phenolic diterpene and EO composition in rosemary leaves thus indicating that ionic interactions may be carefully considered in the cultivation of these species to achieve the desired concentrations of these secondary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号