首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
Abstract

One proposed mechanism of aluminum (Al)‐tolerance involves the ability of plants to maintain uptake of essential mineral elements in the presence of Al. To examine this hypothesis, taro [Colocasia esculenta (L.) Schott] cultivars (cv.) Lehua maoli and Bun long were grown in hydroponic solution at six initial Al levels (0, 110, 220, 440, 890, and 1330 μM Al), and plant mineral concentrations were determined after 27 days. Increasing Al levels significantly increased Al concentrations in taro leaf blades, petioles, and roots. This increase in Al concentrations in the leaf blades as solution Al levels increased was greater for Al‐sensitive cv. Bun long compared to cv. Lehua maoli, resulting in significant interaction between Al and cultivar effects. However, no significant cultivar differences were found for Al concentrations in the petioles or roots. Increasing Al levels in solution significantly depressed concentrations of calcium (Ca), magnesium (Mg), manganese (Mn), and iron (Fe) in taro leaf blades, and significantly depressed concentrations of Ca, Mg, copper (Cu), and zinc (Zn) in taro roots. Aluminum‐induced Ca deficiency appeared to be one possible mechanism of Al phototoxicity in taro, becvasue Ca concentrations in the leaf blades and roots at the higher Al levels were within the critical deficiency range reported for taro. Significant cultivar differences were found, in which Al‐tolerant cv. Lehua maoli had significantly greater Ca and Cu concentrations in the roots, and significantly greater potassium (K) concentrations in the leaf blades across all Al levels. Our results show that Al‐tolerance in taro cultivars is associated with the ability to maintain uptake of essential mineral nutrients, particularly Ca and K, in the presence of Al.  相似文献   

2.
Marigold (Tagetes erecta L. cv. ‘Discovery Yellow’, “Perfection Yellow’, ‘Inca Yellow’, and ‘Merrymum Yellow') were grown in aluminum (Al) solution culture concentrations of 0, 1, or 4 mg/L. Aluminum increased root length and weight, but had no effect on stem and leaf weight. Uptake and stem and leaf tissue nutrient concentration of phosphorus (P), calcium (Ca), and magnesium (Mg) were reduced by the Al treatments. The Al treatments increased stem and leaf concentrations of potassium (K) and decreased the concentrations of manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn). No typical Al‐toxicity symptoms were observed in the roots. Root stunting caused by Fe toxicity was alleviated by the Al treatments.  相似文献   

3.
Plants of winter wheat (Triticum aestivum L. cv. Starke II) were grown for seven days in split‐root chambers containing nutrient solutions with various copper chloride (CuCl2) concentrations [0.5/0.5 (controls), 0.5/2, 0.5/5, 0.5/7 and 0.5/10 μM]. At harvest (day 11), shoot dry weights were about the same in the different copper (Cu) treatments. Dry weights of the root parts exposed to 2–10 μM Cu (Cu‐fed) decreased while they increased for the control roots. A Cu exposure of 2–10 μM severely retarded lateral root initiation and average lateral root length. Average seminal root length was also reduced. The control roots compensated for the retarded growth of the Cu‐fed roots by increasing chiefly in lateral root number, but their average length remained similiar. Phosphorus (P) concentration decreased gradually in all determined plant parts (shoots, Cu‐control and Cu‐fed roots) with increased external Cu concentration. The potassium (K) concentration in the shoots was similarly affected, but it did not decrease in the Cu‐fed roots until the external Cu concentration reached 10 μM. The Cu concentration in the Cu‐fed roots increased proportionally to the external Cu concentration, but Cu was not exported to the other plant parts. The reasons for changes in root geometry and nutrient balance are discussed.  相似文献   

4.
Aluminum (Al) toxicity was studied in two tomato cultivars (Lycopersicon esculentum Mill. ‘Mountain Pride’ and Floramerica') grown in diluted nutrient solution (pH 4.0) at 0, 10, 25, and 50 μM Al levels. In the presence of 25 and 50 μM Al, significant reduction was found in leaf area, dry weight, stem length, and longest root length of both cultivars. Growth of ‘Floramerica’ was less sensitive to Al toxicity than growth of ‘Mountain Pride’. Elemental composition of the nutrient solutions were compared immediately after the first Al addition and four days later. The uptake of micronutrients copper (Cu), manganese (Mn), molybdenum (Mo), zinc (Zn), boron (B), and iron (Fe) from the nutrient solution was reduced in both cultivars with increasing Al levels. Nutrient solution Al gradually decreased in time for every treatment; less in cultures of ‘Floramerica’ than in ‘Mountain Pride’. Aluminum treatments decreased the calcium (Ca), potassium (K), magnesium (Mg), Mn, Fe, and Zn content in the roots, stems, and leaves. Aluminum treatment promoted the accumulation of P, Mo, and Cu in the roots, and inhibited the transport of these nutrients into stems and leaves. At 25 and 50 μM levels of Al, lower Al content was found in the roots of cv. “Floramerica’ than in the roots of cv. ‘Mountain Pride’.  相似文献   

5.
Abstract

Coffea arabica L. seedlings (cv. S.L.34) were sprayed with varying concentrations of cuprous oxide at 0.0, 0.25, 0.50 and 0.75% for 30 days. Significant increases in the total mean fresh and dry weight; rate of transpiration; stomatal apertures; the total leaf area and plant vigor were observed on the seedlings with increasing concentrations of Cu treatments. The content of N, K, Ca and Cu were significantly increased in the seedlings at Cu spray treatments of 0.50 and 0.75% It is possible that the growth promoting effects produced in coffee by spraying high concentrations of copper is partly nutritional. This is brought about by the catalysing effects of the absorbed Cu ions, by accelerating enzymatic activities within the plant and hence increasing nutrient uptake.  相似文献   

6.
Several interelemental relationships have been examined in field‐cultivated wheat (Triticum aestivum L. cv Vergina) growing on naturally enriched copper (Cu) soils. Mean soil Cu concentration per site ranged from 103–394 μg.g‐1 dry weight (DW). Interrelationships between Cu, iron (Fe), calcium (Ca), potassium (K), zinc (Zn), lead (Pb), and magnesium (Mg) concentrations in the soil and plant tissue (roots, stems, and leaves) were examined using Principle Components Analysis. Soil samples were clustered according to collection site and were primarily differentiated according to their Cu concentrations. Soil Cu concentrations were positively correlated with Zn, Ca, Fe, and K in the soil, with Cu, K, and Ca in the roots, and Cu and Fe in the leaves and negatively correlated with Fe in the roots. The increase in Cu in the roots and leaves was positively correlated with increases in K and Ca in the roots and Fe and Ca in the leaves, but negatively with Fe in the roots. Increases in leaf Ca concentrations were correlated with increases in Mg and decreases in Zn concentrations in the leaf. Plants growing in soil with high Cu concentration exhibited toxicity symptoms with reduced height, decreased total leaf area and lower chlorophyll concentrations. Photosynthesis expressed per unit leaf area was not affected by increasing Cu concentrations in the soil or plant tissue.  相似文献   

7.
The aim of this study was to identify the cutting time for winter cover crops used as green manure in no-tillage systems that results in the highest dry weight yield (DWY) and nutrient accumulation. We tested Avena strigosa, Secale cereale, Vicia sativa, Raphanus sativus, and Lupinus albus, in five management times, determining the fresh weight yield (FWY), DWY, and the chemical composition of the shoot tissue. The highest FWY was obtained using R. sativus and L. albus. At 145 days after sowing; these species also had the highest DWYs, over 15 t ha?1. L. albus and S. cereale had the highest carbon to nitrogen (C:N) ratio (60:1). The nutrient content of most crops decreased over time. However, the accumulation of nutrients increased over time, especially for R. sativus. L. albus had the highest level and manganese (Mn) accumulation, while the zinc (Zn) and cooper (Cu) accumulation was highest in A. strigosa, and that of boron (B) was highest in S. cereale. Thus, R. sativus provided the best soil cover among the species tested, due to its high biomass yield and greater nutrient cycling.  相似文献   

8.
The objective of this study was to evaluate if amino acids in roots and/or in root exudates play a role in cadmium (Cd) stress. Lettuce (Lactuca sativa L. cv. Reine de Mai) and white lupin (Lupinus albus L. cv. lublanc) were grown for 19 to 21 days with axenic roots in a hydroponic system. After treatment with various concentrations of Cd (0, 0.01, 0.1, 1, 10, and 100 μM Cd) per nine days, roots and root exudates were collected. The stress did not result in significant dry weight (DW) differences between Cd‐treated and control plants, but Cd induced decreases in relative water content (RWC) and water potential (Pm). Amino acid levels and carbon (14C) incorporation into amino acids increased at low Cd concentrations in roots. However, 100 μM Cd induced a decrease of amino acid levels and an equally significant reduction of 14C incorporation, suggesting a decreased plant metabolism. Moreover, a higher Cd concentration induced increased levels of specific amino acids, for instance asparagine and lysine in lettuce and asparagine and hydroxylysine in lupin roots. Amino acids in root exudates corresponded less than 1% of the amounts found in root cells suggesting that amino acids could not be the major Cd chelators. Amino acid accumulation in root exudates differed than that found in roots except for asparagine. In conclusion, Cd induces in the root and root exudates increased levels of specific amino acids, such as Asn, Lys and HLys similarly to other environmental stresses. Although the amino acids could not participate in Cd chelation, lysine and its derivatives, such as hydroxylysine, could be used as stress markers for Cd in higher plants.  相似文献   

9.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

10.
Abstract

A hydroponic experiment was conducted in a phytotron at pH 5.5 to study the effects of nickel (Ni) on the growth and composition of metal micronutrients, such as copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), of barley (Hordeum vulgare L. cv. Minorimugi). Four Ni treatments were conducted (0, 1.0, 10, and 100 μM) for 14 d. Plants grown in 100 μM Ni showed typical visual symptoms of Ni toxicity such as chlorosis, necrosis of leaves, and browning of the root system, while other plants were free from any symptoms. Dry weights were the highest in plants grown in 1.0 μM Ni, with a corresponding increase in the chlorophyll index of the plants, suggesting that 1.0~10 μM Ni needs to be added to the nutrient solution for optimum growth of barley plants. The increase of Ni in the nutrient solutions increased the concentrations of Cu and Fe in roots, while a decrease was observed in shoots. The concentrations of Mn and Zn in shoots and roots of plants decreased with increasing Ni supply in the nutrient solution. Shoot concentrations of Cu, Fe, Mn, and Zn in plants grown at 100 μ M Ni were below the critical levels for deficiency. Plants grown at 1.0 μ M Ni accumulated higher amounts of Cu, Fe, Mn and Zn, indicating that nutrient accumulation in plants was more influenced by dry weights than by nutrient concentrations. The translocation of Cu and Fe from roots to shoots was repressed, while that of Mn and Zn was not repressed with increasing Ni concentration in the nutrient solution.  相似文献   

11.
 The effects of a limed soil upon root and shoot growth of white lupin (Lupinus albus L.) were investigated using soil tubes and pots. After 75 days in the soil tubes, the combined taproot and lateral root dry weight in limed soil (2.5% CaO w/w) was significantly less than in neutral pH soil (by 57%). However, the dry weight and numbers of cluster roots remained comparable between the treatments, demonstrating for the first time that the cluster roots respond differently to the rest of the root system. Cluster roots accounted for 17% of the total root biomass in neutral soil, increasing significantly to over 30% in limed soil. When grown for 43 days in pots containing soil with different additions of lime (0.5–2.5% CaO w/w), soil citrate concentrations were higher than in the neutral pH soil treatment in all except the 2.5% lime treatment, in which they were lower. In both experiments, shoot dry weights were lower in the presence of the limed soil compared with those in the neutral pH soil. Although a reduction in shoot dry weight was not apparent at 21 days in the limed-soil tubes, the initiation of fewer mainstem leaf primordia indicated a slower shoot development than occurred in the neutral soil. Plants grown in the limed-soil tubes showed leaf yellowing and some chlorosis within 9 days. At the final harvest, the shoot phosphorus and manganese concentrations were significantly lower in plants grown in limed soil compared with those in the neutral pH soil, whereas the concentration of calcium was higher. Received: 11 October 1999  相似文献   

12.
Associations between vesicular‐arbuscular mycorrhizal (VAM) fungi and manganese (Mn) nutrition/toxicity are not clear. This study was conducted to determine the effects of excess levels of Mn on mineral nutrient uptake in shoots and roots of mycorrhizal (+VAM) and non‐mycorrhizal (‐VAM) sorghum [Sorghum bicolor (L) Moench, cv. NB9040]. Plants colonized with and without two VAM isolates [Glomus intraradices UT143–2 (UT1 43) and Gl. etunicatum UT316A‐2 (UT316)] were grown in sand irrigated with nutrient solution at pH 4.8 containing 0, 270, 540, and 1080 μM of added Mn (as manganese chloride) above the basal solution (18 μM). Shoot and root dry matter followed the sequence of UT316 > UT143 > ‐VAM, and shoots had greater differences than roots. Shoot and root concentrations and contents of Mn, phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and copper (Cu were determined. The +VAM plants generally had higher mineral nutrient concentrations and contents than ‐VAM plants, although ‐VAM plants had higher concentrations and contents of some minerals than +VAM plants at some Mn levels. Plants colonized with UT143 had higher concentrations of shoot P, Ca, Zn, and Cu and higher root Mg, Zn, and Cu than UT316 colonized plants, while UT316 colonized plants had higher shoot and root K concentrations than UT143 colonized plants. These results showed that VAM isolates differ in enhancement of mineral nutrient uptake by sorghum.  相似文献   

13.
Abstract

Copper absorption by roots or leaf and transport to other parts were followed in 9‐days old bean (Phaseolus vulgaris L. cv. Vaghya) seedlings. Translocation was also measured in 4 cm segments of the stem. It was found that larger amount of Cu was retained in the roots and Cu was more mobile through phloem than through xylem, as indicated by the data on translocation from root and leaf. Bean plants were found to translocate more Cu to the stem than to other parts. Kinetic analysis of absorption by excised roots and stem segments revealed that the roots have a maximum uptake capacity and high affinity for Cu.  相似文献   

14.
《Journal of plant nutrition》2013,36(5):1065-1083
Abstract

Ten cvs. of four Brassicaceae species were tested to evaluate their copper (Cu) uptake and translocation. Germination and root length tests indicated that Brassica juncea cv. Aurea and Raphanus sativus cvs. Rimbo and Saxa were the species with the highest germinability and longest roots at Cu concentrations ranging from 25 up to 200 µM. Raphanus sativus cv. Rimbo grown in hydroponic culture at increasing Cu concentrations (from 0.12 up to 40 µM) for 10 days produced a relatively high biomass (17.2 mg plant?1) at the highest concentration and had a more efficient Cu translocation (17.8%) in comparison with cvs. Aurea and Saxa. The potential of cv. Rimbo for Cu uptake was then followed for 28 days at 5, 10, and 15 µM Cu. In comparison with the control, after 28 days of growth the 15 µM Cu‐treated plants showed a reduction in the tolerance index (?40%) and in the above‐ground dry biomass (?19%). On the contrary, an increase in the below‐ground dry weight was observed (+35%). Copper accumulated during the growth period both in the below‐ and above‐ground parts (about 14 and 4 µg plant?1 at 10 and 15 µM Cu, respectively), but the translocation decreased from 50 to 30% in the last week at all the concentrations used. In addition, cv. Rimbo grown in a multiple element [cadmium (Cd), chromium (Cr), Cu, lead (Pb), and zinc (Zn)] naturally‐contaminated site accumulated all elements in the above‐ground part in a range from 5 to 62 µg plant?1.  相似文献   

15.
Poor growth of lupins on calcareous soils may be attributed to a number of soil physical and chemical factors. Nutrient imbalances, such as deficiency of phosphorus (P) and micronutrients or calcium (Ca) excess have been reported to be responsible for the calcifuge behavior of the plants. In the present study we investigated the importance of nutrient imbalances for the growth reduction of lupins on a lime‐containing soil. Three lupin species (Lupinus luteus, Lupinus angustifolius, and Lupinus albus) were compared with lime‐tolerant Pisum sativum. Plants were cultivated in a sandy soil containing 0.2% or 10% magnesium (Mg) limestone and were fertilized with a complete nutrient solution except for iron (Fe). In each lime treatment, three of six pots per species were supplied with iron as FeEDDHA. Strong liming greatly decreased shoot growth, rate of leaf appearance, and shoot dry matter accumulation in all Lupinus species, but only marginally in P. sativum. All Lupinus species displayed chlorosis on the strongly limed soil, whereas on the slightly limed soil, only L. luteus did so. Shoot concentrations of P, potassium (K), Ca, Mg, manganese (Mn), zinc (Zn), and copper (Cu) were generally in the adequate range. Decreased shoot growth was not associated with increased Ca concentrations. FeEDDHA fertilization alleviated chlorosis in most cases, but was not able to restore shoot growth. Therefore it is concluded, that, at least in the juvenile stage, nutrient imbalances do not play a major role in growth limitation of lupins on calcareous soils.  相似文献   

16.
Phenylalanine ammonia-lyase activity (PAL, EC 4.3.1.5), total phenolics, soluble proteins, malondialdehyde and metals accumulation in four-week old chamomile (Matricaria chamomilla) plants cultivated in nutrient solution and exposed to low (3 μM) and high (60 and 120 μM) levels of cadmium (Cd) or copper (Cu) for 7 days were studied. High Cd concentrations had a stimulatory effect on PAL activity and soluble phenolics accumulation while high Cu doses decreased soluble proteins in the leaf rosettes. In the roots, extreme stimulatory effects of 60 and 120 μM Cu were observed on PAL activity, phenolics and malondialdehyde accumulation, while protein content was reduced by these Cu doses. Cd accumulation was higher in the leaf rosettes compared to copper, but the opposite was recorded in the roots. Taken together, the stimulatory effect of Cu on phenolic metabolism was recorded, even though high malondialdehyde accumulation may be an indication that phenolics was not sufficient to counteract reactive oxygen species formation thus leading to damage of membrane integrity. In comparison to Cd, Cu had more noticeable effect on the parameters studied to support its strong redox-active properties. These facts in correlation to antioxidative properties of phenolic metabolites are also discussed.  相似文献   

17.
A solution culture was conducted to investigate the effects of copper (Cu) and zinc (Zn) toxicity on growth of mung bean (Phaseolus aures Roxb. cv VC‐3762) and accumulation of polyamine. Eight‐day‐old seedlings were grown in diluted nutrient solution with different concentrations of Cu and Zn for 6 days. Results showed that elongation of epicotyl and fresh weight of plants were decreased by 10 μM Cu and 100 μM Zn significantly compared to control (0.03 μMCu and 0.1 μMZn). Accumulation of polyamine, especially putrescine (Put) was found in the epicotyl of mung bean seedlings. Addition of 5 mM calcium (Ca) into nutrient solution improved the growth of 10 μM Cu‐treated seedling, and decreased the concentration of Put and increased concentrations of spermine and spermidine in epicotyl of plants. Moreover, supplying Put did not increase tolerance of plant to Cu or Zn. It was suggested that Put accumulation resulting from toxicity of Cu and Zn might merely be a symptom of stress injury.  相似文献   

18.
This study was done to investigate the effects of foliar sprays of zinc (Zn) and copper (Cu) on fruit set, yield, yield components, vegetative growth, and leaf nutrient concentrations of pistachio trees (cv. Owhadi), over two consecutive seasons 2010 (ON) and 2011 (OFF). Tests were done at a commercial orchard in the region of Rafsanjan in Iran. Tests were designed as a 3 × 2 factorial experiment in a randomized complete block with four replications. Treatments tested in the study were three concentration levels of zinc sulfate (0, 1000, and 2000 mg L?1) and two concentration levels of copper sulfate (0 and 200 mg L?1). Results showed that Zn foliar application increased first fruit set, final fruit set, fresh yield, and dry yield. Nut weight was increased by Zn spray by 3 and 4% at the second and third levels of Zn, respectively, compared with the control. However, Cu application increased splitting and vegetative growth. Vegetative growth in the OFF year was greater than that of the ON year. Phosphorus, sodium, and Cu concentrations in leaf were greater in the ON year than in the OFF year, but concentrations of Zn and potassium in leaf were lower in the ON year than they were in the OFF year. These results show that Zn and Cu applications can affect growth and yield of pistachio, especially when the plant is grown in calcareous soils. However, the alternate bearing pattern had a significant effect on vegetative growth and some leaf nutrient concentrations.  相似文献   

19.
Metal toxicity and soil acidity affect plant growth. A hydroponic experiment was conducted to simulate effects of pH and copper concentration [Cu] on early growth and biomass production of high-yielding rice seedlings (Oryza sativa L. cv. ‘NIAB 6’). The rice seedlings were allowed to grow in Yoshida nutrient solution with 1 (control), 8, 16, and 32 μM Cu at buffered pH levels of 4.5, 5.0, and 5.5, respectively. Shoot and root growth, leaf chlorophyll content, and root lipid peroxidation and K+ leakage of 15-day-old rice seedlings were determined. Results show that [Cu] had significant adverse effects on rice seedlings. Shoot height and root length were reduced by 18%–60% and 7%–69%, respectively, compared with the control, and shoot and root weight decreased by 26%–56%, and 25%, respectively, in response to progressive increases in [Cu]. Similarly, leaf chlorophyll content decreased by 150%–245% compared with the control treatment. Rice seedling roots suffered from significant increases in lipid peroxidation followed by K+ leakage (> 8–23 times) in response to increasing [Cu]. Averaged across [Cu], seedling growth and biomass were greater at pH 5.5 than at other pH treatments. In some instances, increasing pH minimized the adverse effects of Cu at low concentrations on rice seedlings.  相似文献   

20.
Dry bean (Phaseolus vulgaris L., cv. ‘BRS Requinte’) is an important legume crop and nutrient availability is one of the most yields limiting factors for bean production in tropical upland soils. A greenhouse experiment was conducted in Brazilian Oxisol to study growth, nutrient uptake, and use efficiency of macro- and micronutrients during growth cycle of bean plant. Plants were harvested at 15, 30, 45, 60, 73, and 99 days after sowing for determination of growth parameters and uptake of nutrients. Root dry weight, shoot dry weight and leaf trifoliate increased significantly (P< 0.01) in a quadratic fashion with the advancement of plant age. However, root-shoot ratio decreased significantly with increasing plant age. Concentrations of nitrogen (N), calcium (Ca), magnesium (Mg), and zinc (Zn) decreased with the advancement of plant age. However, concentrations of phosphorus (P), potassium (K), copper (Cu), and manganese (Mn) increased significantly with the advancement of plant age. Accumulation of macro- and micronutrients significantly increased with the increasing plant age. Accumulation of N, P, K and Cu was higher in the grain compared with root and shoot, indicating relatively higher importance of these nutrients in improving grain yield of dry bean. Nitrogen, P and Cu use efficiency was higher for shoot weight compared to grain weight. For grain production, nutrient use efficiency was in the order of Mg > Ca > P > K > N for macronutrients and Cu > Zn = Mn for micronutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号