首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of salinity on growth response, nitrogen (N) fixation and tissue mineral content was investigated for four legumes: faba bean (Vicia faba L), pea (Pisum sativum L), soybean (Glycine max L), and common bean (Phaseolus vulgaris L). Plants were grown in a vermiculite culture system supplied with a N‐free nutrient solution with the addition of 0, 50, and 100 mM NaCl. Plants were harvested at the beginning of the flowering period and the dry weights of shoots and roots and acetylene reduction activity (ARA) were evaluated at the same time plant tissues were analysed for N, potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na) contents.

The depressive effect of saline stress on ARA of nodules was directely related to the salt induced decline in dry weight and N content in shoots. Growth inhibition by NaCl treatments was greater for the pea than for other legumes, whereas the soybean was the most salt‐tolerant Saline stress also affected the N content in shoots and roots. In general the N content accumulated in the shoot and Na in the roots of the four legumes tested, while K accumulated both organs. The acquisition of other macronutrients differed according to the legume species. The legumes most sensitive were P. sativum and V. faba which accumulated Ca in shoot and Mg both in the shoot and the roots. On the contrary, in G. max and P. vulgaris, the two most salt tolerant legumes, accumulated Mg in the roots and Ca in both vegetative organs. Our results suggest a relationship between the salt‐tolerant range in legumes and the macronutrient accumulation in vegetative organs.  相似文献   

2.
To invertigate the relationship between salt tolerance and plant mineral status in celery (Apium graveolens L.) growth and the concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), and chloride (Cl) in different tissues were determined in plants grown in hydroculture with nutrient solutions containing 5 (control), 50,100, and 300 mM sodium chloride (NaCl) for four weeks. At salinity levels of 50 and 100 mM NaCl, there was a moderate, albeit significantly, reduction of growth, while a drastic decrease in both fresh and dry weight was obtained at 300 mM NaCl. Regardless of the salinity level, growth resumed promptly and completely once the stress was ceased. Sodium chloride stress reduced the accumulation of nitrate (NO3)‐N in all plant tissues, but there were no relevant effects on the concentration of reduced N and P. The concentration of K in roots and leaf petioles was unaffected by NaCl treatment, but it gradually declined with increasing salinity in leaf blades. This reduction was less pronounced in the young leaves as compared to the mature ones. Increasing the NaCl concentration decreased the concentration of Ca in all tissues, but it prevented the occurrence of black‐heart, a typical Ca‐related physiological disorder which affected severely the controls. Salt‐stressed plants absorbed large amounts of Na and Cl which accumulated in the mature leaves, particularly in the oldest leaves. These findings suggest that the relatively high salt tolerance of celery relies on the ability to maintain an adequate nutritional status and to protect the shoot meristem from salt toxicity.  相似文献   

3.
The effect of three levels of salinity (2.0,4.0, and 8.0 mS/cm) on growth and ion composition of tomato and cucumber seedlings was examined with and without addition of 7.4 meq/L calcium chloriode (CaCl2). The corresponding sodium/calcium (Na/Ca) ratio of the irrigation solution were 4.0 and 1.8 at salinity level 4.0 mS/cm, and 12 and 4.8 at salinity level 8.0 mS/cm. Seedlings growth of tomato and cucumber was generally reduced with increasing salinity level. Cucumber was more salt‐sensitive than tomato. Shoot and root dry weight of cucumber was increased by decreasing Na/Ca ratio at 4.0 mS/cm salinity. Sodium and chloride (Cl) accumulation was increased and Ca was decreased in salinized plants. Reducing Na/Ca ratio under saline condition reduce the accumulation of Na in tomato roots. The effect of salinity on the uptake of nitrogen (N), phosphorus (P), potassium (K), Na, Ca, chloride (Cl), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) in the root and shoot was also determined.  相似文献   

4.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

5.
In a greenhouse experiment, the effect of salinity and Fe chelate on growth and mineral uptake of sunflower (Helianthus annuus L. c.v. Record) was studied.

Sunflower plants were grown in nutrient solution with four levels of salinity (0, 1.5, 3.0 and 4.5 atm), induced by NaCl and four rates of Fe chelate (0, 0.5, 1.0 and 1.5, ppm Fe) as FeEDDHA. The experiment was a completely randomized design with treatment combinations arranged in a factorial manner with three replications.

Dry matter yield, shoot‐root ratio, leaf area, plant height and transpiration decreased as salinity increased, the effect of salinity being depressed by iron applications. Salinity reduced P, K, Ca and Mg uptake by roots as well as that of N, P, K, Ca, Mg by shoots, while Fe applications increased uptake of these elements in roots and shoots. Both salinity and iron applications increased Cl, Na and Fe uptake by roots and shoots, as expected. In most instances salinity reduced uptake of Fe, Mn and Zn by the plants while iron applications improved uptake of these elements.

The sunflower plant used in this experiment was found to be, at least partly, tolerant to salinity and decreased water availability as well as toxicity of ions. Nutritional disorders were the cause of decreased plant growth by increasing salinity of the nutrient solution. The decreased plant growth and mineral uptake, induced by salinity, were partially offset by increased iron levels in the nutrient solution.  相似文献   


6.
The effects of different levels of arsenic (As) and salinity on bean plant (Phaseolus vulgaris L., cv. Buenos Aires) nutrition were investigated. We studied the processes of absorption and accumulation of macronutrient elements: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg). The experiment was performed in soilless culture at two levels of As: 2 and 5 mg AsL‐1 (added as sodium arsenite, NaAsO2), and three saline levels [only sodium chloride (NaCl) was added]: 1, 2, and 4 dS‐m‐1. Sodium arsenite and NaCl significantly affected macronutrients allocation within bean plant at concentration levels used in this study. Arsenite depressed K, Na, and Mg concentrations in root, whereas root N, and Ca levels were increased. Nitrogen, P, K, and Na concentrations were significantly higher in As‐stressed plants compared with controls. The addition of NaCl increased Ca concentration in roots and decreased that of K. Salinity tended to increase leaf concentrations of K, Na, Ca, and Mg; whereas leaf N and P levels decreased with increasing salinity.  相似文献   

7.
A study was made of the effects of soil salinity on dry matter production, grain yield, and the uptake, distribution and redistribution of mineral nutrients in irrigated grain sorghum. Soil salinity (EC, 3.6 mS/cm) reduced seedling establishment by 77%, and dry matter and grain yields per plant by 32%; grain yield/ha was reduced by 84%. Salinity reduced grain number per head, but not individual grain size. The accumulation of dry matter and most nutrients was reduced by salinity, but the distribution and redistribution of nutrients within the plant were largely unaffected. Redistributed dry matter provided 52 and 31% of the grain dry matter for control and salt‐affected plants, respectively. Salt‐affected plants had a greater proportion of their sulfur (S), magnesium (Mg), sodium (Na), and chloride (Cl) in stems and leaves than control plants at maturity. Grain had 50–90% of the nitrogen <N), phosphorus (P), S, and Mg, 20–50% of the potassium (K), manganese (Mn), zinc (Zn), and copper (Cu), but < 20% of the calcium (Ca), Na, Cl, and iron (Fe) contents of the whole plant. Over 65% of the N and P, and from 20 to 30% of the K, S, Mg, Cu, and Zn was redistributed from the stem and leaves to grain. There was no redistribution of Ca, Na, Cl, Fe, and Mn. Leaves were more important than the stem as a source of redistributed N, but the leaves and stem were equally important as sources of redistributed P, K, S, Mg, and Cu. Redistribution from the stem and leaves provided 80% of the K and 20–50% of the N, P, S, Mg, Zn, and Cu accumulated by grain. Concentrations of Na, and especially Cl, were high in vegetative organs of salt‐affected plants, but not in grain. It was concluded that although moderate salinity was detrimental to the establishment and yield of grain sorghum, it had little effect on patterns of distribution and extents of redistribution of mineral nutrients.  相似文献   

8.
Salinity tolerance in some plant species has been related to characteristics of potassium (K) and sodium (Na) uptake and transport. Tomato (Lycopersicon esculentum Mill., cv. Rossel) plants were grown in nutrient solution to determine effects of two K levels [0.2 (low) and 2 mmol (high)] combined with 0, 100, and 200 mmol NaCl on growth, and on Na and K uptake and translocation. Net uptake rates of Na and K were determined by disappearance in the growth medium and by plant accumulation. At the low level of K in solution, salinity decreased shoot and root dry weight and leaf area. Addition of 2 mmol K ameliorated of the added NaCl effects and improved growth parameters. Salinity reduced net K uptake rates and to a lesser extent K translocation from root to shoot, which resulted in higher K shoot concentration and a lower K root concentration. The inhibitory effect of salinity on K translocation was greater with low K level in nutrient solution. Net uptake of K was dependent on K level in the growth medium. Addition of K resulted in decreases of shoot Na uptake. The translocation of Na from roots to shoots was reduced by K level in nutrient solution. These results indicate that K supply and K accumulation and regulation in plant tissue contribute to salt tolerance and growth enhancement.  相似文献   

9.
ABSTRACT

Greenhouse experiments were conducted to assess the effects of salinization of soil on emergence, seedling growth, and mineral accumulation of Prosopis cineraria (Linn.) Druce (Mimosaceae). A mixture of chlorides and sulfates of sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) was added to the soil and salinity was maintained at 5.1, 7.2, 9.3, 11.5, and 13.3 dS m?1. A negative relationship between seedling emergence and salt concentration was obtained. Seedlings did not emerge when soil salinity exceeded 11.5 dS m?1. Results suggested that this tree species is salt tolerant at seed germination and seedling stages. Elongation of stem and root was retarded by increasing salt stress. Young roots and stem were most tolerant to salt stress, followed by old roots and leaves. Leaf tissue exhibited maximum reduction in dry-mass production in response to increasing salt stress. However, production of young roots and death of old roots were found to be continuous and plants apparently use this process as an avoidance mechanism to remove excess ions and delay onset of ion accumulation in this tissue. Plants accumulated Na in roots and were able to regulate transfer of Na ions to leaves. Stem tissues were a barrier for translocation of Na from root to leaf. Moreover, K decreased in root tissues with increased salinization. Nitrogen (N) content significantly (P < 0.01) decreased in all tissues (leaf, stem, and root) in response to low water treatment and salinization of soil. Phosphorus (P) content significantly (P < 0.01) decreased while Ca increased in leaves as soil salinity increased. Changes in elements-accumulation patterns and the possible mechanisms for avoidance of Na toxicity in tissues and organism level are discussed.  相似文献   

10.
The effects of salinity due to sodium chloride (NaCl) and nitrogen (N) concentration in the nutrient solution were studied with sweet pepper plants. Four saline treatments combined with two N fertilization were used. Nitrate‐nitrogen (NO3 ‐N) presence in the nutrient solution produced an increase of sodium (Na) and potassium (K) contents in leaves as well as N. Salinity promoted a reduction of K, phosphorus (P) and Ca and increased the Na concentration in leaves. Calcium (Ca) concentrations were lower in the higher NO3 ‐N treatment although N level was reached adding calcium nitrate and salinity increased P, K, Na, Ca, and magnesium (Mg) contents in fruits. Yield was increased in the highest N treatment.  相似文献   

11.
Ion relations, water content, leaf water potential, and osmotic adjustment were determined for cultivated barley (cv Harrington) and wild barley grown under mixed sulphate (SO4) salts with varied calcium (Ca) supply using a hydroponic system. Salinity induced significant increases of leaf, stem and root sodium (Na) concentrations in both species. Salt‐stressed wild barley roots accumulated more Na than shoots, and transport of Na from roots to shoots was low compared to Harrington. Cultivated barley had lower Ca concentrations than wild barley, especially in the low Ca salt treatment. Although potassium (K/Na) and Ca/Na ratios were higher in control wild barley plants than in Harrington, they declined under salt stress, irrespective of Ca supply. Major osmotica in wild barley leaves were K, sugars, organic acids, and quaternary ammonium compounds, while in Harrington they were cations, including Na, K and Mg, and anions such as phosphate (PO4) and SO4. Wild barley maintained better water status than Harrington under low Ca salt treatment. Supplemental Ca improved water status more in Harrington than in wild barley. Lack of osmotic adjustment to salinity in wild barley apparently resulted from its ion exclusion. Low Ca salt treatment caused Ca deficiency, Na toxicity, and loss of turgor in Harrington. In the high Ca salt treatment, Harrington had improved water and ion relations, as well as positive turgor.  相似文献   

12.
The effect of NaCl‐salinity on growth responses and tissue mineral content was investigated for two olive (Olea europaea L.) genotypes of different vigor, Leccino and Frantoio. Forty‐day‐old self‐rooted plants were grown for a 60‐day period in a sand culture system supplied with a 1/2 strength Hoagland solution with the addition of 0,12.5,25,50, and 100 mM NaCl. Plants were harvested at 12‐day intervals, and the dry weights of shoot, and principal and lateral roots were evaluated. Relative growth rate (RGR) was also estimated. At the same time, plant tissues were analysed for N, P, K, Ca, Mg, Na, and Cl content.

Growth inhibition by NaCl treatments was greater for Leccino than Frantoio plants. At the end of the experiment, 50 mM NaCl significantly reduced Leccino growth, while negative effects on Frantoio were detected only when using 100 mM NaCl. Leccino always accumulated more Na and Cl in the leaves than Frantoio. In a similar manner, Na/K ratio was always higher in the Leccino leaves compared to the Frantoio leaves. An inverse relationship between NaCl tolerance and vigor of the genotype emerged.  相似文献   

13.
Melon (Cucumis melo L.) plants were grown hydroponically in a greenhouse to investigate the interaction of phosphorus (P) and calcium (Ca) under saline conditions on vegetative biomass and cation balance. Three levels of Ca (0.4, 2, and 8 mM) were combined factorially with two levels of phosphate (0.1 and 1 mM) under two regimes of NaCl salinity (10 and 80 mM). An increase of phosphate and salinity level decreased shoot and root growth. A strong antagonism between Ca and magnesium (Mg) was observed regardless of the salinity level. Calcium effect on growth depended on the salinity level. At low salinity, an increase of Ca reduced sodium (Na) concentration in all plant fractions. At high salinity, this effect was only significant in young and medium leaves. At low salinity and low Ca the reduction of growth could be due to Na toxicity and an unbalanced Ca/Mg ratio. In addition to that, at high salinity, the restoration of growth by increasing Ca concentration in the root medium could be due to an effect on water relation and by increasing potassium K/Na selectivity.  相似文献   

14.
Poor quality of irrigation water (high salinity) has reduced the yields of pistachio over recent years, especially in Kerman. The effects of four salinity levels [0, 30, 60, and 90 mM sodium chloride (NaCl)] and three calcium (Ca) levels [0, 0.5, and 1 mM Ca as calcium nitrate (Ca(NO3)2.4H2O)] on growth and chemical composition of pistachio seedlings cv. ‘Badami’ were studied in sand culture under greenhouse conditions in completely randomized design (CRD) with four replications. After 170 days, leaf area, leaf number, shoot and root dry weights were determined. Also shoot and root sodium (Na), potassium (K), Ca, and magnesium (Mg) concentrations were measured. Results showed salinity decreased all growth parameters. Ca application increased shoot and root Ca concentrations and root K concentration, while Ca application decreased shoot K concentration and shoot and root Mg concentrations. Salinity decreased shoot Ca, root K, and root Mg concentrations, while salinity increased shoot and root total sodium uptake, and shoot and root Cl concentrations.  相似文献   

15.
The objective of this study was to determine relations between Al effects and mineral concentrations in citrus seedlings. Six‐month‐old seedlings of five citrus rootstocks were grown for 60 days in supernatant nutrient solutions of Al, P, and other nutrients. The solutions contained seven levels of Al ranging from 4 to 1655 μM. Al and similar P concentrations of 28 μM P. Aluminum concentrations in roots and shoots increased with increasing Al concentration in the nutrient solution. Aluminum concentrations in roots of Al‐tolerant rootstocks were higher than those of Al‐sensitive rootstocks. When Al concentrations in nutrient solution increased from 4 to 178 μM, the K, Mg, and P concentrations in roots and the K and P levels in shoots increased. Conversely, Ca, Zn, Cu, Mn, and Fe in the roots and Ca, Mg, Cu, and Fe in the shoots decreased. The more tolerant rootstocks contained higher Fe concentrations in their roots than did the less tolerant ones when Al concentrations in solution were lower than 308 μM. Concentrations of other elements (Ca, K, P, Mg, Zn, and Mn) in roots or shoots exhibited no apparent relationship to the Al tolerance for root or shoot growth of the rootstocks. Calcium, K, Zn, Mn, and Fe concentrations in roots and Mg and K concentrations in shoots of all five rootstocks seedlings had significant negative correlations with Al concentrations in corresponding roots or shoots.  相似文献   

16.
Studies on the effects of salinity and nitrogen (N) fertilization on ionic balance, biomass, and organic N production of annual ryegrass (Lolium multiflorum Lam.) were conducted. Plants grown in sand were irrigated with nutrient solution with an electrical conductivity of 2 or 11.2 dS#lbm‐1, and N in the form of sodium nitrate (NaNO3), ammonium nitrate (NH4NO3), or ammonium sulfate [(NH4)2SO4] ranging from 0.5 to 9.0 mM. Salinity increased the concentration of total inorganic cations (C) in plants and specifically sodium (Na) by more than 3‐fold higher in plants grown at high salinity as compared with plants at low salinity. Sodium (Na) concentration in roots was higher than in shoots irrespective of the salinity level, suggesting a restriction of Na transport from roots to shoots. The concentration of total inorganic anions (A) increased with salinity and when plants were supplied with nitrate (NO3), salinity increased the concentrations of NO3 and chloride (Cl) in plants. Increasing salinity and N concentration in the growth medium increased organic anions concentration in plants, estimated as the difference between C and A. The effect of different N sources on C‐A followed the order: NH4NO3 > NO3 > ammonium (NH4). The base of organic anions and inorganic ions with salinity contributed significantly to the osmotic potential of plants shoots and roots. Changes in C affected N and organic acids metabolism in plants, since C were highly correlated (p=0.0001) with C‐A and organic N (Norg) concentrations regardless of the salinity level or N source in the nutrient solutions. A high and positive linear dependency was found between Norg and C‐A in plants grown at high and low salinity levels and different N sources, pointing out the close relationship between Norg and organic anions on metabolism under these conditions. The amount of biomass produced was correlated positively with organic anion concentration in plants exposed to different salinity levels. Plant biomass increased with N concentration in the nutrient solution regardless of the salinity level applied. Biomass accumulation decreased while Norg concentration increased with salinity. Organic N content remained unaffected in plants exposed to salinity when grown in N less than 9.0 mM.  相似文献   

17.
The mineral composition of Hevea brasiliensis shoots was analyzed at different stages of the microcutting procedure from mother plants grown in greenhouses to rooted microcuttings at the acclimatization stage. Compared to the mineral status of the mother plants, a mineral imbalance was noticed in shoots right from the in vitro establishment phase. Phosphorus (P), potassium (K), sodium (Na), chloride (Cl), and zinc (Zn) contents increased, while calcium (Ca), magnesium (Mg), iron (Fe), and copper (Cu) diminished, resulting in a substantial modification to the mineral balance. The N: P, N: K, Mg: P and K: Na ratios were very low, whereas the K: Mg, K: P, and K: Ca ratios were very high. During the multiplication phase, the N: P ratio returned virtually to its initial value but the other ratios remained modified. A mineral analysis of shoots after three years multiplication in vitro revealed a very low N: P ratio, a very high K: Ca ratio and a normal K: Na ratio. The same results were obtained right from the initial culture cycles on shoots developed in vitro from mother plants with a high multiplication potential. These results are discussed and lead us to consider the N: P, K: Ca, and K: Na ratios as potential markers of Hevea brasiliensis multiplication ability in vitro. During the rooting phase, the Mg: P and K: Ca ratios returned to their normal values, whereas the other ratios returned to normal values on formation of the second leaf flush ex‐vitro.  相似文献   

18.
Growth, ion balance, water relations and leaf photosynthesis of canola (Brassica napus L., cv. Excel) and wild mustard (Brassica kaber L. C. Wheeler) grown under a mixture of sodium and magnesium sulphate salts were examined using a hydroponic system in a growth chamber. Wild mustard was less salt tolerant than canola, based on the growth responses. Salinity caused large accumulation of sodium (Na) and magnesium (Mg) ions, but reduced calcium (Ca) and potassium (K) concentrations in the shoots and roots. Water potential, osmotic potential, transpiration, stomatal conductance and hydraulic conductance decreased to a greater extent in canola than in wild mustard, indicating salinity imposed a smaller osmotic effect on the wild species. Calcium addition improved the growth of wild mustard more than canola but it had no effect on water relations. The growth reduction in these species under salt stress resulted from a combination of ion toxicity, insufficient nutrient ion availability and altered water relations. Supplemental Ca improved growth by reducing Mg and increasing Ca content in plant tissues, ameliorating salinity‐associated ion toxicity to photosynthesis, and possibly through an indirect effect on cell growth.  相似文献   

19.
AZ‐Germ Salt II, a salt tolerant line of alfalfa (Medicago sativa L.) at the germination stage, was compared with its parent line Mesa Sirsa in sand culture at the germination and seedling stages and in hydroponic culture at the adult stage under greenhouse conditions. The sodium chloride (NaCl) treatments used were 0 or 100 mol/m3 in half strength Hoagland nutrient solution. AZ‐Germ Salt II was superior to Mesa Sirsa in biomass production at all three stages. AZ‐Germ Salt II had significantly greater chloride (Cl) in the plumules and radicle than Mesa Sirsa at the germination stage. The two lines did not differ in shoot and root sodium (Na) and shoot Cl at the seedling stage. However, at the adult stage AZ‐Germ Salt II accumulated significantly higher Na in the shoots and roots and Cl in the shoots compared with Mesa Sirsa. The two lines did not differ in tissue potassium/sodium (K/Na) ratios in all three experiments, although K concentrations were higher in the seedling shoots and roots, and in the plumules of AZ‐Germ Salt II than Mesa Sirsa. The K versus Na selectivities were higher in the plumules and seedling shoots and roots of AZ‐Germ Salt II compared with Mesa Sirsa, whereas at the adult stage the reverse was true. The lines also did not show any difference in tissue calcium (Ca) concentrations at any stage. It is concluded that salt tolerance in these two lines is not age‐dependent. The pattern of ion accumulation varies with the change in growth stage. Generally there is a positive correlation between Na and Cl accumulation and growth in alfalfa.  相似文献   

20.
The potassium/sodium (K/Na) ratio in the shoots of six rapid‐cycling Brassica species was greatly reduced by seawater salinity. It proportionally decreased with increasing salinity from 4 dS/m to 12 dS/m. This decrease was correlated with salt‐induced growth reduction (expressed as the percentage of control) within a species. The change in K/Na ratio with increasing salinity, however, was not correlated with K‐Na selectivity. The change in K/Na ratio at the callus level corresponded to that at the whole plant level. Both K/Na ratio and K‐Na selectivity were not found to be correlated with the relative salt tolerance of these Brassica species, indicating that the maintenance of a high K/Na ratio as a mechanism for salt tolerance in these Brassica species was not operative. These results also suggest that a high shoot K/Na ratio or K‐Na selectivity may not be reliable selection criteria for salinity resistance in some species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号