首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strawberry is listed as the most salt sensitive fruit crop in comprehensive salt tolerance data bases. Recently, concerns have arisen regarding declining quality of irrigation waters available to coastal strawberry growers in southern and central California. Over time, the waters have become more saline, with increasing sodium (Na+) and chloride (Cl?). Due to the apparent extreme Cl? sensitivity of strawberry, the rising Cl? levels in the irrigation waters are of particular importance. In order to establish the specific ion causing yield reduction in strawberry, cultivars ‘Ventana’ and ‘Camarosa’ were grown in twenty-four outdoor sand tanks at the ARS-USDA U. S. Salinity Laboratory in Riverside, CA and irrigated with waters containing a complete nutrient solution plus Cl? salts of calcium (Ca2+), magnesium (Mg2+), Na+, and potassium (K+). Six salinity treatments were imposed with electric conductivities (EC) = 0.835, 1.05, 1.28, 1.48, 1.71, and 2.24 dS m?1, and were replicated four times. Fresh and dry weights of ‘Camarosa’ shoots and roots were significantly higher than those of ‘Ventana’ at all salinity levels. Marketable yield of ‘Camarosa’ fruit decreased from 770 to 360 g/plant as salinity increased and was lower at all salinity levels than the yield from the less vigorous ‘Ventana’ plants. ‘Ventana’ berry yield decreased from 925 to 705 g/plant as salinity increased from 0.835 to 2.24 dS m?1. Relative yield of ‘Camarosa’ decreased 43% for each unit increase in salinity once irrigation water salinity exceeded 0.80 dS m?1. Relative ‘Ventana’ yield was unaffected by irrigation water salinity up to 1.71 dS m?1, and thereafter, for each additional unit increase in salinity, yield was reduced 61%. Both cultivars appeared to possess an exclusion mechanism whereby Na+ was sequestered in the roots, and Na+ transport to blade, petiole and fruit tissues was limited. Chloride content of the plant organs increased as salinity increased to 2.24 dS m?1 and substrate Cl increased from 0.1 to13 mmolcL?1. Chloride was highest in the roots, followed by the leaves, petioles and fruit. Based on plant ion relations and relative fruit yield, we determined that, over the range of salinity levels studied, specific ion toxicity exists with respect to Cl?, rather than to Na+ ions, and, further, that the salt tolerance threshold is lower for ‘Camarosa’ than for ‘Ventana’.  相似文献   

2.
The present research was conducted to study the responses of ‘Malas–e–Saveh’ (M) and ‘Shishe–Kab’ (Sh) Iranian pomegranates to sodium chloride (NaCl) stress under greenhouse and field conditions. Treatments included waters electrical conductivity (EC = 1.5, 3, 6, 9 and 12 dS m?1 for greenhouse) and (EC = 1.05 as control, 4.61 and 7.46 dS m?1 for field studies). Interactive effects of salinity × variety indicated the highest chlorophyll and leaf potassium concentration, and the lowest leaf chloride and sodium in control under greenhouse study. Non-photochemical quenching, effective quantum yield of photochemical energy conversion in PSII reduced under the highest salinity level in field, however, basal quantum yield of non-photochemical processes in PSII increased in the highest salinity. Sodium and chloride increased with increased in salinity. Calcium, magnesium and iron significantly decreased with increased in salinity. It seems that there are differences between pomegranate cultivars and Malas-e-Saveh is more tolerant compared with Shishe Kab.  相似文献   

3.
Most of the crop salt tolerance studies are often conducted in a glasshouse and are limited under field conditions. Therefore, the present research study was conducted under field conditions to evaluate the performance of six wheat cultivars at five salinity levels (EC 0, 3, 6, 9, and 12 dS m?1) in split plot design with three replications. Increasing salinity significantly increased soil pH, electrical conductivity (EC), and sodium adsorption ratio (SAR). Yield parameters of different cultivars were affected more at higher salinity levels than lower in two years. Data over two years revealed that up to EC 9 dS m?1 cultivars PBW 658 and HD 2967 performed ???better on the absolute yield basis but PBW 621 produced ?higher relative yield. At EC 12 dS m?1, PBW 658 produced significantly higher grain yield (4.23 t ha?1) than cultivars HD 2967 (4.11 t ha?1) and PBW 621 (3.99 t ha?1); therefore, should be preferred at salinity more than 9 dS m?1.  相似文献   

4.
Abstract

As part of a project to stimulate Norwegian seed production of common bent (syn. browntop, US: colonial bentgrass, Agrostis capillaris L. syn. A.tenuis Sibth.) field trials comparing sowing rates of 2.5, 5.0, 7.5 or 10 kg ha?1 were conducted at Landvik, south-east Norway, (58°N) from 1989 to 1994. Three trials were laid out of the forage cultivar ‘Leikvin’ and three trials of the lawn cultivar ‘Nor’, each trial being harvested for three consecutive years. While the average per cent ground cover in spring increased from 87% at 2.5 kg ha?1 to 94–96% at 7.5 kg ha?1, seed yields decreased with increasing sowing rate in both cultivars. On average for all harvests, quadrupling the sowing rate from 2.5 to 10 kg ha?1 reduced seed yield by 9% in ‘Leikvin’ and 15% in ‘Nor’, the stronger effect probably being associated with a greater competition between tillers in the lawn cultivar. Seed yield reductions with increasing sowing rate showed no relationship with crop age, but were less accentuated for crops undersown in spring wheat in a dry year than for crops established without cover crop in years with ample rainfall in early summer. Increasing sowing rates reduced plant height and panicle number in ‘Nor’, but had no effect on seed weight or germination in any of the cultivars. It is concluded that seed crops of common bent should be established with a sowing rate of 2–5 kg ha?1, with the lowest rate in lawn cultivars, under ideal seedbed conditions and when seed crops are sown without cover crop.  相似文献   

5.
Greenhouse experiment was conducted to investigate the effect of different levels of irrigation water salinity (0.5, 2.5, 5 and 7.5 dS m?1) and wheat straw biochar (0%, 1.25%, 2.5%, and 3.75% w/w) on growth and yield of faba been using complete randomized design with three replications. Stomatal conductance (green canopy temperature) of faba bean increased (decreased) by application of biochar at each salinity level. The results showed increasing salinity to 2.5 dS m?1 at zero biochar application increased the seed yield through osmotic adjustment, while by declining the osmotic potential, the nutritional values of biochar caused the seed yield to increase by increasing salinity to 5 dS m?1. The root length density and root dry weight density in 0–8 cm soil layer declined under application of 3.75% w/w biochar in all salinity levels in comparison with that obtained in 2.5% w/w biochar, due to higher saline condition of the soil as result of higher biochar application. The results showed that addition of 2.5% w/w biochar can significantly mitigate salinity stress due to its high salt sorption capacity and by increasing potassium/sodium ratio in the soil. In general, since 2.5 % w/w biochar and salinity of 5 dS m?1 increased dry seed yield and irrigation water productivity compared with that obtained in control (B0S0.5), these levels are recommended to improve faba bean growth and yield; however, these levels have to be evaluated under field conditions.  相似文献   

6.
In order to investigate the effect of nitrogen (N) and sulfur (S) fertilizers on yield and seed quality of three canola cultivars, a factorial based on randomized complete block experiment was conducted during 2005–2006 in Iran. Treatments included four nitrogen rates (0, 75, 150, and 225 kg N ha?1 source of urea), four sulfur rates (0, 100, 200, and 300 kg S ha?1), and three cultivars (‘Pf’, ‘Option-500’, and ‘Hyola-401’). Results indicated cultivar had a significant effect on all studied traits. ‘Option-500’ and ‘Hyola-401’ cultivars had the highest seed yield, protein content, and N:S ratio in seed. The levels of 150 and 220 kg N ha?1 resulted in the maximum protein content. Increasing N levels resulted in N content and decreased the oil content. The interaction effect between S and N levels showed the highest N content in seed was obtained with 300 kg S ha?1 and 225 kg N ha?1.  相似文献   

7.
Salinity stress is one of the important agricultural problems in the world. A factorial experiment based on completely randomized design with four replications was conducted to evaluate the effects of phytohormones (gibberellic acid and abscisic acid) on the activity of antioxidant enzymes (peroxidase, superoxide dismutase and catalase), rubisco activity and content, and proline in three wheat cultivars (Gascogen, Zagros, and Kuhdasht) under control and salinity stress (3.5 and 7 dS m?1). The results showed that salinity stress (3.5 and 7 dS m?1) decreased the activity of catalase, rubisco, carboxylase, but increased peroxidase, superoxide dismutase activity and proline content. Gibberellic acid caused 58.03% increased in rubisco carboxylase activity in Zagros at 7 dS m?1 in comparison with abscisic acid under salinity stress compared with the control plants in Kuhdasht. Activity of superoxide dismutase in Kuhdasht cultivar at 7 dS m?1 salinity level showed 76.43% increased in Gascogen under salinity stress compared with the control plants with gibberellic acid application. The highest proline content as an osmolyte was found in Zagros at 7 dS m?1 salinity level with abscisic acid (194 μmol g?1 DM) application. Peroxidase activity increased 83.31% and catalase activity decreased 61.27% compared with the control plants in Zagros. Gibberellic acid application significantly prevented reduction in rubisco content under salinity stress. In conclusion, increased in peroxidase and superoxide dismutase activity and proline content decreased the adverse effects of salinity stress on studied cultivars. Also, the foliage spray of gibberellic acid enhanced and improved the growth condition. In this experiment, Zagros cultivar showed more tolerance to salinity stress than the other two cultivars.  相似文献   

8.
Eustoma grandiflorum (Raf.) Shinn. (lisianthus) is a moderately salt tolerant species that can be produced commercially under irrigation with saline wastewaters prevalent in two salt-affected areas of California. The objective of the present studies was to determine the effect of irrigation with saline waters of two different compositions on the ion accumulation and ion relations of lisianthus ‘Pure White’ and ‘Echo Blue’. The ionic composition of irrigation waters simulated the compositions typical of i) seawater dilutions (SWD) and ii) concentrations of Colorado River water (CCRW). Electrical conductivities (EC) of SWD and CCRW were between 2 and 12 dS · m?1. Plants irrigated with CCRW were higher in Ca2+ compared to plants irrigated with SWD water. Calcium was also higher in ‘Pure White’ than in ‘Echo Blue’. Increasing EC of irrigation water caused a significant decrease in shoot and leaf Ca2+ concentration in ‘Echo Blue’, but had no effect on Ca2+ content of ‘Pure White’ shoots and leaves. Magnesium concentration in ‘Echo Blue’ was higher than in ‘Pure White’. Electrical conductivity did not significantly affect Mg2+ concentration of either cultivar, despite the increasingly higher external concentration. Potassium concentration of young and mature leaves of ‘Echo Blue’ increased as EC increased from 2 to 8 dS · m?1, then decreased significantly once EC exceeded 8 dS · m?1. Potassium concentration of ‘Pure White’ leaves decreased over the range of salinity treatments tested, suggesting that the reduced potassium ion (K+) activity at EC levels of 8 dS · m?1, or less, that resulted in lower leaf?K+ in ‘Pure White’ did not cause a decrease in K+ uptake in ‘Echo Blue’. Increases in external Na+ caused a significant increase in Na+ in ‘Pure White’ leaves and these plants exhibited the best growth even when levels of Na+ were high enough to be considered detrimental for growth.  相似文献   

9.
An experiment with factorial arrangement of treatments on a randomized complete block (RCB) design basis with three replications was conducted in a greenhouse during Spring 2010 to investigate changes in sodium ion (Na+), potassium ion (K+), Na+/K+ and to determine proline, protein content, and superoxide dismutase (SOD) of four wheat and four barley cultivars. Three salt levels {1, control (no salt), 7, and 13 dS m?1 [2.5 and 5 g salt [sodium chloride (NaCl) and sodium sulfate (Na2SO4) in 1:1 ratio] per kg of soil, respectively]} were used in this investigation. Salt stress treatments were applied 4 weeks after planting (at 2 leaf stage). Leaf samples were taken four weeks after imposition of salt treatment. The results showed that salinity caused an increased in proline and protein content, and SOD in all wheat and barley cultivars. The highest proline and protein content of barley and wheat cultivars at all salinity levels were observed in ‘Nimrooz’ and ‘Bam’ cultivars, respectively. At all salinity levels, wheat and barley cultivars ‘Kavir’ and ‘Nimrooz’, respectively, had the lowest Na+ content. Barley cultivar ‘Kavir’ and wheat cultivar ‘Bam’ had higher K+ and K+:Na+ ratios. This might be related to salt tolerance in these two cultivars. Wheat and barley cultivars showed differences with regard to proline, protein, and SOD content, Na+, K+, and K+:Na+ ratio, indicating existence of genetic diversity among the cultivars. These findings indicated that higher K+, K+:Na+ ratio, proline, protein, and SOD content could be the key factors, which offer advantage to barley over wheat for superior performance under saline conditions.  相似文献   

10.
Parts of paddy fields in Mazandaran Province, northern Iran, are confronted with soil and water salinity. To screen proper rice cultivars, an experiment was performed with eight modified rice cultivars under four levels of irrigation water salinity (1, 2, 4 and 6 dS m?1) with three replications, in Amol, northern Iran. The objective of the present study was the evaluation of eight screening indices for identifying salinity tolerance of these cultivars, so that suitable cultivars can be recommended for the cultivation with saline irrigation water in paddy fields. To evaluate the resistance of these cultivars to salinity stress, different indices were calculated. The results showed that Khazar cultivar was the most salt-sensitive cultivar in all salinity levels. In the irrigation salinity levels of 2 and 4 dS m?1 Neda cultivar and in the level of 6 dS m?1 Dasht cultivar were the most salt-resistant cultivars. In the two irrigation salinity levels of 4 and 6 dS m?1, the mean productivity index was the most effective in the screening of salt-resistant cultivars. Harmonic mean, geometric mean productivity, stress tolerance index and mean productivity indices were found to be the best indices in screening resistant cultivars.  相似文献   

11.
The present study was conducted to assess the effect of soil salinity on yield attributes as well as nutrient accumulation in different plant parts of seven Brassica cultivars from two different species raised in pot culture experiment with two levels of salinity treatments along with control corresponding to soil electrical conductivity (EC) values of 1.65 (S0), 4.50 (S1) and 6.76 (S2) dS m?1. The experiment was consisted of twelve replications in a completely randomized design. Imposition of salinity stress affected various yield attributing characters including plant height, which ultimately led to severe yield reduction. However, tolerant cultivars, CS 52 and CS 54 performed better under salt treatment showing lesser yield loss. Salinity stress reduced the nitrogen (N) content in leaves of the Brassica plants, which reflected in decreased seed protein content. Reduced accumulation of iron (Fe), manganese (Mn) and zinc (Zn) was observed in leaf, stem and root at flowering and post-flowering stages, while CS 52 and CS 54 showed less reduction than susceptible cultivars under salinity stress.  相似文献   

12.
Our study analyzed the effect of foliar tissues and seed tissue for determining the micronutrient status of a crop. Zinc (Zn) requirements of onion (Allium cepa L.) leaves and seeds were estimated from yield response curves based on field experiment conducted on a Zn-deficient calcareous soil. Three onion cultivars, i.e., ‘Swat-1’, ‘Phulkara’, and ‘Sariab Red’ were grown by applying 0, 2, 4, 8, and 16 kg Zn ha?1. Zinc application significantly increased seed yield of all the three cultivars of onion. The order of seed yield response to Zn fertilization was: ‘Swat-1’ < ‘Phulkara’ < ‘Sariab Red’. Fertilizer Zn requirement for near-maximum seed yield was 2 kg Zn ha?1. Zinc concentration in mature onion seed also appeared to be a good indicator of soil Zn availability status. Critical Zn concentration in seed was 18 mg Zn kg?1, and in matured leaves was 21 mg kg?1.  相似文献   

13.
ABSTRACT

The effectiveness of plant–soil synergies is largely modulated by interaction between cultivar and rhizosphere microbiome. We evaluated the agronomic performance of six durum wheat cultivars, in two semi-arid locations in Tunisia that differed in their irrigation water salinity: S1 (6 dS m?1) and S2 (12 dS m?1). The two-consecutive-year field experiments assessed the effects of the microbial biomass carbon (MBC), leaf phosphorus (LP) and rhizosphere phosphorus (P) on the grain yield (GY) and yield components at tillering and flowering stages. Overall, in saline conditions, cultivars differed in above- and below-ground traits, particularly, with tolerant cultivars presenting relatively greater MBC, P and LP. Furthermore, in S2, GY positively correlated with MBC (r = 0.69), LP (r = 0.80) and P (r = 0.79). Additionally, in S2, MBC positively correlated with P (r = 0.87) and LP (r = 0.85) at flowering. This result was further confirmed by multiple linear regression (step-wise) analysis, which revealed that MBC and LP were the determinant components of GY variability under S2. The present study demonstrates that LP and soil P are mandatory for improving the management of durum wheat. Salinity tolerance was largely affected by the cultivars’ rhizosphere MBC.  相似文献   

14.
A laboratory incubation experiment was conducted to evaluate the effect of magnesium chloride–induced salinity on carbon dioxide (CO2) evolution and nitrogen (N) mineralization in a silty loam nonsaline alkaline soil. Magnesium chloride (MgCl2) salinity was induced at 0, 4, 8, 12, 16, 20, 30, and 40.0 dS m?1 and measured CO2 evolution and N mineralization during 30 days of incubation. Both CO2 evolution and N mineralization decreased significantly with increasing salinity. The cumulative CO2 evolution decreased from 235 mg kg?1 soil at electrical conductivity (EC) 0.65 dS m?1 to 11.9 mg kg?1 soil at 40 dS m?1 during 30 days of incubation. Similarly, N mineralization decreased from 185.4 mg kg?1 at EC 0.65 dS m?1 to 34.45 mg kg?1 at EC 40.0 dS m?1 during the same period. These results suggested that increasing magnesium chloride salinity from 4 dS m?1 adversely affect microbial activity in terms of carbon dioxide evolution and N mineralization.  相似文献   

15.
A field trial was carried out during 1993–94 and 1994–95 winter seasons on Udic Ustochrept to evaluate the performance of dryland barley under varying profile moisture status and nitrogen levels. Three levels of initial moisture status of the root zone profile were: wet (100% field capacity), moderately wet (50% field capacity) and dry (rainfed) as the main treatment. The sub treatments were 0, 40, 60 and 80 kg N ha?1. During 15 to 60 days after sowing (DAS) availability of soil nitrogen and its uptake by the crop attained the highest values under wet regime. However, at 105 and 130 DAS dry moisture regime resulted in maximum values of both available soil nitrogen and plant nitrogen contents. In the same tune biomass production attained the higher values under wet regime as compared to the dry regime during 15 to 60 DAS and the trend was reverse at 105 DAS. Grain yield attained the highest value under dry regime followed by wet and moderately wet regimes. Irrespective of the profile moisture status both productivity and nitrogen use efficiency enhanced with the increase in nitrogen doses from 0 to 80 kg ha?1. Role of nitrogen was more pronounced under wet regime.  相似文献   

16.
Effect of water salinity was studied in different Matricaria recutita L. genotypes (Isfahan, Ahvaz, and Shiraz) to understand their protective mechanisms and agronomic performance. Based on a split-plot design arranged in a randomized complete-block consisted of four salinity levels as the main plot and three genotypes as the subplots with three replications this field experiment was conducted in 36 plots with 3 m2 space in the Isfahan Center for Research of Agricultural Science and Natural Resources during 2014–2015. The findings showed that the three genotypes differed in resistance to salinity and tolerance mechanisms. They have evolved different physiological, morphological, and biochemical adaptations to salt stress. The Ahvaz genotype in the absence of salt, the Isfahan genotype at 6, and the Shiraz genotype at 9 and 12 dS m?1 sodium chloride (NaCl) were desirable, taking both quantity and quality into consideration. While preserving shoot growth, the Isfahan genotype was more tolerant to 6 dS m?1 NaCl most likely due to peroxidase activity. The resistance of the Shiraz genotype is associated with root growth stimulation at 9 and Na compartmentation in root at 12 dS m?1 NaCl. The Isfahan genotype had the highest oil and chamazulene content, which was not affected by salinity. The Shiraz genotype in the control treatment, the Isfahan genotype at 6 and 9 and the Ahavaz genotype at 12 dS m?1 NaCl synthesized higher flavonoid compounds.  相似文献   

17.
Field experiments during two successive rainy seasons were conducted in southern Vietnam to evaluate the effects of a commercial inoculant biofertilizer (‘BioGro’) and fused magnesium phosphate (FMP) fertilizer on yield and nitrogen (N) and phosphorus (P) nutrition of rice. Inoculation with BioGro containing a pseudomonad, two bacilli and a soil yeast significantly increased grain yield in the second season and straw yield in both seasons by 3–5%. The FMP fertilizer significantly increased grain yield from 1.72–2.33 t ha?1 to 2.99–3.58 t ha?1 along with total N and P accumulation at all rates in both cropping seasons. In the first season the difference in grain yield between BioGro treated and untreated plots was marginal but in the second season BioGro out-yielded the control at all the rates of added P. Overall, BioGro application did not compensate for low P fertilizer application to the same extent previously demonstrated for low N fertilizer applications.  相似文献   

18.
Salinity of irrigation water reduces yield and juice quality in sugarcane (Saccharum spp. hybrids), but cultivars vary in the degree of reduction. Genotypes which accumulate more potassium (K+) may be more resistant to salinity than genotypes that accumulate less K+. We examined the effect of irrigation water salinity on yield and juice quality in a cultivar with high conductivity, high K+ juice, ‘NCo 310’, and a cultivar with low conductivity, low‐K+ juice, ‘TCP 87–3388 ‘. Plants were grown in lysimeters containing 793 L of soil and irrigated with water of 0.01, 1.25, 2.93, or 4.70 dS m‐1. Quality and component analyses were conducted on the juice of single stalks subdivided by length, and the juice from whole stalks. The two cultivars responded similarly to increased salinity, although juice of NCo310 had a higher mineral concentration, especially K+ and Cl. Yield and most quality components were not significantly reduced by 1.25 dS m‐1 water. The 2.93 and 4.70 dS m‐1 treatments reduced stalk height and weight but not stalk numbers. The reduction in stalk height was due to decreases in number of internodes per stalk and mean internode length. Increasing salinity reduced total soluble solids and sucrose in juice, but increased Na+, K+, Mg+2, Ca+2 and Cl Within a stalk, sucrose increased from top to bottom, while K+ decreased. Sodium concentrations were sharply higher in the lowest section, especially in plants irrigated with saline water. Chloride concentration was approximately equal in all sections. An increase in K accumulation did not appear to increase the salt tolerance of NCo310.  相似文献   

19.
《Journal of plant nutrition》2013,36(12):2689-2704
ABSTRACT

Salinity is among the most widespread and prevalent problems in irrigated agriculture. Many members of the family Chenopodiaceae are classified as salt tolerant. One member of this family, which is of increasing interest, is quinoa (Chenopodium quinoa Willd.) which is able to grow on poorer soils. Salinity sensitivity studies of quinoa were conducted in the greenhouse on the cultivar, “Andean Hybrid” to determine if quinoa had useful mechanisms for salt tolerant studies. For salt treatment we used a salinity composition that would occur in a typical soil in the San Joaquin Valley of California using drainage waters for irrigation. Salinity treatments (ECi ) ranging from 3, 7, 11, to 19?dS?m?1 were achieved by adding MgSO4, Na2SO4, NaCl, and CaCl2 to the base nutrient solution. These salts were added incrementally over a four-day period to avoid osmotic shock to the seedlings. The base nutrient solution without added salt served as the non-saline control solution (3?dS?m?1). Solution pH was uncontrolled and ranged from 7.7 to 8.0. For comparative purposes, we also examined Yecora Rojo, a semi-dwarf wheat, Triticum aestivum L. With respect to salinity effects on growth in quinoa, we found no significant reduction in plant height or fresh weight until the electrical conductivity exceeded 11?dS?m?1. The growth was characteristic of a halophyte with a significant increase in leaf area at 11?dS?m?1 as compared with 3?dS?m?1 controls. As to wheat, plant fresh and dry weight, canopy height, and leaf area did not differ between controls (3?dS?m?1) and plants grown at 7?dS?m?1. Beyond this threshold, however, plant growth declined. While both quinoa and wheat exhibited increasing Na+ accumulation with increasing salinity levels, the percentage increase was greater in wheat. Examination of ion ratios indicated that K+:Na+ ratio decreased with increasing salinity in both species. The decrease was more dramatic in wheat. A similar observation was also made with respect to the Ca2+:Na+ ratios. However, a difference between the two species was found with respect to changes in the level of K+ in the plant. In quinoa, leaf K+ levels measured at 19?dS?m?1 had decreased by only 7% compared with controls. Stem K+ levels were not significantly affected. In wheat, shoot K+ levels had decreased by almost 40% at 19?dS?m?1. Correlated with these findings, we measured no change in the K+:Na+ selectivity with increasing salinity in quinoa leaves and only a small increase in stems. In wheat however, K+:Na+ selectivity at 3?dS?m?1 was much higher than in quinoa and decreased significantly across the four salinity levels tested. A similar situation was also noted with Ca2+:Na+ selectivity. We concluded that the greater salt tolerance found in quinoa relative to wheat may be due to a variety of mechanisms.  相似文献   

20.
《Journal of plant nutrition》2013,36(9):1575-1583
Abstract

Tests are needed to evaluate the salt tolerance of new and untested potato cultivars under various cultural conditions. Two lysimeter experiments were conducted in two seasons to investigate the influence of irrigation water salinity on tuber yields of four potato (Solanum tuberosum L.) cultivars (Spunta, Alpha, Cara, and King Edward). Four salinity levels [ECw 0.53 (control), 3.13, 6.25, and 9.38 dS m?1] established by adding NaCI to fresh water, were used. Increasing irrigation water salinity reduced significantly total and average tuber yield for all cultivars in both seasons. Cara cultivar produced the highest tuber yield of all cultivars in both seasons. The salt tolerance curves of the potato cultivars in both seasons revealed that tolerant rating of the four cultivars can be assigned as follows: Cara > Alpha > Spunta > King Edward. The polynomial cubic equations developed for the four potato cultivars in fall and summer seasons were successful in predicting potato tuber yields response to irrigation water salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号