首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Crop response to fertilization and liming was investigated in field and pot trials on sandy loam Dystric Albeluvisols (pH 4.2–4.3). Treatments in the field trial were: 1, no fertilizer; 2, PK; 3, NK; 4, NP; 5, NPK; 6, lime; 7, lime+PK; 8, lime+NK; 9, lime+NP; 10, lime+NPK. In the pot trial, they were: 1, no fertilizer; 2, N; 3, P; 4, K; 5, NP; 6, NK; 7, PK; and 8, NPK applied to unlimed and limed soils. All treatments were in four replicates. Crops sensitive to soil acidity (winter wheat, fodder beet, spring barley and clover-timothy ley) and the less acid-sensitive winter rye, potatoes, oats and lupins and oats mixture were sown in the field trial. In the pot trial, the acid-sensitive spring barley and red clover, and the less acid-sensitive oats and lupin-oats served as the test crops. Combined application of fertilizers (NPK) increased yields of crops sensitive to soil acidity in plots receiving lime by 23%, and those of crops less sensitive to soil acidity by 18% in comparison to crops grown on unlimed soils. The results of pot experiments corroborated the field results. When N was applied alone, crop yields were always higher than those recorded for P or K treatments on both the unlimed and limed treatments. N application proved to be a prerequisite for high crop yields in the soils investigated. Thus, the efficiency of P and K fertilizers increased in the order NK<NP<NPK, with the effects being accentuated more in the limed than in the unlimed treatments. The results demonstrated the importance of multi-nutrient (NPK) fertilization in combination with liming for enhancement of high crop productivity in the unlimed soil investigated. N applied alone in combination with liming produced relatively good yields; hence, where resources are limited for the purchase of P and K fertilizers, applying N and lime can be a viable option in the short term.  相似文献   

2.
不同马铃薯品种对Cd、Pb吸收累积的差异   总被引:2,自引:0,他引:2  
采用田间试验法,以中南地区主要种植的11个马铃薯品种为研究对象,测定马铃薯植株各部位重金属Cd、Pb含量,探讨不同品种的马铃薯对Cd、Pb的吸收累积差异,为马铃薯的安全种植提供实践参考。结果表明:Cd—Pb复合污染下,马铃薯块茎鲜重、茎叶鲜重以及根、茎叶、块茎中Cd、Pb含量在品种间均表现出显著差异。11个马铃薯品种块茎Cd含量范围为0.39~0.67 mg/kg,超标率100%,块茎Pb含量为0.16~0.43 mg/kg,超标率81.8%。马铃薯各部位Cd、Pb含量均呈现根茎叶块茎的分布特点;马铃薯对Cd的富集系数为2.35~5.56,对Pb富集系数为0.11~0.22,马铃薯富集转运Cd的能力大于Pb。尽管复合重金属靶标危险系数(TTHQ)法评价显示,金湘等5种马铃薯的TTHQ值1,对人体健康风险较小,但结合块茎Cd、Pb含量,建议污染区种植的马铃薯作为工业原料使用更安全。  相似文献   

3.
We investigated the effects of different P fertilizers on the yields and Cd contents of oat (Avena sativa L.), ryegrass (Lolium multiflorum L.), carrot (Daucus carota L.), and spinach (Spinacia oleracea L.). These crops were grown in the greenhouse using soils treated with lime to achieve three pHs ranging from 4.77 to 5.94 for a sandy soil and 4.97 to 6.80 for a loam soil. The crop yields were generally not affected by liming or application of different kinds of P fertilizers, with a few exceptions. Application of Cd-containing NPK fertilizers in all cases tended to increase the Cd concentrations in crops, and the highest Cd concentrations in crops were obtained when the high-Cd NPK fertilizer was applied (adding 12.5 μg Cd kg?1 soil). Cadmium concentrations in crops in most cases decreased with increasing soil pH. The highest percent recovery of the added Cd by plant species in the sandy soil was found for inorganic Cd-salt and in the loam soil for low-Cd NPK fertilizer. Phosphate rock resulted in the lowest recovery of the added Cd by all the plant species in both soils, but was also an insufficient P-source of its low solubility.  相似文献   

4.
Thin tillage pans restrict water movement and potato (Solanum tuberosum L.) root penetration in fine-textured soils of the Columbia Basin in central Washington State, U.S.A. Deep chiseling beneath potato rows, with simultaneous deep incorporation of fertilizer, was used to break-up the pans, enabling deeper root development. The effects of subsoiling on soil physical conditions and on potato production were examined under varying rates of irrigation. Deep tillage decreased soil strengths and bulk densities and increased porosity to depths of 10–16 cm below the pans. These improved subsoil physical conditions resulted in deeper root penetration, but the additional rooting only amounted to a small increase to the total root system. Cubic polynomial regressions demonstrated that subsoiling significantly increased potato yields under very droughty conditions but had no significant effects at intermediate (near optimum) levels of water application. Potato quality (percentage of U.S. No. 1 grade tubers and tuber specific gravity) was generally unaffected by deep tillage. These results indicate that, for potatoes, appropriate irrigation management can be used to overcome problems of restricted root penetration and impeded water movement caused by tillage pans.  相似文献   

5.
A microcosm experiment was performed to investigate the effects of post-harvest potato tubers from transgenic cyanophycin-producing potatoes on Lumbricus terrestris (L.) activity and biomass, number of cocoons and their hatchability as well as the remaining cyanophycin content in soil and cast samples during a period of 80 days. Potato tubers from four transgenic potato events with different cyanophycin content in a range from 0.8 to 7.5% were compared to the near isogenic, non-transgenic control (Solanum tuberosum L. cv. Albatros) and a comparative potato cultivar (S. tuberosum L. cv. Désirée). One treatment with transgenic tuber residue but without earthworms was prepared as an additional control. Potato tuber loss from the surface of the microcosms was significantly higher in the treatments with transgenic potato tubers compared with non-transgenic treatments. It can be estimated that the earthworm contribution to potato tuber loss from the soil surface was approximately 61%. Mean number of cocoons in addition to the number of hatched cocoons varied from 2.6 to 6.2 and from 7 to 15 accounting for 45.2–83.35% hatchability, respectively, but no significant differences between the treatments were found. The same was true for the development of earthworm biomass in the various treatments. The cyanophycin content in soil samples was significantly higher when earthworms were present indicating that the cyanophycin content in the upper soil layer might have been enhanced through earthworm burrowing activity. Overall, it is concluded that tubers from transgenic cyanophycin potatoes are easily degradable and neither inhibit nor stimulate earthworm growth, reproduction, and activity.  相似文献   

6.
There are concerns of potential food chain transfer of metals in crops grown on lead–arsenate-contaminated soils. The objective of this study was to investigate lead and arsenic uptake by four potato (Solanum tuberosum L.) cultivars grown on lead–arsenate-contaminated soils with lead and arsenic concentrations ranging from 350 to 961 and 43 to 290 mg kg?1, respectively. Yield was not reduced due to treatment. Potato tubers were washed thoroughly before peeling. Lead concentration in both peeled tubers and peel was below instrument detection limit. Arsenic concentration in peeled tubers grown on the lead–arsenate soils ranged from 0.24 to 1.44 mg kg?1. Arsenic concentration was 60% higher in the peel than in the peeled tuber. The relatively high arsenic levels in the peel demonstrated that arsenic was taken up into the potato peel tissue. It is recommended that if potatoes are grown on these soils they should be peeled before consumption.

Abbreviations Pb, lead; As, arsenic; DW, dry weight; FW, fresh weight  相似文献   

7.
ABSTRACT

The content of macronutrients in potato tubers arouses interest because of their substantial consumption in the world and significant role in elements' budget in human diet. The research objective has been to evaluate the content of macronutrients in tubers of potatoes grown in different systems of crop production in Poland. In 2012–2014, an experiment was conducted to test potato cultivation in three-crop production systems: conventional, integrated and organic. In each of the six-field crop rotation systems, there were five potato cultivars classified into different earliness groups. The following macronutrients in dry mass of potato tubers were determined: N, P, K, Ca, Mg, Na, S and Cl, and the various ratios between them were calculated. The research carried out proved that potatoes production systems affect the chemical composition of tubers, which is additionally modified by whether condition and genetic features of cultivars. Potato tubers from organic farming contained by about 20% less N than tubers from conventional or integrated systems. Potato tubers from organic production system displayed lower content of Ca and Na in comparison with the conventional and integrated systems. The least of P and S were detected in tubers of the potatoes grown conventionally.  相似文献   

8.
Bone char is a potential clean and renewable P fertilizer with Cd‐immobilization capabilities, but the P–Cd interactions in cropping of vegetable, grain, and tuber crops are unknown. In the present pot experiment bone char was evaluated on its effect on the growth and P supply of various crops (lettuce, wheat, potatoes) as well as its capability to reduce the uptake of Cd from a moderately Cd‐contaminated and P‐deficient soil (soil 1) and a highly Cd‐contaminated soil with sufficient P supply (soil 2). When averaging the dry‐matter yield over the treatments for each crop for the P‐sufficient soil 1, the following order was obtained: triple superphosphate (TSP) > diammonium phosphate (DAP) > BC, whereas for the soil 2 with sufficient P supply it was inverted with BC > DAP > TSP. The P‐deficiency resulted in a more pronounced effect of TSP and DAP on the plant growth, whereas P sufficiency in the soil promoted a crop‐quality‐enhancing effect of bone char. The Cd concentration in the consumption‐relevant plant parts was mostly insignificantly affected by treatments; however, the total Cd concentration in the whole plants tended to decrease with fertilizer addition for all crops in soil 1 even at very low bone‐char application levels. Similar results were obtained for soil 2 with an exception for the Cd concentration in potatoes, as the total Cd concentration was significantly increased in the TSP and DAP treatments. This most likely results from the introduction of Cd with TSP and DAP as they contained ≈ 27–28 mg Cd kg–1. Thus, this study demonstrated the potential of bone char as a clean P fertilizer, which can efficiently decrease the Cd contamination of potato on contaminated soils.  相似文献   

9.
The effect of different levels and forms of nitrogen (N) fertilizer on cadmium (Cd) concentrations in potato (Solanum tuberosum L.) tubers, a large component of the northern European diet, was investigated with the aim of decreasing the Cd content. A high and a low Cd-accumulating cultivar were used in two field trials and a pot experiment. The N fertilizers tested were balanced N- phosphorus (P)- potassium (K) 11-5-18 + micronutrients, alkaline calcium nitrate and acidic ammonium sulfate at levels of 60, 160, and 240 kg N ha?1 at planting or (for the higher N doses) split between two or three occasions. The Cd concentration in tubers of both cultivars decreased when increasing the N fertilizer from 60 to 160 or 240 kg N ha?1, indicating that Cd uptake and translocation are not positively correlated to the growth rate of the potato plant. A strong positive linear correlation was found between the Cd concentration in leaves at 77 days after planting and the Cd concentration in tubers at harvest, irrespective of N treatment, although the Cd concentration was three-fold higher in the leaves. The genetic variation in leaf and tuber Cd accumulation was consistent, regardless of the form of N fertilizer used. Ammonium sulfate decreased soil pH and increased tuber Cd concentration in both cultivars compared with NPK fertilizer, possibly due to increased amounts of plant-available Cd arising from the pH decrease after ammonium sulfate application. The tuber Cd concentration in the low Cd-accumulating cultivar increased when fertilized with calcium nitrate, an effect attributed to Cd availability being influenced by the increased Ca2+ concentration.  相似文献   

10.
ABSTRACT

The use of applied phosphorus (P) and the uptake of nutrients from the soil by plants can be improved when the fertilizer is combined with the application of humic substances (HS). However, these beneficial effects are inconsistent and can depend on the type of soil. This study was performed to evaluate the effects of the application of HS (0, 1.25, and 7.50 mL pot–1), as Humic HF®, and fertilizer-P (10, 50, 100, and 200 mg P dm–3), as triple superphosphate, on root morphological characteristics, dry matter accumulation, nutrient uptake, and tuber yield of potatoes grown in sandy and clayey soils. Only under low P supply in the sandy soil did the supply of HS, at the rate of 1.25 mL pot–1, increase the plant growth, yield of tubers, and uptake of macronutrients by the plants, without affecting the efficiency of the P fertilization. In the clayey soil, which had a higher organic matter content, the application of HS did not affect plant growth, tuber yield or nutrient uptake. In both soils, P fertilization increased plant growth, tuber yield, and nutrient uptake. The combined application of HS and P increased the root length of potatoes in sandy soil.  相似文献   

11.
Calcium (Ca) nutrition for potato (Solanum tuberosum L.) is important to increase tuber Ca concentration and improve potato tuber yield and quality. High tuber Ca content among other benefits mitigates incidence of blackspot bruise through maintenance of membrane health and regulation of biochemical reactions that leads to potato tuber discoloration. However, growers avoid application of Ca fertilizer in potato production in the belief that it causes potato common scab in Hokkaido, Japan. This study was conducted in Hokkaido to determine the current status of soil Ca and tuber Ca content levels, and its effect in mitigating incidence of potato bruise. Soil and tuber samples were collected from 90 and 80 fields in Tokachi and Kamikawa districts, respectively, in 2013 and 2014. Soil samples were analyzed for base saturation, Ca saturation, and exchangeable Al. Tuber Ca content and susceptibility of tubers to bruising were also evaluated. This study found that (1) 81% and 76% of soils collected from Tokachi and Kamikawa district, respectively, were deficient in Ca level, (2) tuber Ca content was lower than the reported value (250 mg kg?1) considered to mitigate incidence of bruise, and (3) incidence of bruise were influenced by both tuber specific gravity and Ca content. There is urgent need to apply Ca fertilizer to attain increased soil Ca levels and improve quality of tubers.  相似文献   

12.
A field study was conducted to determine the plant uptake of metals in soils amended with 500 Mg ha?1 of municopal sewage sludge applied 16 yr previously. Results showed that metals were available for plan uptake after 16 yr, but that liming greatly reduced the plant availability of most metals. The application of sludge also resulted in high rates nitrification and subsequent lowering of the soil pH before the uptake study was started. The sludge-amended soil (a mesic Dystric Xerochrept) was adjusted with lime one month prior to planting from an unlimed pH of 4.6 to pH 5.8, 6.5 and 6.9. Food crops grown were: (i) bush bean (Phaseolus vulgaris L. cv. Seafarer), (ii) cabbage (Brassica oleracea L. v. capitata L. cv. Copenhagen market), (iii) maize (Zea mays L. cv. FR37), (iv) lettuce (Lactuca sativa L. cv. Parris Island, (v) (Solanum tuberosum L. cv. (vi) tomato (Lycopersicum esculentum L. cv. Burpee VF). With the exception of maize, yields were significantly reduced in the unlimed sludge-amended soil. However, liming increased yields above the growth level of the unlimed untreated soil for cabbage, maize, lettuce, potato tuber and tomato fruit. Soluble and exchangeable of Cd. Ni and Zn were also reduced after liming the sludge-amended soil. In both limed and unlimed soils, the majority of the soil Cu was found in insoluble and unavailable soil fractions. To evaluate trace metal uptake, the edible portion of each crop was analyzed for Cd, Cu, ni and Zn. Liming redoced uptake of Cd, Ni and Zn in most crops, but generally did not change Cu, This study shows the benefit of pH adjustment in reducing relative solubility and plant uptake of metals as well as increasing crop yield in acid soils.  相似文献   

13.
Increased calcium (Ca) in potatoes may increase the production rate by enhancing tuber quality and storability. Additionally, increased Ca levels in important agricultural crops may help ameliorate the incidence of osteoporosis. However, the capacity to alter Ca levels in potato tubers through genetic manipulations has not been previously addressed. Here we demonstrate that potato tubers expressing the Arabidopsis H+/Ca2+ transporter sCAX1 (N-terminal autoinhibitory domain truncated version of CAtion eXchanger 1) contain up to 3-fold more Ca than wild-type tubers. The increased Ca appears to be distributed throughout the tuber. The sCAX1-expressing potatoes have normally undergone the tuber/plant/tuber cycle for three generations; the trait appeared stable through successive generations. The expression of sCAX1 does not appear to alter potato growth and development. Furthermore, increased Ca levels in sCAX1-expressing tubers do not appear to alter tuber morphology or yield. Given the preponderance of potato consumption worldwide, these transgenic plants may be a means of marginally increasing Ca intake levels in the population. To our knowledge, this study represents the first attempts to use biotechnology to increase the Ca content of potatoes.  相似文献   

14.
In the Japanese warm areas, as a result of intensive and repeated potato cropping, common scab, a soil-borne disease has become a serious problem. The soil moisture level has been shown to be an important factor affecting the incidence of common scab. That is, a high level of soil moisture reduces the severity of common scab. However, in this investigation, although during the spring cropping precipitation was abundant, a large number of tubers showing scab lesions were produced. The results indicate that the soil moisture level may not be an important factor affecting the incidence of potato scab in the humid region.

To identify other factors which may affect scab severity, the relation between sugar content in the peel of potato tuber and the incidence of common scab was investigated. Generally, the amount of reducing sugar in the tuber peel increased gradually with the growth of the tubers, then reached a maximum level two weeks after the start of tuber formation, and thereafter declined. The period corresponding to the highest sugar content in peels coincided with the most susceptible period for scab infection. The content of reducing sugar in the peel of susceptible cultivars was higher than that of the resistant cultivars, throughout the tuber growth, and the critical value of the content was 2.0 mg per 100 g fresh peel. These results suggest that the content of reducing sugar in tuber peel may be an important factor affecting the incidence of common scab.  相似文献   

15.
Potato (Solatium tuberosum) generally requires high amounts of phosphate fertilizer to reach economically acceptable yields, particularly in soils originating from volcanic ash. This is a consequence of the potato plants low root density and the slow soil diffusion rate of phosphorus (P) in these soils. Our objective was to evaluate the effect of P rates on tuber yield, biomass production, and distribution, biomass P accumulation and concentration, and P distribution in potato cv. Mexiquense. The experiment was carried out in an Andisol (7.8 μg g‐1 Olsen‐P) located at the east of Valle de México. Fertilization rates were 0, 18,41,46,69,78,90,106,113,135,150,163, and 207 kg ha‐1 P, from ordinary superphosphate. Top growth and root biomass, tuber yield, P percentage and P accumulation in different plant parts were measured at harvest. Minimum and maximum average tuber yields were 8.4 and 18.0 Mg ha‐1; the plants absorbed 5.8 and 11.8 kg ha‐1 P, corresponding to 0 (control) and 207 kg ha‐1 P, respectively. Phosphorus fertilization had little influence on plant P concentration, where average concentrations in tuber and top growth were 0.20 and 0.24 % P, respectively. By contrast, P accumulation increased with increasing P rates, but P distribution between tuber and top growth was dependent on the amount of P applied. The control treatment showed approximately 1:1 distribution of P between top growth and tuber, but as P rate increased, top growth P decreased and tuber P increased. When applying the highest P rate, 36% of P accumulated in the top growth and 64 % in the tuber. The information obtained will permit decisions on the correct use of phosphate fertilizer for potato in Andisols of the Valle de Mexico.  相似文献   

16.
Abstract

Magnesium (Mg) is a nutrient that affects the development of plants and is mainly supplied through liming performed to correct soil acidity. By acting on photosynthesis and influencing carbohydrate partitioning in the plant, supplementary Mg supplied through soil or foliar application can increase the yield and quality of potato (Solanum tuberosum L.) tubers. The aim of this study was to evaluate the effect of supplemental Mg fertilization by soil or foliar application on plant nutritional status, tuber yield, and carbohydrate partitioning in potato crops in soil corrected with calcitic and dolomitic limestones. The experiment was carried out in pots under greenhouse conditions with a randomized block design in a 2?×?3 factorial scheme with four replications. Dolomitic limestone application and supplemental Mg fertilization via soil increased the concentrations of this nutrient in potato leaves. Liming with dolomitic limestone reduced the uptake of Ca and K by plants, but supplemental Mg fertilization did not alter the uptake of Ca, Mg or K. Supplemental Mg fertilization did not increase plant growth and tuber yield, even when calcitic limestone was used to elevate the base saturation to 60%; the exchangeable Mg concentration in soil was 9?mmolc dm?3, and the Ca:Mg relationship was 3.7. Liming with dolomitic limestone or providing supplemental Mg fertilization did not increase sugar and starch partitioning to the tubers.  相似文献   

17.
Abstract

The objective of this study was to suppress potato common scab by lowering the soil pH and increasing the concentration of water-soluble aluminum (Al) in soil with a single application of ammonium sulfate into each row. Superphosphate (P) and potassium sulfate (K) were applied to the surface soil horizon and ammonium sulfate (N) was applied only into the rows along which potato plants were to be planted. By this application method, the soil pH was lowered and the concentration of water-soluble Al was increased in the soil of the rows where potato tubers were grown. Potato common scab was suppressed in the soil containing water-soluble Al in concentrations of 0.2 to 0.3 mg L?1 or higher. The pH of the soil fertilized as indicated above remained lower than that of the control soil to which the mixture of N, P, and K was uniformly applied. In soil types such as Haplic Andosols containing allophane at high concentrations of 71 g kg?1 in Memanbetsu, the suppression of potato common scab by this single application of ammonium sulfate was less effective due to the low soluble Al concentration. In other soil types, the soil pH was easily controlled and common scab was suppressed by this method. The advantages of this method are that (a) it minimizes the use of fertilizers, thus reducing the adverse effects of unnecessary fertilizers on the soil; and (b) it lowers the cost by eliminating additional agricultural chemicals and extra fertilizers.  相似文献   

18.
A potato collecting expedition was carried out in the province of Jujuy, Argentina in March 24 to April 15, 2001. The objective was to collect local cultivars of potatoes and wild potato species, covering high mountain valleys not previously collected or areas where germplasm was not available. A total of 247 accessions was collected, 188 cultivated accessions of S. tuberosum subsp. andigenum, four of Solanum tuberosum subsp. tuberosum, two of S. curtilobum and 53 accessions of wild species. The wild species collected were S. acaule subsp. acaule, S. chacoense, S. infundibuliforme, S. megistacrolobum subsp. megistacrolobum, S. microdontum, S. gourlayi, S. × viirsooi and S. oplocense. Herbarium voucher specimens were obtained when possible. For the collection of cultivated potatoes, tubers were gathered from farmer's fields and in a few cases from stores or markets. Seed samples were generally obtained for the wild species. Detailed collection site data were recorded at every site. After breaking dormancy, the accessions of the cultivated species were screened for the presence of Potato virus Y (PVY), Potato virus X (PVX), Potato leafroll virus (PLRV), Potato virus S (PVS), Potato virus M (PVM), Potato virus V (PVV), Andean potato latent virus (APLV), Andean potato mottle virus (APMoV), Potato rough dwarf virus (PRDV), Potato spindle tuber viroid (PSTVd) and Spongospora subterranea f. sp. subterranea. PSTVd, APLV and PRDV were not detected, but different levels of infection are reported for the other pathogens assayed.  相似文献   

19.
The variation in tuber mineral concentrations amongst accessions of wild tuber-bearing Solanum species in the Commonwealth Potato Collection (CPC) was evaluated under greenhouse conditions. Selected CPC accessions, representing the eco-geographical distribution of wild potatoes, were grown to maturity in peat-based compost under controlled conditions. Tubers from five plants of each accession were harvested, bulked and their mineral composition analysed. Among the germplasm investigated, there was a greater range in tuber concentrations of some elements of nutritional significance to both plants and animals, such as Ca, Fe and Zn (6.7-fold, 3.6-fold, and 4.5-fold, respectively) than others, such as K, P and S (all less than threefold). Significant positive correlations were found between mean altitude of the species’ range and tuber P, K, Cu and Mg concentrations. The amount of diversity observed in the CPC collection indicates the existence of wide differences in tuber mineral accumulation among different potato accessions. This might be useful in breeding for nutritional improvement of potato tubers.  相似文献   

20.
通过田间试验方法,研究了在铅锌矿废水污染的土壤上施用石灰1 a后,继续施用石灰和石灰后效处理对后续第1、2季低累积玉米(Zea mays)的产量以及重金属Cd、Pb、Zn和Cu含量的影响,并分析了土壤pH、土壤DTPA提取态重金属含量和土壤重金属全量的变化。结果表明,连续施用石灰和石灰后效均显著提高玉米产量,其中连续施用石灰处理效果最佳,第1季籽粒产量是对照(无石灰)的6倍,第2季是对照的3.8倍。与对照相比,连续施用石灰处理显著降低了2季玉米籽粒Cd、Pb、Zn和Cu含量,石灰后效只能降低第2季玉米茎叶Cd、Pb和Cu含量,而籽粒Cd、Pb含量与对照相比略有升高,说明石灰后效能维持一年半左右。对照处理土壤Cd和Zn全量显著低于石灰处理,可能是土壤中Cd和Zn随着雨水的淋洗向下层迁移造成的。施用石灰可防止Cd和Zn对地下水的污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号