首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Low and unstable fruit yield, poor quality of fruits, and excessive fruit dropping are major problems in a lime crop and are due to either micronutrient deficiencies or nutrient imbalance. A study was conducted to assess the micronutrient status in a lime orchard at the Central Soil and Water Conservation Research and Training Institute (CSWCRTI)’s research farm in Kota, Rajasthan, India. Plant and soil samples were collected during September and October in 2006–2007. The micronutrients extracted with diethylenetriaminepentaacetic acid (DTPA) in soils were in the order of manganese (Mn) > iron (Fe) > zinc (Zn) > copper (Cu). The mean values of DTPA Mn, Fe, Zn, and Cu in surface soils varied from 13.98 to 22.70, 2.48 to 8.66, 0.79 to 1.19, and 0.14 to 0.46 mg kg?1, respectively, whereas in subsurface soils they varied from 12.94 to 23.06, 4.84 to 6.52, 0.51 to 0.83, and 0.07 to 0.20 mg kg?1, respectively. Results reveal that except for Fe, the other DTPA-extractable micronutrients decreased with depth. Total Mn, Fe, Zn, and Cu in plant leaves varied from 22 to 83, 70 to 630, 40 to 932, and 37 to 3057 mg kg?1, respectively, indicating greater or toxic concentrations of total micronutrient in leaf samples. Total Mn, Fe, Zn, and Cu in petiole samples varied from 7 to 60, 235 to 574, 70 to 827, and 101 to 2623 mg kg?1, respectively. High concentration of Cu and Zn in leaves resulted in Fe and Mn deficiencies (exhibited as leaf chlorosis) in lime plants. Results of the study indicated that Fe and Mn deficiencies are major disorders in lime plantation. Similarly, the measure of DTPA-extractable micronutrients showed the low statuses of Fe and Cu and marginal status of Zn in soils along the Chambal region.  相似文献   

2.
Lowland or flooded rice is mainly responsible for about 76% of total rice production at global level, yet information on micronutrient requirements for this crop is limited. Six greenhouse experiments were conducted at the National Rice and Bean Research Center of EMBRAPA, Santo Antônio de Goiás, Brazil, to determine requirements of zinc (Zn), copper (Cu), boron (B), molybdenum (Mo), manganese (Mn), and iron (Fe) for lowland rice grown on a Brazilian Inceptisol. The levels of micronutrients used were Zn (0, 10 20, 40, and 80 mg kg?1), Cu (0, 5, 10, 20, and 40 mg kg?1), B (0, 5, 10, 20, and 40 mg kg?1), Mo (0, 2, 4, 8, and 16 mg kg?1), Mn (0, 50, 100, 300, and 600 mg kg?1), and Fe (0, 250, 500, 1000, and 2000 mg kg?1). Grain yield was significantly increased in a quadratic fashion with the addition of Zn, Cu, B, Mo, Mn, and Fe. The adequate rates of micronutrients for maximum grain yield were Zn 33 mg kg?1, Cu 25 mg kg?1, B 26 mg kg?1, Mo 10 mg kg?1, Mn 250 mg kg?1, and Fe 1269 mg kg?1. In addition to grain yield, plant height, straw yield, panicle density, and root growth of lowland rice were also improved with the addition of most of these micronutrients. Improvement in root growth has special significance in improving nutrient-use efficiency under nutrient-stress conditions. Micronutrient-use efficiency (grain yield per unit nutrient applied) was in the order of Cu > Zn > Mn > Fe > Mo > B.  相似文献   

3.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

4.
Manganese (Mn) deficiency is a widespread crop micronutrient disorder. The aim of this work was to evaluate two NPK fertilizers coated with Mn that eliminate the specific labor cost for applying Mn and that allow the correction of Mn deficiency in wheat (Triticum aestivum L.). Two Mn sources [MnSO4 and Mn‐lignosulfonate (MnLS)] were compared as NPK coatings at doses of 0.1, 0.3, and 1.0% (w/w) in hydroponic, perlite, and soil pot cultures under growth chamber and greenhouse conditions with wheat to evaluate the effects on dry matter production and Mn concentrations. For the NPK+MnLS product, 52–63% of the total Mn remained in solution at calcareous conditions. However, the NPK+MnSO4 product was able to maintain only 14–25% of the total Mn added in solution. As expected, the MnLS product resulted in higher Mn concentrations in shoots than the MnSO4 product due to the Mn complexation by lignosulfonate which preserved Mn from precipitation and maintained it available for plants. In the experiment with perlite as growth substrate, at low Mn dose (0.1% Mn) a similar Mn concentration in wheat shoots was found (57 mg kg?1 DW for the MnSO4 coating versus 72 mg kg?1 DW for MnLS coating), but at the highest dose (1.0% Mn) the NPK+MnLS showed a significant increase in shoot Mn concentration (167 versus 132 mg kg?1 DW). Soil application of coated NPK products showed similar Mn concentrations in shoots with both Mn sources (29–37 mg kg?1 DW), except for the NPK+MnSO4 (0.1%) treatment (only 18 mg kg?1 DW). Based on the recommended Fe/Mn values (Fe : Mn ratio = 1.5–2.5) given in the literature for plants with a correct nutrition, only the NPK+MnLS (0.3%) fulfilled this ratio (Fe : Mn = 2.5).  相似文献   

5.
This study assessed the accumulation of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the sediment and biomass of P. australis (Cav.) Trin. ex Steud. in a combined constructed wetland (CW) designed for the treatment of domestic wastewater of 750 population equivalents. The CW consists of two vertical subsurface flow (VSSF) reed beds followed by two horizontal subsurface flow (HSSF) reed beds. The sediment in the VSSF reed bed was contaminated with Cu (201 ?±? 27 mg kg?1 DM) and Zn (662 ?±? 94 mg kg?1 DM) after 4 years of operation. Concentrations of Cd, Cu, Pb and Zn in the sediment generally decreased along the treatment path of the CW. On the contrary, higher Al, Cr, Fe, Mn and Ni concentrations were observed in the sediment of the inlet area of the HSSF reed bed. Redox conditions were presumably responsible for this observed trend. Metal concentrations in the reed biomass did not show excessive values. Accumulation in the aboveground reed biomass accounted for only 0.5 and 1.4% of, respectively, the Cu and Zn mass load in the influent. The sediment was the main pool for metal accumulation in the CW.  相似文献   

6.
ABSTRACT

Partial replacement of synthetic chemical fertilizers by naturally occurring alternatives is environmentally recommended. Feldspars (F), quartz silica (S), and zeolites (Z) are silicon (Si)-rich minerals that may be utilized as Si fertilizers. This study aims to assess the agronomic efficiency (AE) of the mentioned minerals as Si fertilizers and to estimate Si-use efficiency (Si-UE) in sandy soil. A field experiment was carried out (summer seasons of 2016 and 2017) in which F, S, and Z were mixed with surface soil in an application rate 500 mg kg?1 soil with and without potassium humate (K-H, 2 mg kg?1 soil). Treatments were distributed in a complete randomized block design (CRBD) with three replicates including control before cultivation of soybean (Glycine max L.). Yield (kg ha?1) of soybean, available Si (mg kg?1) in soil and uptake (mg kg?1) of N, P, K, Cu, Fe, Mn, Zn, and Si by soybean seeds and straw were estimated. The most significant increase was by 67.87% followed by 38.69% was recorded for the S and S K-H treatments, compared to the control. Same treatments showed nonsignificant decrease in the available Si (mg kg?1) that may refer to partial replenishment of plant available Si (PAS) in soil and avoid significant deficiency. Silica treatments resulted in the most significant increase in the uptake (mg kg?1 soil) of Si, N, P, K, Cu, Fe, Mn, and Zn by seeds and almost by straw. Silica was more efficient agronomically than feldspar and zeolite. Absorption of more biocompatible Si-organo species may depend on Si source.  相似文献   

7.
Knowledge of differentiation of pollutants in urban runoff between dissolved and particulate matter is of great concern for a successful design of a water treatment process. Seasonal variations in pollutant load are of equal importance. Ten metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), as dissolved and particulate bound, was studied in the runoff from a major urban highway during a winter season and its following summer. Studded tyres and winter salting were expected to have an impact on the runoff water quality. The dissolved part of Al, Cd, Co, Cr, Mn and Ni was significantly higher in winter in comparison with summer (p?<?0.01). For Fe, however, the dissolved part was lower during winter. No significant difference was found for Cu, Pb and Zn between the two seasons. The mass concentration (mg kg?1) for all metals was significantly higher over the summer except for Al and Co, which showed a higher mass concentration during the winter. The concentration of selected metals vs. total suspended solids (TSS) showed a linear relationship (r 2?>?0.95) during winter runoff events except for Cd. A good correlation (r 2?>?0.90) was also found for the summer period for Al, Cu, Fe, Mn, Ni and Zn. It is suggested that the metal pollutant load during winter could be assessed indirectly by measurement of TSS.  相似文献   

8.
Environmental damages like forest decline in Northern Slovakia could be a result of long-distance transport of pollutants with the dominating north-west winds. On 10 sites, primarily in the northbound upper slopes of west-east oriented mountain ranges in Northern Slovakia, the extent of the heavy metal contamination in soils along a north-south transect was examined. Oi, Oe, Oa, A, and B horizons were sampled and the total concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined. The ranges of heavy metal concentrations in the forest floor were higher than reported for comparable samples from Bavarian soils except for Zn (Cd: 0.65–1.77; Cr: 12–40; Cu: 19–41; Ni: 8–24; Pb: 70–187; Zn: 31–92 mg kg?1), in the mineral soil the concentrations were lower. The depth distribution of the metal concentrations indicated a contamination with Cd, Cr, Cu, Ni, Pb, and Zn. The concentration differences between forest floor and mineral soil tended to be higher at the northern than at the southern sites for Cu, Ni, Pb, and Zn, indicating a long-distance transport from the north. Correlation and principal component analyses of the total metal concentrations revealed three groups: Cu, Pb, and Zn inputs mainly seemed to result from long-distance transport from the north, Cr and Ni inputs additionally from local sources. Cd probably had its origin mainly in local sources. This result was further confirmed by the grouping of the sites when clustered.  相似文献   

9.
The suitability of two composted solid urban wastes for crop production was evaluated in a pot experiment with sorghum (Sorghum bicolor) that focused on the geochemical fractions, bioavailability, and phytotoxicity of copper (Cu), manganese (Mn), and zinc (Zn). Total concentrations of Cu, Mn, and Zn in soil increased with increasing waste application, ranging from 1.6 to 48.2 mg kg?1 for Cu, 84 to 474 mg kg?1 for Mn, and 13.8 to 597 mg kg?1 for Zn. Waste application significantly increased pH and electrical conductivity (EC) of the soil. Copper, Mn, and Zn in the waste-amended soil were speciated into mobile (F1), easily mobilizable (F2), occluded in Mn oxides (F3), organically bound (F4), occluded in amorphous Fe oxides (F5), occluded in crystalline Fe oxides (F6), and residual (F7) fractions to assess the lability of the metals. On the average, the F4 was the most dominant Cu and Zn fraction, accounting for between 37 and 60% of total Cu and from 14 to 40% of total Zn concentrations, whereas F3 was the dominant Mn fraction closely followed by F4. The concentrations of Cu, Mn, and Zn in sorghum dry matter (DM) decreased with increasing waste application, probably induced by osmotic stress and ionic toxicity. Tissue Zn (Y-Zn) and Mn (Y-Mn) correlated significantly with the F1 and F2 fractions, but pH was an overriding factor in predicting Cu and Zn bioconcentration. Used as soil amendments, the application rate for these Zaria urban wastes should be limited to ≤10% (w/w basis), as Zn in the sorghum tissue reached the toxic limit just from one application of the waste to soil.  相似文献   

10.
Industrial soils near Zn–Pb mines and metallurgical plants in the vicinity of Olkusz (southern Poland) are exposed to high environmental stress related to heavy metal pollution (Zn, Pb, Cd, Mn, Fe, Tl and As) from waste disposal sites and primary ores. X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectrometry analyses (EDS) and Atomic Absorption Spectroscopy (AAS) were used to analyse rhizosphere soil samples from the area. The mineral composition of the rhizosphere soils was determined. Carbonates of lead, cadmium and zinc, arsenic–lead sulphosalts and other minerals occurring on the root epiderm are described. Mineral aggregates of secondary origin include polymineralic spherules containing high concentrations of Zn (up to 2.3%), Pb (up to 0.7%), Fe (up to 23%), Cd (up to 427 mg kg?1) and Tl (up to 139 mg kg?1). Processes on the rhizoplane, and in the zone where plant-root exudation solutions are active, promote the crystallization of metalliferous minerals. ESEM is recommended as an efficient method for examining alteration occurring in the rhizosphere environment.  相似文献   

11.
Metal (Cu, Mn, Ni, Zn, Fe) concentrations in marine sediment and zooplankton were investigated in Izmir Bay of the Eastern Aegean Sea, Turkey. The study aimed to assess the levels of metal in different environmental compartments of the Izmir Bay. Metal concentrations in the sediment (dry weight) ranged between 4.26–70.8 μg g?1 for Cu, 233–923 μg g?1 for Mn, 14.9–127 μg g?1 for Ni, 25.6–295 μg g?1 for Zn, 12,404–76,899 μg g?1 for Fe and 38,226–91,532 μg g?1 for Al in the Izmir Bay. Maximum metal concentrations in zooplankton were observed during summer season in the inner bay. Significant relationships existed between the concentrations of certain metals (Al, Fe, Mn and Ni) in sediment, suggesting similar sources and/or similar geochemical processes controlling such metals. Higher concentrations of Cu, Zn and percent organic matter contents were found in the middle-inner bays sediments. Based on the correlation matrix obtained for metal data, organic matter was found to be the dominant factor controlling Cu and Zn distributions in the sediment. In general, mean Cu and Zn levels in the bay were above background concentrations in Mediterranean sediments. Zooplankton metal concentrations were similar to sediment distributions.  相似文献   

12.
Desilication and leaching are processes that accompany plinthilization, leading to nutrient depletion. Soils from 12 profiles in a plinthitic landscape were analyzed for extractable micronutrients [iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)]. Soils of the landscape from crestal to lower‐slope position contain plinthite in the profile, whereas those of the valley floor are devoid of plinthite. The micronutrients were extracted using diethylenetriaminepentaacetic acid (DTPA) and 0.1 M hydrochloric acid (HCl). The results showed that 0.1 M HCl extracted more of the micronutrients than DTPA. The DTPA‐extractable Fe, Zn, Mn, and Cu in all the soils ranged from 1.15 to 12.44 (mean, 3.69); 0.71 to 2.75 (mean, 1.86); trace 12.44 (mean, 3.35), and trace 3.76 (mean, 0.63) mg kg?1, respectively. The DTPA‐extractable micronutrient contents were generally greater than the critical available level (4.5 mg kg?1 for Fe, 0.8 mg kg?1 for Zn, 1.0 mg kg?1 for Mn, and 0.2 mg kg?1 for Cu). The 0.1 M HCl‐extractable micronutrients in the landscape ranged from 8.00 to 30.40 (mean, 15.19); 0.30 to 6.49 (mean, 1.35); 1.00 to 27.20 (mean, 7.74); and 0.26 to 15.0 (mean, 2.77) mg kg?1 for Fe, Zn, Mn, and Cu, respectively. Both DTPA‐ and 0.1 M HCl‐extractable micronutrients were generally lower in the plinthitic horizons than in the nonplinthitic horizons and higher in the Ap than the subsoil horizons. Correlation analysis showed a significant relationship between DTPA‐Fe and DTPA‐Mn, Cu, and organic carbon (r = 0.913**, 0.411**, and 0.385**). There was a significant and positive relationship between 0.1 M HCl‐extractable Mn and organic carbon (C), total nitrogen (N), and available phosphorus (P) (r = 0.413**, 0.337**, and 0.350**, respectively).  相似文献   

13.
This study provided an insight on improving soil-plant micronutrients availability in response to poultry manure (PM), wheat milling residues (WMR) and urea N (UN) and their integration in wheat–soybean cropping system. The treatments were: control; poultry manure full, PM100; wheat milling residues full, WMR100; urea N full, UN100; PM half and WMR half, PM50+WMR50; UN50+PM50; UN50+WMR50; UN50+PM25+WMR25. All amendments were added at the rate or equivalent to 100 kg total N ha–1. Results indicated that the integrated treatments increased Cu, Fe, Mn and Zn uptake of wheat by 35.7–103%, 48.4–111.1%, 85.2–267.0% and 33.8–128.2%, respectively over control. In soybean the corresponding increase in micronutrient uptake (Cu, Fe, Mn and Zn) was 18.3–60.3%, 27.5–87.4%, 14.1–54.6% and 13.2–58.0% in integrated treatments. The post-harvest soil analysis indicated 2 to 3-fold increase in micronutrient content with highest values in PM100 i.e., 2.66 mg kg?1 for Cu, 14.41 mg kg?1 for Fe, 18.58 mg kg?1 for Mn and 2.44 mg kg?1 for Zn, respectively. The results showed that the PM either alone or in integrated with WMR and UN can be an effective management strategy for improving micronutrient content of soil–plant.  相似文献   

14.
Abstract

A previous study indicated that agricultural biosolid applications increased the concentration of EPA3050‐digestible trace elements in soils on Pennsylvania production farms but could not indicate potential trace‐element environmental availability. This study was conducted to determine if biosolid application had altered the distribution of trace‐elements among operationally defined soil fractions and the relationship of trace element concentrations in soil and crop tissues. Biosolid‐amended and unamended soils from production farms in Pennsylvania were extracted using a modified Bureau Communautaire de Référence (BCR) sequential fractionation technique and analyzed for chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Trace‐element concentrations in crop tissues (soybean silage, sudangrass, corn grain, alfalfa hay, and orchardgrass hay) from the same farms were also determined. Fractionation results indicated that the proportion of Cr, Cu, Ni, Pb, and Zn that is potentially bioavailable is quite small in unamended soils. Biosolid applications significantly (P≤0.1) increased concentrations of Cu in all soil fractions (average increase over unamended soil=1.14, 8.27, 6.04, and 5.84 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively), Ni (0.41, 1.65 mg kg?1 for the reducible and residual fractions, respectively), Pb (5.12 and 1.49 mg kg?1 for the reducible and residual fractions, respectively), and Zn (8.28, 7.12, 4.44, and 8.98 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively) but did not significantly increase Cr in any soil fraction. Concentrations of Cu in all soil fractions were significantly (P≤0.01) correlated with concentrations of Cu in orchardgrass tissue (r=0.70, 0.66, 0.76, and 0.69 for the exchangeable, reducible, oxidizable, and residual soil fractions, respectively). Concentrations of exchangeable and reducible Zn were significantly correlated with Zn in sudangrass tissue (r=0.81 and 0.67), and reducible Zn was significantly correlated with Zn concentrations in orchardgrass tissue (r=0.65). Application of biosolids had little effect on bioavailability of Cr, Ni, or Pb, whereas higher loadings of Cu and Zn led to a shift toward the more labile soil fractions. Loadings of Cu and Zn were much smaller than cumulative loadings permitted under U.S. Environmental Protection Agency (USEPA) Part 503 regulations. Chemical soil fractionation was able to detect increases in labile soil Cu and Zn that relate to increased phytoavailability.  相似文献   

15.
A pot experiment was conducted in a glass house on low nickel containing alluvial soil in the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, during 2012–13 and 2013–14, to study the response of barley to soil application of nickel (Ni). There were ten treatments of Ni (0, 2.5, 5, 10, 15, 20, 30, 40, 50 and 60 mg kg?1) studied with recommended dose of fertilizers nitrogen, phosphorus, potassium and sulfur (N:P:K:S :: 40:30:30:20 mg kg?1).The results showed a significant increase in plant height, number of tillers, chlorophyll content, straw and grain yield, and 1,000 grains weight with application of 10 mg Ni kg?1 soil during both years of study. The micronutrient concentration and uptake in straw and grain increased with application of <15 mg Ni kg?1 soil and beyond that declined significantly. Diethylenetriaminepentaacetic acid-extractable micronutrient iron, manganese, copper, zinc and nickel (Fe, Mn, Cu, Zn and Ni) content in soil increased with increasing level of Ni. The maximum urease activity in post-harvest soil was noticed with application of 40 mg Ni kg?1 soil. The microbial population viz. bacteria, fungi and actinomycetes were higher with 5, 30 and 10 mg Ni kg?1 soil, respectively.  相似文献   

16.
Deficiency of micronutrients increasing in field crops, including upland rice in recent years. The objective of this study was to determine requirement of zinc (Zn), copper (Cu) boron (B) and iron (Fe) for upland rice grown on a Brazilian Oxisol. The levels used were: Zn (0, 10, 20, 40, and 80 mg kg?1), Cu (0, 5, 10, 20 and 40 mg kg?1), B (0, 5, 10, 20 and 40 mg kg?1) and Fe (0, 250, 500, 1000, and 2000 mg kg?1). Plant height, straw yield, grain yield, panicle number and grain harvest index (GHI) were significantly improved with the addition of these micronutrients. Root growth was also improved with the application of micronutrients, except with the addition of B. Maximum grain yield was obtained with the addition of 51 mg Zn, 24 mg Cu, 5 mg B kg?1, and 283 mg Fe kg?1 soil. Similarly, maximum straw yield was obtained with the addition of 38 mg Zn, 17 mg Cu, 6 mg B kg?1, and 1500 mg Fe kg?1 soil. Maximum plant height was obtained with the addition of 54 mg Zn, 10 mg B kg?1, and 1197 mg Fe kg?1 soil. Copper did not affect plant height significantly. Maximum panicle number was obtained with the addition of 22 mg Cu kg?1, 3 mg B kg?1, and 1100 mg Fe kg?1 soil. Zinc did not affect panicle number significantly. Maximum GHI was obtained with the addition of 61 mg Zn kg?1, and 8 mg B kg?1. Zinc was had a linear increase in GHI in the range of 0 to 80 mg kg?1, and Fe showed a negative relationship with GHI.  相似文献   

17.
In the present study, a laboratory experiment was designed to compare the 0.01 M calcium chloride (CaCl2) and diethylenetriaminepentaacetic acid (DTPA) extraction methods for their ability to predict cadmium (Cd), copper (Cu), iron (Fe), Manganese (Mn), nickel (Ni), and zinc (Zn) availability and mobility in five calcareous soils. The soils were spiked with different amounts of metals (0, 50, 100, 200, and 400 mg kg?1) both in binary (Cu and Zn; Ni and Cd; Fe and Mn) and in multi-systems (Cd, Cu, Fe, Mn, Ni, and Zn) and incubated for 1 months at field capacity. In metal-spiked soils, both extraction methods showed a linear relationship of extractable to total metals for all soils. The fraction of total metals extracted by DTPA was much higher than the fraction extracted by CaCl2, which was attributed to the formation of soluble metal-complexes in the complexing extracts calculated by the Visual Minteq program. DTPA extraction method showed higher selectivity for Cu over other metals both in binary and in multi-systems. Different order of metals extractability was found in binary and multi-systems for both extraction methods. Solid/solution distribution coefficient (Kd) was calculated by the ratio of the solid phase to soil solution concentration of metals extracted by CaCl2 or DTPA extraction methods. Both in binary and in multi-systems, the average Kd (l kg?1) of metals by soils were in the order of Mn (5398) > Fe (4413) > Zn (3376) > Cu (2520) > Ni (969) > Cd (350) in the CaCl2-extractable metals and Fe (35) ≥ Ni (34) > Zn (18) > Mn (11.2) > Cu (6.3) > Cd (4) in the DTPA-extractable metals. Results showed that among the six studied metals, Cd had the lowest Kd, implying a relative higher mobility in these calcareous soils. The Visual Minteq indicated that in the CaCl2-extraction method and in both binary and multi-systems the dominant species for Cu, Mn, Ni, and Zn were Cu2+, Mn2+, Ni2+ and Zn2+, respectively, while for Cd and Fe, the dominant species were CdCl+ and Fe(OH)2+, respectively.  相似文献   

18.
Abstract

A range of locally available liming materials of different geological origin, particle size, and application rate were investigated in 15 field sites over a period of 8 years. At 5 sites, lime addition to soils caused average yield losses of 7%. Concentrations of Mn and Cu but not of boron and zinc in grains declined in limed plots. Decline in concentrations of Mn and Cu were significantly correlated with increasing soil pH-values. Crop data indicated that concentrations of Mn and Cu in grains reached low, critical levels. Yields declined at threshold values amounting to 15 mg Mn kg?1 for wheat and barley, 25 mg Mn kg?1 for rye, 30 mg Mn kg?1 for oat, and 3 mg Cu kg?1 for the four cereals.  相似文献   

19.
The objective of this study was to test the suitability of a simple approach to identify the direction from where airborne heavy metals reach the study area as indication of their sources. We examined the distribution of heavy metals in soil profiles and along differently exposed transects. Samples were taken from 10 soils derived from the same parent material along N-, S-, and SE-exposed transects at 0—10, 10—20, and 20—40 cm depth and analyzed for total Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations. The heavy metal concentrations at 0—10 cm were larger than background concentrations in German arable soils except for Cr (Cd: 0.6—1.8 mg kg—1; Cr: 39—67; Cu: 40—77; Ni: 87—156; Pb: 48—94; Zn: 71—129; Fe: 26—34 g kg—1; Mn: 1.1—2.4). Decreasing Cd, Cu, Mn, and Pb concentrations with increasing soil depth pointed at atmospheric inputs. Aluminum and Ni concentrations increased with soil depth. Those of Fe, Cr, and Zn did not change with depth indicating that inputs at most equalled leaching losses. The Pb accumulation in the surface layer (i.e. the ratio between the Pb concentrations at 0—10 to those at 20—40 cm depth) was most pronounced at N-exposed sites; Pb obviously reached Mount Križna mainly by long-range transport from N where several industrial agglomerations are located. Substantial Cd, Cu, and Mn accumulations at the S- and SE-exposed sites indicated local sources such as mining near to the study area which probably are also the reason for slight Cr and Zn accumulations in the SE-exposed soils. Based on a principal component analysis of the total concentrations in the topsoils four metal groups may be distinguished: 1. Cr, Ni, Zn; 2. Mn, Cd; 3. Pb (positive loading), Cu (negative loading); 4. Al, Fe, indicating common sources and distribution patterns. The results demonstrate that the spatial distribution of soil heavy metal concentrations can be used as indication of the location of pollution sources.  相似文献   

20.
Grain legumes, including cowpea, are the cheapest sources of minerals and protein to enhance human nutrition. Cultivar development and deployment of cowpea with increased grain mineral content and protein composition rely on selection of genetically unique and complementary breeding lines. The objective of this study was to assess the grain minerals and protein composition of diverse cowpea collections of eastern, southern and western Africa to select promising parents to develop a breeding population. Twenty-two genetically diverse cowpea genotypes were field evaluated using a randomised complete block design with three replications in two locations in South Africa. The dried grain mineral contents were determined using an Atomic Absorption Spectrophotometre, while the protein content was determined by the combustion method. Analyses of variance showed significant (P?<?0.05) effects of genotypes, locations and their interactions. The test genotypes showed considerable variation for the following nine mineral contents: calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorus (P), and zinc (Zn) varying from 0.07 to 0.12?mg?kg?1; 4.46 to 7.81?mg?kg?1; 0.06 to 0.11?g; 11.82 to 14.45?g; 1.86 to 2.27?g; 9.24 to 13.30?mg?kg?1; 0.26 to 0.80?g; 4.63 to 5.92?g and 0.03.00 to 0.05?g, respectively. Further, the total protein content varied from 23.16 to 28.13%. Significant correlations were detected among some mineral elements and total protein content, suggesting the possibility of simultaneous selection for these traits. The principal component analysis (PCA) identified four principal components (PCs) contributing to 70.93% of the total explained variation amongst genotypes. Overall the following genotypes with desirable grain mineral and protein attributes were selected: IT90K-59 (Ca), 98K-5301 (Ca and protein), ITOOK-1060 (Cu), ITOOK-1217 and IT845-2246 (Fe), Bensogla (K, Na, and P), TVU11424 and ITOOK-1217 (Mg), CH14 (Mn and Na), TVU12637 (Mn) and Glenda and Vuli (Zn). The selected cowpea genotypes are useful genetic resources for population and cultivar development for grain nutrients composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号