首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hydroponic system was designed in which the replenishment of nutrients is proportional to the consumption of nitrate or ammonium by higher plants. Further characteristics of this ‘rhizostat’ are on‐line measurement of nitrate or ammonium, bubble‐free aeration of the culture solution with pure oxygen, and auxostatic pH control at 6.00±0.1. Young sunflowers were grown in the rhizostat for up to 16 days. Leaf area, total fresh weight, root fresh weight, and nutrient demand per day increased exponentially. The rate of nitrate consumption per plant followed a characteristic diurnal pattern with maximal values at the end of the 12‐h photoperiod. After two weeks of growth, about 95% of the inorganic bound nitrogen removed from the nutrient solution was recovered in the biomass of the plants. Growth of sunflower seedlings over two weeks led only to slight but tolerable deviations of macronutrient and trace element concentrations from the formula of the nutrient solution. As expected, nitrate‐grown plants lowered potassium concentration, whereas growth with ammonium resulted in an accumulation of this ion. Other plants successfully grown in the rhizostat have been corn, soybean, sugarcane, tobacco, and spinach.  相似文献   

2.
Cruciferous vegetables contain high levels of vitamins that can act as antioxidants, compounds that may protect against several degenerative diseases. The edible portions of 50 broccoli and 13 cabbage, kale, cauliflower, and Brussels sprouts accessions were assayed to determine variation in alpha-carotene, beta-carotene, alpha-tocopherol, gamma-tocopherol, and ascorbate contents within and between subspecies of Brassica oleracea. Ascorbate content was estimated in fresh samples using HPLC. Tissues for carotene and tocopherol analysis were lyophilized prior to extraction. Carotene and tocopherol concentrations were simultaneously measured using a reverse phase HPLC system. Results indicate that there is substantial variation both within and between subspecies. Kale had the highest levels of vitamins, followed by broccoli and Brussels sprouts with intermediate levels and then by cabbage and cauliflower, with comparatively low concentrations. Variability in vitamin content among the broccoli accessions suggests that potential health benefits that accrue with consumption are genotype dependent.  相似文献   

3.
Dry bean yields (Phaseolus vulgaris L.) were raised to similar levels as the topsoil by manure application to eroded or leveled Portneuf silt loam soil (coarse‐silty mixed mesic Durixerollic Calciorthid). Only soil organic matter and zinc (Zn) content of leaf tissue were correlated with improved yields. Manure application increased mycorrhizal colonization and Zn uptake in pot experiments with dry bean which would explain the increased yields in the field. A field study was conducted to see if similar effects of manure and mycorrhizal colonization could be observed in field grown spring wheat (Triticum aestivum L.) and sweet corn (Zea mays L.). This study was conducted on existing experiments established in the spring of 1991 at the USDA‐ARS farm in Kimberly, Idaho, to study crop rotation/organic matter amendment treatments on exposed subsoils and focused on mycorrhizal colonization as related to topsoils and subsoils treated with conventional fertilizer (untreated) or dairy manure. Mycorrhizal root colonization was higher with untreated than with manure‐treated wheat and sweet corn. Root colonization was also higher in subsoil than in topsoil for wheat, but there were no differences between soils for sweet corn. Shoot Zn and manganese (Mn) concentrations generally increased with increased root colonization for both species (except between soils with corn Mn contents). Wheat shoot potassium (K) concentration was increased by manure application, but the affect declined with time, was the opposite of colonization and was not observed with sweet com. Phosphorus (P), calcium (Ca), magnesium (Mg), iron (Fe), and copper (Cu) concentrations either were not influenced or were erratically affected by mycorrhizal colonization. Yields of wheat were highest for manure‐treated subsoil and topsoil compared to untreated soils. Mycorrhizal colonization was different between conventional and manure‐treated soils and between topsoil and subsoil and these differences increased Zn and Mn uptake, but they did not explain the improvement in wheat yields obtained with manure application.  相似文献   

4.
Clerodendrum thomsoniae plants were grown in silica sand culture to induce and photograph nutritional disorder symptoms. Plants were grown with a complete modified Hoagland's all nitrate solution. The nutrient deficiency treatments were induced with a complete nutrient formula minus one of the nutrients. Boron toxicity was also induced by increasing the element ten times higher than the complete nutrient formula. Reagent grade chemicals and deionized water of 18-mega ohms purity were used to formulate treatment solutions. The plants were automatically irrigated and the solution drained from the bottom of the pot and captured for reuse. The nutrient solutions were completely replaced weekly. Plants were monitored daily to document and photograph sequential series of symptoms as they developed. Typical symptomology of nutrient disorders and critical tissue concentrations are presented. Plants were harvested for nutrient analysis when initial symptoms were expressed. Nutrient deficiency symptoms were described and foliar nutrient concentrations provided.  相似文献   

5.
Two rates of broiler litter (20 and 40 mt/ha) were compared to recommended rates of inorganic nitrogen (N), phosphorus (P), and potassium (K) in a double cropping system of spring sweet corn (Zea mays L. ‘Silverqueen') and fall broccoli (Brassica oleracea L, ‘Southern Comet')‐ Sweet corn matured one week earlier both years when fertilized with 40 mt/ha of broiler litter compared to commercial fertilizer. The early maturity may be due to improved P nutrition. Similar or higher yields of fall broccoli were produced with broiler litter following sweet corn than with commercial fertilizer.  相似文献   

6.
Contents of total and individual glucosinolates of mini broccoli cv. Milady and mini cauliflower cv. Clarke were assessed to determine the effect of modified atmosphere packaging on postharvest glucosinolate dynamics of mixed mini Brassica vegetables. Therefore, mixed-packaged mini broccoli and mini cauliflower stored in food trays sealed with two different microperforated biaxial-oriented polypropylene films for up to 7 days at 8 degrees C were analyzed. The results indicate that modified atmosphere at 8% O2 + 14% CO2 was a suitable gaseous combination to maintain aliphatic and indole glucosinolates in mini broccoli for 7 days after an initial decrease at 4 days. In contrast, modified atmosphere at 1% O2 + 21% CO2 resulted in the best retention of indole glucosinolates of mini cauliflower for 7 days and also of aliphatic glucosinolates after an initial decrease at 4 days. Thus, to maintain glucosinolates and external appearance and to prevent off-odor, mini broccoli and mini cauliflower should be packed separately in suitable altered gas composition.  相似文献   

7.
Nineteen bush bean cultivars were screened for tolerance to excess Mn in nutrient solution and sand culture experiments. Seven‐day‐old seedlings were treated with full strength Hoagland No. 2 nutrient solution containing different Mn concentrations for 12 days in the greenhouse.

Cultivars showing the greatest sensitivity to Mn toxicity were ‘Wonder Crop 1’ and ‘Wonder Crop 2'; those showing the greatest tolerance were ‘Green Lord’, ‘Red Kidney’ and ‘Edogawa Black Seeded’.

Leaf Mn concentration of plants grown in sand culture was higher than that for plants grown in solution culture. The lowest leaf Mn concentration at which Mn toxicity symptoms developed, was higher in tolerant than in sensitive cultivars. The Fe/Mn ratio in the leaves at which Mn toxicity symptoms developed, was higher in the sensitive cultivars than in the tolerant ones.

We concluded that Mn tolerance in certain bush bean cultivars is due to a greater ability to tolerate a high level of Mn accumulation in the leaves.  相似文献   


8.
Using a nutrient solution with nitrate-nitrogen, a strong interaction between iron and phosphorus uptake in water culture was observed. Iron chlorosis could be prevented only by a very high supply of iron-III-hydroxide or a very low supply of phosphorus, both of which resulted in a normal chlorophyll content but produced plants deficient in phosphorus. However when iron and phosphorus were supplied to separate root zones (split-root technique), iron-III-hydroxide was a satisfactory source of iron for corn plants even in water culture. In contrast to corn plants grown in water culture, plants in sand culture (quartz sand) with the same nutrient solution utilized iron-III-hydroxide just as well as iron chelate, even when high phosphorus concentrations were simultaneously present. Using 59Fe and circulating the nutrient solution through the sand culture, it could be demonstrated that the mobilization of iron from iron-III-hydroxide is restricted to the root-sand (iron-III-hydroxide) interface (rhizosphere) without increasing the amount of soluble iron in the bulk substrate. The depletion of phosphorus around the roots in sand seems to be particularly responsible for this “substrate effect” in the utilization of iron-III-hydroxide. The uptake of phosphorus and iron in sequence along a root growing in a solid substrate could be important in the iron nutrition of “iron-inefficient” plant species such as corn growing in soils of high pH.  相似文献   

9.
Verticillium wilt is an increasing problem in European cauliflower production. In this study, several crop residues were screened for their ability to reduce the viability of microsclerotia when incorporated into soil. In addition, the role of fungitoxic volatiles and lignin in the crop residue-mediated reduction in microsclerotia viability was studied.Broccoli (Brassica oleracea var. italica), cauliflower (B. oleracea var. botrytis), Indian mustard (Brassica juncea), ryegrass (Lolium perenne) and corn (Zea mays) were incorporated in naturally infested soil samples collected from two cauliflower fields in Belgium, labelled Is1 and S3. The effectiveness in reducing the viability of microsclerotia depended on the soil sample and on the type of residue. In the Is1 soil, broccoli, cauliflower and ryegrass incorporation significantly reduced the inoculum level by more than 90%, while Indian mustard significantly reduced numbers of viable microsclerotia by 50%. In the S3 soil, broccoli, cauliflower and Indian mustard were not effective, whereas ryegrass and corn incorporation reduced the microsclerotia level by 50% or more. In conclusion, incorporation of ryegrass and corn was more effective than incorporation of crucifer residues.In the conditions tested, fungicidal volatile compounds did not play an important role in Verticillium microsclerotia reduction in soil. Volatiles from broccoli and cauliflower did not affect microsclerotia viability in an in vitro bioassay, whereas the volatiles from Indian mustard killed the microsclerotia. Indian mustard incorporation in soil, however, only had a minor effect on microsclerotia viability.In the S3 soil, 1% (w/w) Kraft pine lignin, a waste product of the paper industry, had to be added to observe a significant reduction on the viability of microsclerotia, whereas in the Is1 soil, a significant effect was observed when 0.1% (w/w) Kraft pine lignin was added. Acid-insoluble lignin was extracted from all crop residues previously tested. Crop residues with high lignin content seemed to be more effective than crop residues with low lignin content. The reduction of Verticillium microsclerotia viability depended on lignin type and on crop structure, since lignin extracted from cauliflower leaves was more effective than lignin extracted from cauliflower stems and corn leaves were more effective than corn roots. Microsclerotia reduction was higher after fresh residue incorporation than after incorporation of their extracted acid-insoluble lignin, indicating that the effect of crop residue incorporation on microsclerotia viability cannot be explained solely by the effects of lignin.Incorporation of lignin-rich substrates in soil may open up new perspectives for integrated control of Verticillium.  相似文献   

10.
Accelerated soil erosion can impact upon agronomic productivity by reducing topsoil depth (TSD), decreasing plant available water capacity and creating nutrient imbalance in soil and within plant. Research information on soil‐specific cause – effect relationship is needed to develop management strategies for restoring productivity of eroded soils. Therefore, two field experiments were established on Alfisols in central Ohio to quantify erosion‐induced changes in soil properties and assess their effects on corn growth and yield. Experiment 1 involved studying the effects of past erosion on soil properties and corn yield on field runoff plots where soil was severely eroded and comparing it with that on adjacent slightly eroded soil. In addition, soil properties and corn grain yield in runoff plots were compared on side‐slopes with that on toe‐slopes or depositional sites. Experiment 2 involved relating corn growth and yield to topsoil depth on a sloping land. With recommended rates of fertilizer application, corn grain yield did not differ among erosional phases. Fertilizer application masked the adverse effects of erosion on corn yield. Corn grain yield on depositional sites was about 50 per cent more than that on side‐slope position. Corn plants on the side‐slope positions exhibited symptoms of nutrient deficiency, and the ear leaves contained significantly lower concentrations of P and Mg and higher concentrations of Mn and K than those grown on depositional sites. Corn grain yield in experiment 2 was positively correlated with the TSD. Soil in the depositional site contained significantly more sand and silt and less clay than that on the side‐slope position. There were also differences in soil properties among erosional phases. The soil organic carbon (SOC) content was 19\7 g kg−1 in slightly eroded compared with 15\1 g kg−1 in severely eroded sites. Aggregate stability and the mean weight diameter (MWD) were also significantly more in slightly eroded than severely eroded soils. Adverse effects of severe erosion on soil quality were related to reduction in soil water retention, and decrease in soil concentration of N and P, and increase in those of K, Ca and Mg. Severe erosion increased leaf nutrient contents of K, Mn and Fe and decreased those of Ca and Mg. Corn grain yield was positively correlated with aggregation, silt and soil N contents. It was also negatively correlated with leaf content of Fe. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Nutritional deficiencies in Dioscorea esculenta (Lour.) Burk were studied using a novel culture system, applying a constant water table in acid‐washed sand, and a demand‐driven nutrient supply schedule. This system provided a stable growth environment and was highly efficient with respect to resources and labor. Yam plants (cv. Balbal) were propagated from 30 g tuber head setts and grown for 12 or 20 weeks, with nutrients supplied in the water reservoir to meet demand according to weekly leaf counts. Deficiencies of nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur were induced by reducing supply of the relevant nutrient to one tenth of normal. Deficiencies of iron, boron, manganese, zinc, copper, and molybdenum were induced by omitting the relevant nutrient from the culture medium. After 12 weeks, leaf blades of the main stem were sampled from four positions (immature, young expanded, mid, and old) weighed and analyzed for nutrient concentration, and dry weight of plant parts was recorded. Significant growth reduction was achieved for each deficiency except Fe, Zn, Cu, and Mo, which nonetheless developed some foliar symptoms. Effects on nutrient concentrations in leaves are reported, providing concentrations indicative of adequate and deficient status. Dioscorea esculenta was found to be particularly sensitive to Mn deficiency, although symptom presentation was atypical. Unusually low translocation of phloem‐mobile nutrients was also observed, paralleling reported observations on D. alata.  相似文献   

12.
Mycorrhizal (+VAM) and nonmycorrhizal (‐VAM) maize (Zea mays L.) plants were grown in sand culture in a greenhouse to determine effects of MES [2(N‐morpholino)‐ethanesulfonic acid] (2.0 mM) and pH (4.0, 5.0, 6.0, and 7.0) on mineral nutrient uptake. Plants were inoculated with the vesicular‐arbuscular mycorrhizal (VAM) isolate Glomus intraradices UT143. Shoot and root dry matter yields were lower in plants grown with MES (+MES) than without MES (‐MES), and decreased as pH increased. Shoot concentrations of N, Ca, Mg, Mn, and Zn were generally higher in +MES than in ‐MES plants, and nutrient contents of most nutrients were generally higher in + MES than in ‐MES plants. Concentrations of N, Ca, Mg, and Mn increased and P, S, and Fe decreased, while contents of all measured nutrients except Mn and Zn decreased as pH increased. Concentrations of Mn, Fe, Zn, and Cu were higher in +VAM than in ‐VAM plants, and contents of P and Ca were higher in ‐VAM than in +VAM plants and Zn content was higher in +VAM than in ‐VAM plants. MES had marked effects on mineral nutrient uptake which should be considered when MES is used to control pH of nutrient solutions for growth of maize.  相似文献   

13.
There is lack of information available concerning the effect of humic substances (HS) applied via fertigation on plant growth in sandy soils. Therefore, a field experiment was carried out at El‐Saff district (20 km southwest of Cairo), Egypt, to investigate the role of HS fertigation on water retention of a sandy soil, yield and quality of broccoli (Broccoli oleracea L.) as well as on soil nutrient concentration retained after harvest. The experiment consisted of six fertigation treatments (50%, 75%, and 100% of the recommended NPK‐fertilizer rate for broccoli combined with and without HS application at 120 L ha–1) in a complete randomized block design with three replicates. Humic substances affected spatial water distribution and improved water retention in the root zone. Furthermore, application of HS increased total marketable yield and head diameter of broccoli as well as quality parameters (i.e., total soluble solids, protein, and vitamin C). Higher nutrient concentrations were found in the broccoli heads and concentrations of plant‐available nutrients in soil after harvesting were also higher, indicating an improvement in soil fertility. In conclusion, HS fertigation can be judged as an interesting option to improve soil water and nutrient status leading to better plant growth.  相似文献   

14.
Abstract

A nutrient solution‐sand culture study was conducted in a greenhouse to evaluate the response of 35 soft red winter wheat varieties to S. Wheat seedlings were grown for 35 days in sand that was leached every other day with complete nutrient solution containing 0, 1 or 5 mg SO4‐S L‐1. Herbage yield of 5‐week‐old wheat plants was increased an average of fourfold as the level of s in solution was increased from 0 to 5 mg L‐1. The concentration of S in the herbage was increased an average of three‐fold as the concentration of s was increased from 0 to 5 mg L‐1. Differences were observed among varieties for both dry matter and the concentration of S in plant tissue. However, differences among varieties were not consistent at all three levels of s in solution. Sulfur concentration in wheat herbage explained only 24% of the variability in wheat herbage yield. The study did allow for a general grouping of varieties giving the highest, lowest and intermediate yields. Concentrations of Mg, Cu, P, Fe, Mn and Zn were also affected by the level of SO4‐S.  相似文献   

15.
A systematic approach was adopted to investigate the nutrient limiting factors in gray-brown purple soils and yewwlow soils derived from limestone in Chongqing,China,to study balanced fertilixation for corn,sweet potato and wheat in rotation. The results showed that N,P and K were deficient in both soils, Cu,Mn S and Zn in the gray-brown purple soils and Ca,Mg,Mo and Zn for the yellow soils. Balanced fertilizer application increased yields of corn,sweet potato and wheat by 28.4%,28.7% and 4.4%, respectively, as compared to the local farmers‘ practice. The systematic approach can be considered as one of the most efficient and reliable methods in fertility study.  相似文献   

16.
Abstract

The nutritional profile of sweet sorghum [Sorghum bicolor (L.) Moench] cultivars grown under acid soil field stress conditions is a critical consideration when developing plants which are adapted to these infertile soils. Uptake and accumulation of macro‐ and micronutrients vary among genotypes and ultimately Influence plant growth and development. This study compared fourteen sweet sorghum germplasm lines and varieties for their Individual patterns of leaf nutrient concentrations and productivity when grown under acid soil field conditions (pH 4.45 to pH 4.85) at three locations over a two‐year period. Significant year x location interactions were found for Fe, K, and Ca concentrations at both Blairsville and Calhoun and for Mn and P levels at Blairsville and Calhoun, respectively. Data from Calhoun on plant height, dry weight, visual stress ratings, and rainfall indicate a possible association between drought tolerance and acid soil tolerance in sorghum. No significant differences in A1 concentrations were found among these sweet sorghum lines and varieties, which indicate that their acid soil tolerance mechanisms are probably not related to A1. MN 1054 accumulated the highest levels of Mn in the three acid soils. The highest concentrations of Mg and P were found in Brandes. MN 960 had the highest visual stress ratings (highest susceptibility) while Brandes, Ramada, Roma, and Wray were the most tolerant. All fourteen cultivars apparently have some tolerance to acid soil stress conditions.  相似文献   

17.
A study was conducted to determine the toxicity level of nickel using cauliflower (Brassica oleracea L. var. botrytis) cv. Snowball grown in refined sand with complete nutrient solution for 79 days. At day 80, plants were separated into three lots. One lot was treated as the control (0.0001 mM Ni) while other two lots were supplied with excess nickel (Ni) at 0.1 and 0.5 mM. The toxicity symptoms of Ni appeared as chlorosis of young leaves. No curd was formed at 0.5 mM Ni supply. Excess Ni decreased biomass, chlorophyll, Hill reaction activity, and carbohydrate fraction, and enzyme activities of catalase, peroxidase, and acid phosphatase in leaves. Excess Ni increased concentration of starch, phenol, and nonprotein nitrogen and decreased protein nitrogen in leaves. Increase in Ni supply increased Ni concentration in all parts of cauliflower, whereas the concentration of phosphorus, sulfur, iron, and manganese decreased significantly.  相似文献   

18.
广东省甜玉米/大豆间作模式的效益分析   总被引:13,自引:2,他引:11  
过田间试验, 研究了甜玉米/大豆间作对甜玉米产量、主要农艺指标、养分利用率和光能利用率的影响。结果表明, 甜玉米/大豆间作模式的土地当量比大于1(1.07), 说明甜玉米/大豆间作具有一定的产量优势;与单作相比, 间作甜玉米千粒重提高17.88%, 差异显著; 甜玉米/大豆间作群体经济效益提高24.08%, 养分利用率提高54.09%, 两指标的差异达到极显著水平; 生长后期, 间作对甜玉米光能利用体现出一定的正效应, 播后55 d间作甜玉米光能利用率较单作增加28.44%。甜玉米/大豆间作不仅可改善作物群体结构, 提高自然资源利用率, 而且可减少化肥施用量, 具有显著的经济和环境效益。  相似文献   

19.
Abstract

Long‐term effects of alternate tillage systems on soil‐test values for Coastal Plain soils were unknown. Therefore, soil pH, organic carbon, and Mehlich I extractable P, K, Ca, and Mg concentrations measured during an eight‐year tillage study on Norfolk loamy sand (fine‐loamy, silicious, thermic, Typic Paleudults) have been summarized. Yields for corn (Zea mays L.), wheat (Triticum aestivum L.), and soybean [Glycine max (L.) Merr.] are also summarized to provide an indication of nutrient removal by the crops. Soil‐test measurements after six years showed no significant differences in Mehlich I extractable nutrient concentrations for the 0‐ to 20‐cm depth between disked (conventional) and nondlsked (conservation) tillage treatments, but for pH, P, Ca, and Mg, the tillage by depth of sampling interaction was significant at P‐0.05. Stratification did not appear to affect crop yield. Soil organic matter concentration in the Ap horizon nearly doubled after eight years of research at this site. This change occurred within both tillage treatments, apparently because high levels of management produced good crop yields, residues were not removed, and even for the disked treatment, surface tillage was not excessive. These results show that long‐term average yields for corn and soybean on Norfolk soil will not be reduced by adopting reduced or conservation tillage practices. They also show that nutrient levels can be maintained at adequate levels for crop production on Coastal Plain soils by using current soil‐test procedures and recommendations for lime and fertilizer application.  相似文献   

20.
’Dormanred’ raspberry (Rubus species) plants grown in sand culture were subjected to varying concentrations of N, Ca, and Mg over a two‐year period. Increasing nitrogen fertilization resulted in linear reductions of leaf Ca, K, Zn, Fe, and Mn but did not affect leaf Mg. Leaf Ca and K increased linearly with Ca fertilization, but applied Ca had an antagonistic influence on leaf Mg. Magnesium fertilization had a positive influence on leaf Mg but negatively affected leaf K, Ca, and Mn. Plant growth was negatively correlated with leaf Ca and leaf K, but had a positive correlation with leaf Mg and Mn. Nitrogen fertilization increased plant growth up to the mid‐level of applied N, but additional N reduced plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号