首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Leaf samples were collected from upper and lower crown positions at three times during the 1971 and 1972 growing seasons for planted black walnut (Juglans nigra L.) trees on the Kaskaskia Experimental Forest in Hardin County, Illinois. The average dry weight of leaves was affected by crown position and time of year. Foliar concentrations of N, P, K, Ca, and Mg were affected by season, but not by crown position. The content of all elements tested and the concentrations of Ca and Mg increased with season while concentrations of N, P, and K decreased as the season progressed. Suggestions for sampling dates are given.  相似文献   

2.
’Dormanred’ raspberry (Rubus species) plants grown in sand culture were subjected to varying concentrations of N, Ca, and Mg over a two‐year period. Increasing nitrogen fertilization resulted in linear reductions of leaf Ca, K, Zn, Fe, and Mn but did not affect leaf Mg. Leaf Ca and K increased linearly with Ca fertilization, but applied Ca had an antagonistic influence on leaf Mg. Magnesium fertilization had a positive influence on leaf Mg but negatively affected leaf K, Ca, and Mn. Plant growth was negatively correlated with leaf Ca and leaf K, but had a positive correlation with leaf Mg and Mn. Nitrogen fertilization increased plant growth up to the mid‐level of applied N, but additional N reduced plant growth.  相似文献   

3.
The effects of different levels of arsenic (As) and salinity on bean plant (Phaseolus vulgaris L., cv. Buenos Aires) nutrition were investigated. We studied the processes of absorption and accumulation of macronutrient elements: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg). The experiment was performed in soilless culture at two levels of As: 2 and 5 mg AsL‐1 (added as sodium arsenite, NaAsO2), and three saline levels [only sodium chloride (NaCl) was added]: 1, 2, and 4 dS‐m‐1. Sodium arsenite and NaCl significantly affected macronutrients allocation within bean plant at concentration levels used in this study. Arsenite depressed K, Na, and Mg concentrations in root, whereas root N, and Ca levels were increased. Nitrogen, P, K, and Na concentrations were significantly higher in As‐stressed plants compared with controls. The addition of NaCl increased Ca concentration in roots and decreased that of K. Salinity tended to increase leaf concentrations of K, Na, Ca, and Mg; whereas leaf N and P levels decreased with increasing salinity.  相似文献   

4.
《Journal of plant nutrition》2013,36(12):2831-2851
ABSTRACT

The Diagnosis and Recommendation Integrated System (DRIS) approach evaluates plant nutritional status. The Diagnosis and Recommendation Integrated System is based on a comparison of crop nutrient ratios with optimum values from a high-yielding group (DRIS norms). Several researchers affirm that once DRIS norms based on foliar composition have been developed for a given crop, they are universal and applicable to that particular crop grown at any place and at any stage of its development. But different diagnoses with DRIS norms established for the same crop but under different growth conditions have been found. The objectives of this study were (i) to evaluate the confidence intervals of three DRIS norms of sugarcane crop, (ii) to compare sugarcane nutritional diagnosis with three DRIS norms, and (iii) to evaluate the universal use of DRIS norms in sugarcane crop. Sugarcane DRIS norms were tested. Means for nitrogen (N)/phosphorus (P), N/calcium (Ca), N/copper (Cu), manganese (Mn)/N, N/zinc (Zn), Ca/P, Cu/P, Mn/P, Zn/P, potassium (K)/Ca, K/Cu, Mn/K, Zn/K, Mn/Ca, Zn/Ca, Cu/magnesium (Mg), Mn/Mg, Zn/Mg, Mn/Cu, Zn/Cu, and Zn/Mn of these three DRIS norms were significantly different (?p<0.05). The sugarcane nutritional diagnosis derived from norms published in the literature was different. These three DRIS norms were not universally applicable to the sugarcane crop. Therefore, in the absence of DRIS norms locally calibrated, norms developed under one set of conditions only should be applied to another if the nutrient concentrations of high-yielding plants from these different set of conditions are similar.  相似文献   

5.
Leaf and soil samples were taken and analyzed from two mature biological olive groves (Olea europaea L., cv. ‘Chondrolia Chalkidikis’), in Thessaloniki, Macedonia, Northern Greece, in order to determine the correlations between soil exchangeable cations and foliar calcium (Ca), magnesium (Mg) and potassium (K) concentrations, and the interrelations among leaf nutrients. Τhe nutritional requirements of trees for both biological groves were exclusively based on patent kali supply and nutrient recycling (via pruning material and weed cut recycling). Foliar K, Ca and Mg were positively correlated with soil exchangeable K, Ca and Mg, in the 40–60 cm layer, then in the 20–40 cm layer. Synergistic uptake mechanisms among Ca2+, Mg2+ and K+ probably exist. Leaf N was negatively correlated with foliar K, and positively with leaf Ca, Mg and manganese (Mn). Foliar P was negatively correlated with leaf Ca, Mg and Mn, while foliar Ca was positively correlated with leaf Mg and Mn. Foliar Mg was positively related with leaf Mn. High phosphorus (P) may decrease leaf Ca, Mg and Mn. Enhanced Ca may increase leaf Mg and Mn, while high Mg may also enhance foliar Mn. Finally, based on the determination of foliar nutrient concentrations, the nutritional requirements of olive trees in Ca, Mg, K, P, Fe, Zn were sufficiently (or over-sufficiently) satisfied. However, additional organic fertilization is needed, in order to achieve optimum levels of N, B and Mn (since their foliar concentrations were slightly insufficient). The correlations between leaf and soil exchangeable Ca, Mg and K, as well as among foliar nutrients should be taken into consideration, in order to achieve successful organic fertilization for mature biological olive groves, and to avoid nutritional imbalances and disorders.  相似文献   

6.
Critical concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn) with respect to dry matter yield end antagonistic and synergistic relationships among these nutrients were studied in which tomato (Lycopersicon esculentum L.) was grown in recirculating nutrient solution (NFT). Increments of nutrient elements in the nutrient solution increased the proportional rate of the corresponding nutrient elements. Increasing levels of N negatively correlated with plant P and positively correlated with Ca, Fe, and Zn. Iron and Mn contents of the plants were increased and N, K, Ca, and Mg were decreased as a function of P applied. Increases in K in the nutrient solution caused increases in the concentrations of K, N, P, and Zn, and decreases in the concentration of Ca and Fe. Applied Ca increased the concentrations of Ca and N, and decreased the concentrations of P, Mg, Fe, Zn, and Mn. Potassium, Ca, and Fe contents of the plants were decreased and Zn increased, while N, P, and Mn were not affected by the increasing levels of external Mg. Iron suppressed the plant Mg, Zn, and Mn contents. Synergism between Zn and Fe was seen, while P, K, Ca, Mg, and Mn contents were not affected by Zn levels. Potassium, Ca, Mg, and Fe were not responsive to applied Mn, however, N and P contents of the plants were decreased at the highest levels of Mn.  相似文献   

7.
Abstract

Chinese cabbage (Brassica rapa L. Chinensis group) production is expanding in the U. S., and guidelines regarding its production under Western cultural practices are needed. The objectives of this study were to investigate the effects of N source and rate on Chinese cabbage yield, marketability, and wrapper leaf nutrient concentrations, and to estimate the critical wrapper leaf‐N concentration associated with maximum yield and marketability. Chinese cabbage was grown in five sequential plantings using raised‐bed, polyethylene mulch culture with subsurface irrigation on a sandy soil. Nitrogen fertilizer was applied at rates of 0, 67,112, and 157 kg/ha using the following sources: 1) ammonium nitrate. 2) calcium nitrate, 3) urea‐ammonium nitrate solution (Uram, 32% N), 4) urea, and 5) a urea‐calcium solution (18% N). Mature Chinese cabbage wrapper leaf concentrations of P, Ca, and Mg increased with increasing N rate, while leaf‐K concentration decreased. Leaf‐N concentration increased in response to N rate, but was not affected by N source or harvest date. Leaf‐P, K, Mg, and B concentrations were sufficient or high according to established standards, but leaf‐Ca was low. Leaf‐Ca and Mg concentrations were lowest with N sources containing only urea, and highest where at least part of the N was applied as NO3 . Chinese cabbage head weight and percentage marketable heads increased as N rate increased. Yield and quality were highest with N sources which contained NO3 , and were smallest where N was applied entirely as urea, which may have been due to plant sensitivity to NH4 +. The critical value of mature cabbage wrapper leaf‐N concentration above which yield or marketability was not limited was estimated to be 36 to 41 mg/g, which agrees well with established standards.  相似文献   

8.
In separate tests, rabbiteye blueberries (Vaccinium ashei Reade) grown in sand culture were subjected to varying levels of Ca (0–81 mg/liter) and Mg (0–24 mg/liter) applied at rates of 250 ml/plant daily. Other essential nutrients were kept constant. Leaf concentrations of N, P, K, Mg, Ca, Mn, Fe, Cu, B, Zn, Co, and Al were determined. The concentration of Ca in the leaves increased linearly but that of Cu decreased in response to increasing levels of Ca fertilization. Leaf concentrations of other elements were not significantly influenced by Ca fertilization. Leaf Mg and Al concentrations increased linearly in response to increasing levels of Mg fertilization. The P content in leaves followed a quadratic curve with increased Mg fertilization. Percent P increased from the 0 to 12 mg/liter levels and then decreased from the 12 to 24 mg/liter levels of Mg. High levels of Mg fertilization resulted in reduced Cu content of leaves.

Fertilization rates of Ca or Mg had little effect on shoot dry weight except at the 0 mg/liter levels. As leaf Ca decreased below 0.20% Ca, Ca deficiency symptoms became more prevalent. Magnesium deficiency symptoms increased as leaf Mg decreased below 0.15% Mg.  相似文献   


9.
Field experiments were conducted during 1994–1995 in seven apple (Malus spp.) orchards located in the southwest of Finland (the mainland and the Åland Islands). The cultivars were ‘Transparente Blanche’, ‘Samo’, ‘Melba’, ‘Raike’, ‘Red Atlas’, ‘Åkerö’, ‘Aroma’, and ‘Lobo’. Leaf samples from branches bearing fruits (BF) and not‐bearing fruits (BNF) were collected two times during the growing seasons. Fruit samples were picked about one week before commercial maturity. Macronutrient concentrations in fruits and leaves, fruit diameter and juice pH, titratable acidity (TA) and soluble solids concentrations (SSC) were determined. Leaf nitrogen (N), phosphorus (P), and potassium (K) were higher, but calcium (Ca) and magnesium (Mg) were lower in BNF. Branch types (BF and BNF) were closely related in leaf N, P, and Ca, but not in leaf K and Mg at the first sampling time. Fruit N, P, K, and Mg were closely related to each other but not to fruit Ca. Mean fruit N and Ca and leaf P and Mg were low compared with the recommended levels. Relationships between fruit and leaf nutrient concentrations were found only in P and Mg. Fruit diameter increased and juice SSC decreased with increasing leaf N concentration. Fruit P declined with increasing fruit diameter and juice TA increased and SSC/TA decreased with increasing leaf P and Ca concentrations.  相似文献   

10.
Nutritive value of winter cereal forages is one of interested subjects of farmers for animal feeding. Field experiments were established in 2007–2008 and 2008–2009 growing seasons in northeast Turkey to investigate the effect of organic solid cattle manure application (0, 10 and 20 Mg ha?1 yr?1) on nutritive value of three annual cereals for forage. The winter cereal forages were: wheat (Triticum aestivum L.), oat (Avena sativa L.) and rye (Secela cereale L.). ADF (acid detergent fiber), NDF (neutral detergent fiber) CP (crude protein), nitrogen, phosphorus, potassium, sulfur, calcium, copper, iron, magnesium, manganese, sodium, zinc and boron (N, P, K, S, Ca, Cu, Fe, Mg, Mn, Na, Zn and B) concentrations were researched in this study. Wheat had the highest CP, N, Ca, Cu, Na and Zn concentration, whereas oat had the lowest ADF and NDF and the highest K, Fe and Mn concentrations. The greatest Mg and P concentrations were determined in rye. Organic solid cattle manure applications had no effect on N and CP contents, but it decreased ADF and NDF contents. However, in most cases it positively affected the P, B, Cu, Fe, Mg and Na concentrations, whereas it decreased K, Ca, Mn and Zn concentrations. The results showed that wheat and oat are more nutritive species than rye in terms of animal feeding and the organic solid cattle manure, in some cases increased the nutritive values of wheat, oat and rye under organic agriculture conditions.  相似文献   

11.
Summary The legume Medicago sativa L. was grown in three calcareous soils supplied with increasing amounts of soluble phosphate, or a vesicular-arbuscular mycorrhizal (VAM) inoculum. The three test soils had high concentrations of extractable Ca. Analyses of dry-matter production and of the concentrations and content of the nutrients N, P, K, Ca, and Mg in plant tissues showed that, for each soil, a particular level of P application was able to match the VAM effects on N, P, and K levels. The Ca concentration and content in the VAM inoculated plants were, however, significantly lower than those in the P-supplied non-mycorrhizal treatments that matched the VAM effects. The N:P and the K:P ratios were about the same for mycorrhizal and non-mycorrhizal P-supplied control plants in all the three soils, but VAM inoculation lowered the Ca:P ratio in all soils. The mycorrhizae decreased Mg uptake in one of the soils, where non-mycorrhizal plants had high Mg concentrations in tissues. It is concluded that VAM depress the excessive acquisition of Ca by plants in calcareous soils.  相似文献   

12.
Abstract

Forage intake with potassium/(calcium + magnesium) [K/(Mg + Ca)] values in excess of 2.2 are associated with grass tetany and Mg deficiencies in ruminants. This study was conducted to determine the degree to which forage K and Mg concentrations and K/(Ca + Mg) ratios could be predicted from soil bicarbonate (HCO3) extractable phosphate‐phosphorus (PO4‐P), and saturation extract Ca, Mg, K, sodium (Na), and nitrate‐nitrogen (NO3‐N) concentrations. Crested wheatgrass (Agropyron spp) strains and cultivars representing four ploidy levels were grown in the greenhouse on eight calcareous soils with different saturation extract Ca, Mg, K and K/Mg ratios. The plants were harvested three times. Soil solution K/(Ca + Mg) and K/Mg ratios were the only measured soil parameters that showed a consistent correlation with plant K/(Ca + Mg) ratios. Bicarbonate extractable soil P was positively related to plant P and K uptake in the first harvest, but was not related in the second and third harvests nor was soil P related to plant Ca or Mg content. There was a tendency for the higher ploidy level entries to have higher plant K/(Ca + Mg) ratios. It was concluded that soil K/(Ca + Mg) ratios can be used to predict relative forage K/(Ca + Mg) ratios for grasses grown under similar conditions.  相似文献   

13.
The use of pyrolysis products of manures gives positive effects on soil fertility, crop productivity and soil carbon sequestration. However, effects depend on soil characteristics, plant species and the raw material from which the biochar is derived, and some negative effects of biochar have been reported. The objective of this study was to evaluate the effectiveness of poultry manure (PM)‐derived biochar on the growth, and P, N, K, Ca, Mg, Fe, Zn, Cu and Mn concentration of lettuce (Lactuca sativa L.) plant. The treatments as follows: control, 20 g/kg poultry manure (PM), 20 g/kg phosphorus‐enriched poultry manure (PM+P), 10 g/kg Biochar (B), 10 g/kg Biochar+P (B+P). Application of biochar and PM significantly increased lettuce growth, and P‐enriched forms of PM and biochar gave the higher growth. PM has no significant effect on the N concentrations but biochar and, P‐enriched PM and biochar treatments significantly increased N concentrations. Phosphorus concentration of the lettuce leaves significantly increased by PM and biochar treatments. Plant K concentrations were also increased by PM and biochar, and their P‐enriched forms. Leaf Ca and Mg concentrations were lower in Biochar and B+P treatments than that of PM and PM+P treatments. Compared to control and PM treatments, biochar applications reduced Fe, Zn, Mn and Cu concentrations of the lettuce plants. The results of this study indicated that application of biochar to alkaline soil is beneficial for crop growth and N, P and K nutrition, but it certainly reduced Fe, Cu, Zn and Mn nutrition of lettuce.  相似文献   

14.
Five tall fescue (Festuca arundinacea Schreb.) clonal lines with diverse root and xylem diameters were grown in nutrient solutions with magnesium (Mg) concentrations of 42, 125 and 250 μM and potassium K concentrations of 133 and 333 μM. Leaf Mg concentrations increased with increasing Mg rates at both low and high K concentrations. The tall fescue line with the largest root and xylem diameters had low leaf Mg concentrations, indicating a possible increased Mg tetany potential when consumed by cattle. The response of the K/(Mg+Ca) ratio in the plant, an indicator of tetany potential, to varying solution Mg at low and high K was determined for each of the five lines. No Mg effects or interactions were significant. Line, K, and line x K effects were all significant for the K/(Mg+Ca) ratios. The line with the largest root and xylem diameters had the highest tetany potential (highest cation ratio). Higher solution K gave higher K/(Mg+Ca) ratios.  相似文献   

15.
Leaf concentrations of nitrogen (N), phosphorus (P), potassium (K), iron (Fe), and manganese (Mn) in ‘Sterling’ muscadine grapes (Vitis rotundifolia Michaux) grown for two years in sand culture were not influenced by different N‐fertilizer sources. Leaf zinc (Zn) and copper (Cu) were higher with ammonium nitrate (NH4NO3)than ammonium sulfate [(NH4)2SO4]. Shoot growth was greatest with NH4NO3. Leaf Ca, Mg, Mn, and Cu content decreased and leaf N increased as N‐fertilizer rates were raised. Plant growth was positively correlated with leaf N, but was negatively correlated with leaf Ca, Mg, Fe, Cu, and Mn content. Percent Mg in the leaves was reduced when N levels, regardless of N source, were raised from the low (1.8 mM) to the middle (5.4 mM) rate. High leaf‐N levels were correlated with lower Ca and Mg in the leaves, indicating a relationship between N fertilization and the late‐season Mg deficiency often observed in muscadine grapes.  相似文献   

16.
Abstract

Magnesium deficiency in corn (Zea mays L.) is often attributed to the low levels of Mg in soils. This study was conducted to determine elemental and/or cation balance efficiency of corn hybrids grown on a soil low in available Mg, Among the 15 hybrids tested, no differential efficiency in ear leaf concentration of P was found at two planting dates. Leaf concentrations of Zn and Fe were influenced by planting date for all hybrids but interactions between hybrids and planting date were found only for K, Ca, Mg concentrations and the sum of the Meq Ca + Mg/100 g, the Meq K + Ca + Mg/100 g, and the K/Ca and K/Ca + Mg ratios. Planting dates did not Influence the K/Mg ratio among hybrids. Large differences in efficiency of K, Ca, and Mg were found but these cations were found to have large Interactions. Data show that Ca and Mg efficient hybrids are less efficient in K than Ca and Mg inefficient hybrids. It should be possible to breed corn hybrids for better cation balance efficiency for use on infertile soils low in avallable Mg.  相似文献   

17.
The seasonal variation of mineral elements and the relationships among them were studied in natural populations of foxglove (Digitalis obscura). Young and mature leaves were collected in 10 different populations and on four sample dates (May, July, October, and February). Leaf mineral elements [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu)] were determined. The highest concentrations of N, P, and K in young leaf were recorded in May, followed by a decrease in the other months, while in contrast Ca and Fe showed the lowest concentration in May. Mature leaves showed differential seasonal behavior. Besides seasonal variations, significant fluctuations of N/P and Ca/Mg ratios were observed in young leaves. Strong positive correlations existed among N, P and K, while negative correlations were found between Ca and N, P, or K.  相似文献   

18.
Abstract

Magnesium and Ca concentrations in smooth bromegrass (Bromus inermis L) were not affected by late‐winter applications of N. Magnesium concentrations were constant until rapid growth in mid‐May then they declined until early June harvest. Highest seasonal concentrations were found in the fall regrowth. Calcium concentrations declined as plants matured in spring. Highest seasonal Ca concentrations were found in the fall regrowth. Nitrogen, P, and K concentrations and K/(Ca+Mg) ratios were increased by N applications during early spring but did not differ significantly by early June harvest. Nitrogen and P concentrations decreased as plants matured in spring and fall. K concentrations and K/(Ca+Mg) ratios changed inconsistently from sampling date to sampling date. Forage yields were approximately doubled by 67 kg N/ha and tripled by 202 kg N/ha. Significant yield differences were related to different N carriers.  相似文献   

19.
巨桉人工林叶片养分交互效应   总被引:1,自引:0,他引:1  
在四川巨桉栽培区设立了60个标准地,采用相关分析和矢量诊断法进行分析,以了解巨桉人工林养分的相互作用关系。结果表明,巨桉人工林叶片的养分交互作用较为复杂。N可促进P、K、Ca、Mn等的吸收,但易受到Fe、Zn、高Ca、高Mg的拮抗,而且高N抑制了Mn的吸收;P可促进K、Mg、Mn等的吸收,但易受Zn、Fe、高Mn、高K、高Ca、高Mg的拮抗,而高浓度的P将抑制K、Zn、Fe等的吸收;K对其他养分元素均没有明显的促进作用,但高浓度K限制P的吸收;Ca、Mg之间可相互促进吸收。同时,低浓度的Ca和Mg有利于Fe、Zn的吸收,高浓度的Ca和Mg将对N、P、Fe、Mn、S、B等养分产生拮抗,限制吸收;S可促进Zn的吸收,但易受高Ca、高Mg拮抗;Cu、Zn、Fe、Mn之间主要以拮抗为主。B相互作用较少,对其他养分几乎没有明显的促进作用。  相似文献   

20.
Mineral element deficiencies and toxicities are common problems associated with sorghum [Sorghum bicolor (L.) Moench] production on acid soils. To better understand some of the mineral element problems and the analysis of plant tissue of sorghum plants grown on acid soils, four sorghum genotypes were grown on an acid Oxisol at Carimagua, Colombia limed with dolomite at 2 and 6 Mg ha‐1.

Samples for mineral element analyses were obtained from leaves at different positions on the four genotypes. Concentrations of P and Mg were highest in the flag leaf (Leaf No. 1) and decreased as the position on the plant declined from the top of the plant for plants grown at 2 Mg lime ha‐1. Similar decreases in P, Mg, K, and Zn concentrations occurred in plants grown with 6 Mg lime ha‐1. Concentrations of Ca, S, Si, Mn, Fe, Cu, and Al increased as leaf position declined from the flag leaf for plants grown at 2 and 6 Mg lime ha‐1. The higher lime supply enhanced Ca and reduced Mn and Fe concentrations in leaves. Differences in mineral element concentrations for the four genotypes used were fairly extensive. The elements to show the greatest range among genotypes were Al and Si and the elements to show the least range among genotypes were P, K, and S. Care should be used in collecting leaf samples for plant analysis and genotypic differences for accumulation of mineral elements should be considered in interpretation of results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号