首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poor quality of irrigation water (high salinity) has reduced the yields of pistachio over recent years, especially in Kerman. The effects of four salinity levels [0, 30, 60, and 90 mM sodium chloride (NaCl)] and three calcium (Ca) levels [0, 0.5, and 1 mM Ca as calcium nitrate (Ca(NO3)2.4H2O)] on growth and chemical composition of pistachio seedlings cv. ‘Badami’ were studied in sand culture under greenhouse conditions in completely randomized design (CRD) with four replications. After 170 days, leaf area, leaf number, shoot and root dry weights were determined. Also shoot and root sodium (Na), potassium (K), Ca, and magnesium (Mg) concentrations were measured. Results showed salinity decreased all growth parameters. Ca application increased shoot and root Ca concentrations and root K concentration, while Ca application decreased shoot K concentration and shoot and root Mg concentrations. Salinity decreased shoot Ca, root K, and root Mg concentrations, while salinity increased shoot and root total sodium uptake, and shoot and root Cl concentrations.  相似文献   

2.
Crop production in many parts of the world is increasingly affected by soil salinization, especially in the irrigated fields of arid and semi-arid regions. The effects of four magnesium levels [0, 0.5, 1, and 22 millliMolar (mM) magnesium as magnesium sulfate (MgSO4.5H2O)], and three salinity levels [0, 45 and 90 mM sodium chloride (NaCl)] on growth and the chemical composition of pistachio seedlings (Pistacia vera L.) cv. ‘Badami-e-Zarand’ was studied in sand culture under greenhouse conditions. The experiment was set up as a completely randomized design (CRD) with four replications. After 28 weeks the growth parameters of biomass, leaf number, leaf area and stem height were measured. The results demonstrated that salinity decreased biomass, leaf area and stem height; the application of 2 mM magnesium (Mg) significantly reduced biomass, leaf number, leaf area and stem height; salinity stress increased concentrations of sodium (Na) and potassium (K) in shoot as well as Na concentration in root; however, it decreased Mg and calcium (Ca) concentrations in shoot, as well as Mg, Ca, and K concentrations in root. The application of 2 mM Mg reduced K and Ca concentrations in shoot and Na and K concentrations in root.  相似文献   

3.
The purpose of the present work was to evaluate effects of zinc application on growth and uptake and distribution of mineral nutrients under salinity stress [0, 33, 66, and 99 mM sodium chloride (NaCl)] in soybean plants. Results showed that, salinity levels caused a significant decrease in shoot dry and fresh weight in non-zinc application plants. Whereas, zinc application on plants exposed to salinity stress improved the shoot dry and fresh weight. Potassium (K) concentration, K/sodium (Na) and calcium (Ca)/Na ratios significantly decreased, while sodium (Na) concentration increased in root, shoot, and seed as soil salinity increased. Phosphorus (P) concentration significantly decreased in shoot under salinity stress. Moreover, calcium (Ca) significantly decreased in root, but increased in seed with increased salinization. Iron (Fe) concentration significantly decreased in all organs of plant (root, shoot, and seed) in response to salinity levels. Zinc (Zn) concentration of plant was not significantly affected by salinity stress. Copper (Cu) concentration significantly decreased by salinity in root. Nonetheless, manganese (Mn) concentration of root, shoot, and seed was not affected by experimental treatments. Zinc application increased Ca/Na (shoot and seed) ratio and K (shoot and seed), P (shoot), Ca (root and seed), Zn (root, shoot, and seed) and Fe (root and shoot) concentration in soybean plants under salinity stress. Zinc application decreased Na concentration in shoot tissue.  相似文献   

4.
Osmotic and specific ion effects are the most frequently mentioned mechanisms by which saline substance reduces plant growth. However, the relative importance of osmotic and specific ion effect on plant growth seems to vary depending on the salt tolerance of the plant under study. Tall wheatgrass (TW), perennial ryegrass (PR), African millet (AM) and Rhodesgrass (Rh) were grown in nutrient solution with sodium chloride (NaCl), sodium sulfate (Na2SO4), potassium chloride (KCl), and potassium sulfate (K2SO4) salinity up to electrical conductivity (EC) 27 dS m?1. Growth of all plant species decreased significantly at high level (EC 27 dS m?1) of NaCl and Na2SO4 salts. However, the growth of none of the plant species was affected significantly by KCl and K2SO4 at any level. Even leaf and shoot fresh weights were enhanced by K2SO4 in all plant species, except AM. Chlorine (Cl) was taken up in similar quantities from KCl and NaCl solutions and the content of the respective cations was similar to each other. Further sensitivity to sulfate and chloride was equal when sodium concentrations in shoots were equal, regardless of the anion composition of the media. The sodium (Na) concentration of the leaves of the plant species increased with increased NaCl and Na2SO4 levels in the nutrient solutions. The leaf Na concentration of TW was lower than that of the other plant species. However, the root Na concentration of TW was higher than that of the other plant species. Increased NaCl and Na2SO4 concentrations had a marked effect on leaf water potential of all plant species, and the TW showed higher leaf water potential at all levels of salts. Tall wheatgrass adjusted osmotically by accumulating electrolytes from the nutrient solution and by accumulation of glycinebetaine. Sodium was generally found more injurious than Chloride in all the four forage species. Salt tolerance could be ascribed as greater exclusion of Na ion.  相似文献   

5.
Melon (Cucumis melo L.) plants were grown hydroponically in a greenhouse to investigate the interaction of phosphorus (P) and calcium (Ca) under saline conditions on vegetative biomass and cation balance. Three levels of Ca (0.4, 2, and 8 mM) were combined factorially with two levels of phosphate (0.1 and 1 mM) under two regimes of NaCl salinity (10 and 80 mM). An increase of phosphate and salinity level decreased shoot and root growth. A strong antagonism between Ca and magnesium (Mg) was observed regardless of the salinity level. Calcium effect on growth depended on the salinity level. At low salinity, an increase of Ca reduced sodium (Na) concentration in all plant fractions. At high salinity, this effect was only significant in young and medium leaves. At low salinity and low Ca the reduction of growth could be due to Na toxicity and an unbalanced Ca/Mg ratio. In addition to that, at high salinity, the restoration of growth by increasing Ca concentration in the root medium could be due to an effect on water relation and by increasing potassium K/Na selectivity.  相似文献   

6.
Three cultivars of tomato (Lycopersicon esculentum Mill., cvs. Sera, 898, Rohaba) were grown under different levels of NaCl in nutrient solution to determine effects of salt stress on shoot and root dry matter (DM), plant height, water use efficiency (WUE, g DM kg‐1 water evapotranspired), shoot sodium (Na) and potassium (K) concentrations, and K versus Na selectivity (SK,Na). Increasing NaCl concentration in nutrient solution adversely affected shoot and root DM, plant height, WUE, K concentration, and K/Na ratio of all cultivars. Shoot Na concentrations increased with increasing NaCl concentration in the nutrient solution. Although increasing salt concentration in the solution adversely affected growth of all cultivars, the cultivar Sera had the highest shoot and root DM than the other two cultivars (898 and Rohaba). Shoot and root DM of cultivar 898 was most affected by salt, while cultivar Rohaba had an intermediate salt sensitivity. The cultivar Sera generally had higher WUE values, shoot K concentrations, and SK,Na, but had lower shoot Na concentrations than the other two cultivars when plants were grown under different salt levels. Greater Na exclusion, higher K uptake and shoot SK,Na are suggested as being plant strategies for salt tolerance.  相似文献   

7.
The effects of salinity [30 or 90 mM sodium chloride (NaCl)] and calcium (Ca) foliar application on plant growth were investigated in hydroponically-grown parsley (Petroselinum crispum Mill). Increasing salinity reduced fresh weight and leaf number. Calcium alleviated the negative impacts of 30 mM NaCl on plant biomass and leaf fresh weight but not in case of 90 mM. Plant height, leaf and root dry weight and root length did not differ among treatments. Total phenols increased with calcium application, chlorophyll b reduced by salinity, while total carotenoids increased with salinity and/or Ca application. Salinity reduced nutrient uptake [nitrate (NO3), potassium (K), phosphorus (P) and Ca] and elemental content in leaves and roots. Calcium application reduced P but increased Ca content in plant tissues. Increments of Na uptake in nutrient solution resulted in higher Na content in leaves and roots regardless Ca application. These findings suggest that calcium treatment may alleviate the negative impacts of salinity.  相似文献   

8.
The effect of potassium sulfate (K2SO4) on adaptability of sugarcane to sodium chloride (NaCl) stress was investigated under hydroponic conditions. Two sugarcane cultivars, differing in salinity tolerance, were grown in half strength Johnson's solution at 80 mM NaCl with 0, 2.5 and 5.0 mM potassium (K) as K2SO4. Salinity disturbed above and below-ground dry matter production in both sugarcane cultivars. However, salt sensitive cultivar showed more reduction in shoot dry matter and higher root:shoot ratio compare to the salt tolerant cultivar under. Application of K significantly (p < 0.05) improved dry matter production in both sugarcane cultivars. The concentration of Na was markedly increased with increasing salinity; however, the application of K reduced its uptake, accumulation and distribution in plant tissues. Salinity induced reduction in K concentration, K-uptake, K utilization efficiency (KUE) and K:Na ratio in both sugarcane cultivars was significantly improved with the addition of K to the saline growth medium.  相似文献   

9.
The present study was conducted to evaluate shoot and root mineral composition of salt-stressed Selva strawberry under application timing of salicylic acid (SA). Treatments included plants sprayed with 0.5 or 1 mM SA, plants exposed to 40 mM sodium chloride (NaCl), and plants sprayed with 0.5 or 1 mM SA 1 week before, simultaneously, or after initiation of 40 mM salinity. Results indicated that under saline conditions, sodium (Na) and chloride (Cl) contents increased along with decrease in nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) in shoot and root of plants. In plants treated with SA at 1 mM concentration, 1 week before salinity application, root Mg and shoot Ca were greater in comparison to salt-stressed plants treated with the same SA concentration 1 week after their exposure to salt stress. Thus, earlier SA application appears to be a better strategy for optimized protection against deleterious influence of salinity.  相似文献   

10.
Abstract

Salinity affects plants by interaction between sodium (Na) and calcium (Ca). Two sorghum (Sorghum bicolor) genotypes ('Hegari’ and ‘NB‐9040') were studied for the Na x Ca interaction in a soil amended with 2% calcium carbonate (CaCO3) and with 0, 12.3, 24.6, and 36.9 mmol sodium chloride (NaCl)/kg soil. The two genotypes were similar in their response to soil NaCl in their shoot and root growth but differed in response to lime. The salinity‐tolerant Hegari was suppressed by high Ca concentration in the soil, mainly in the low‐NaCl treatments, and responded by a lower concentration of potassium (K) and magnesium (Mg) in the leaves, which was associated with leaf‐chlorosis. Since Na uptake was reduced by Ca, the main effect of salinity on plant growth was by the accumulation of chloride (Cl) in the leaves.  相似文献   

11.
Salinity tolerance in some plant species has been related to characteristics of potassium (K) and sodium (Na) uptake and transport. Tomato (Lycopersicon esculentum Mill., cv. Rossel) plants were grown in nutrient solution to determine effects of two K levels [0.2 (low) and 2 mmol (high)] combined with 0, 100, and 200 mmol NaCl on growth, and on Na and K uptake and translocation. Net uptake rates of Na and K were determined by disappearance in the growth medium and by plant accumulation. At the low level of K in solution, salinity decreased shoot and root dry weight and leaf area. Addition of 2 mmol K ameliorated of the added NaCl effects and improved growth parameters. Salinity reduced net K uptake rates and to a lesser extent K translocation from root to shoot, which resulted in higher K shoot concentration and a lower K root concentration. The inhibitory effect of salinity on K translocation was greater with low K level in nutrient solution. Net uptake of K was dependent on K level in the growth medium. Addition of K resulted in decreases of shoot Na uptake. The translocation of Na from roots to shoots was reduced by K level in nutrient solution. These results indicate that K supply and K accumulation and regulation in plant tissue contribute to salt tolerance and growth enhancement.  相似文献   

12.
To study the effect of nitrogen and salinity on growth and chemical composition of pistachio seedlings (cv. ‘Badami’), a greenhouse experiment was conducted. Treatments consisted of four salinity levels [0, 800, 1600, and 2400 mg sodium chloride (NaCl) kg?1 soil], and four nitrogen (N) levels (0, 60, 120, and 180 mg kg?1 soil as urea). Treatments were arranged in a factorial manner in a completely randomized design with three replications. The highest level of nitrogen and salinity decreased leaf and root dry weights. Nitrogen application significantly increased the concentration of shoot N and salinity suppressed shoot N concentration. Salinity and nitrogen fertilization increased shoot and root sodium (Na), calcium (Ca), and magnesium (Mg) concentrations. Nitrogen application increased proline concentration and reducing sugar content. Although salinity levels increased proline concentration a specific trend on reducing sugars content was not observed.  相似文献   

13.
Alfalfa (Medicago sativa L.) is cultivated in arid and semi-arid regions where salinity is one of the main limiting factors for its production. Thus, this experiment was conducted to evaluate the efficacy of arbuscular mycorrhizal fungus (AMF), Glomus mosseae, alfalfa rhizobia Sinorhizobium meliloti (R) seed inoculation in the development of salinity tolerance of different alfalfa cultivars (Rehnani, Pioneer and Bami) under a variety of salinity levels. The results revealed that under non-stress condition, root mycorrhizal infection, nodulation (the number and weight of nodules per plant), potassium (K), calcium (Ca), phosphorus (P), zinc (Zn), copper (Cu) and magnesium (Mg) contents of the root and shoot, the value of the K/Na ratio, protein [calculated from the nitrogen (N) content] and proline contents of the shoot and the alfalfa yield were found to be the highest while Na contents of the root and shoot were seen to be the lowest when seeds were double inoculated followed by mycorrhizae, rhizobium and control treatments, respectively. Similarly, under salinity condition, the greatest amounts of mycorrhizal infection, nodulation, root and shoot P contents, the value of K/Na ratio, the shoot proline content and the root Ca content were enhanced with the least amount of leaf Na content related to the cases of seeds which were double inoculated, followed by mycorrhizae, rhizobium and control treatments respectively. The results suggested that inoculation of alfalfa seed with AMF or R, especially double inoculation, causes a considerable increase in alfalfa yield under both saline and non-saline conditions by increasing colonization, nodulation and nutrient uptake.  相似文献   

14.
Calcium (Ca) has an important role in plant physiology, including involvement in the responses to salt stress, and controls numerous processes. To overcome the negative impact of high salinity, the addition of supplemental Ca to the growth medium as an ameliorative agent could be necessary. Atriplex halimus subsp. schweinfurthii and Atriplex canescens subsp. linearis were grown in hydroponic conditions to investigate the effectiveness of supplementary calcium chloride (CaCl2) applied into nutrient solution on plants grown at high (400 mM) sodium chloride (NaCl) concentration. Treatments were: 1) nutrient solution alone [control (C)]; 2) nutrient solution plus 400 mM sodium chloride (NaCl); and 3) nutrient solution and 400 mM NaCl plus supplementary 40 mM CaCl2 supplied in nutrient solution (NaCl + CaCl2). The experiment was set up as a completely randomized design, consisting of two species (A. halimus and A. canescens), three treatments (control, NaCl, and NaCl + CaCl2), and five replicates. Dry weight and chlorophyll content of plants grown at high NaCl were lower than those at normal nutrient solution. Supplementary CaCl2 ameliorated the negative effects of salinity on plant growth in both species. Root hydraulic conductivity (L 0) decreased with elevated NaCl and increased with supplementary CaCl2 compared to the stressed plants. Membrane permeability increased with high NaCl application and these increases in root membrane permeability decreased with supplementary CaCl2 compared to the NaCl treatment. Sodium (Na) concentration in plant tissues increased in both species in high NaCl level. Application of supplementary CaCl2 lowered Na concentration. Concentrations of calcium (Ca) and potassium (K) were at deficient ranges in the plants grown at high NaCl levels and these deficiencies were corrected by supplementary CaCl2.  相似文献   

15.
To invertigate the relationship between salt tolerance and plant mineral status in celery (Apium graveolens L.) growth and the concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), and chloride (Cl) in different tissues were determined in plants grown in hydroculture with nutrient solutions containing 5 (control), 50,100, and 300 mM sodium chloride (NaCl) for four weeks. At salinity levels of 50 and 100 mM NaCl, there was a moderate, albeit significantly, reduction of growth, while a drastic decrease in both fresh and dry weight was obtained at 300 mM NaCl. Regardless of the salinity level, growth resumed promptly and completely once the stress was ceased. Sodium chloride stress reduced the accumulation of nitrate (NO3)‐N in all plant tissues, but there were no relevant effects on the concentration of reduced N and P. The concentration of K in roots and leaf petioles was unaffected by NaCl treatment, but it gradually declined with increasing salinity in leaf blades. This reduction was less pronounced in the young leaves as compared to the mature ones. Increasing the NaCl concentration decreased the concentration of Ca in all tissues, but it prevented the occurrence of black‐heart, a typical Ca‐related physiological disorder which affected severely the controls. Salt‐stressed plants absorbed large amounts of Na and Cl which accumulated in the mature leaves, particularly in the oldest leaves. These findings suggest that the relatively high salt tolerance of celery relies on the ability to maintain an adequate nutritional status and to protect the shoot meristem from salt toxicity.  相似文献   

16.
Maize (Zea mays L.) plants in the early stage of development were treated with 80 mM sodium chloride (NaCl) with or without supplemental calcium (Ca2+) (8.75 mM) for a seven day period. The effects of salinity on dry matter production and shoot and root concentrations of sodium (Na+), Ca2+, and potassium (K+) were measured for seven Pioneer maize cultivars. Salinity significantly reduced total dry weight, leaf area, and shoot and root dry weight below control levels. For all seven cultivars, Na+concentrations were reduced and leaf area was significantly increased by supplementing salinized nutrient solutions with 8.75 mM calcium chloride (CaCl2). The two cultivars with the lowest shoot and root Na+ concentrations under NaCl‐salinity showed the greatest increases in total, shoot and root dry weights with the addition of supplemental Ca. Shoot fresh weight/dry weight ratios for all cultivars were decreased significantly by both salinity treatments, but supplemental Ca2+ increased the ratio relative to salinity treatments without supplemental Ca. Root fresh weight/dry weight ratios were decreased only by salinity treatments with supplemental Ca. With NaCl‐salinity, cultivars which had lower shoot and root Na+ concentrations were found to be more salt sensitive and had significantly lower amounts of dry matter production than those cultivars which had higher shoot and root Na+ concentrations. It was concluded that Na+ exclusion from the shoot was not correlated with and was an unreliable indicator of salt tolerance for maize.  相似文献   

17.
Alfalfa (Medicago sativa L.) yield and nutrient contents may be affected under salinity condition. Thus, this experiment was conducted to determine the effect of three salinity levels (60, 120, and 180 mM NaCl) on shoot and root dry weights, and mineral contents of three alfalfa cultivars. With the increasing salinity levels sodium (Na) and magnesium (Mg) contents increased; but potassium (K), nitrogen (N), phosphorous (P), calcium (Ca), zinc (Zn), and copper (Cu) contents and root and leaf weights decreased; however, changes in these traits depended on cultivar and salinity level. However, Rehnani, a tolerant cultivar, had the lowest Na and Mg contents and the highest K, N, P, Ca, Zn, and Cu contents and dry weights under all of the salinity levels. Moreover, leaf dry weight and leaf P content had the highest correlation with salt tolerance suggesting that these traits may be used as a marker for selecting salts that are tolerant among genotypes in alfalfa.  相似文献   

18.
Salinity is a major problem in a wide pomegranate-growing area of central Iran. Effects of four levels of salinity on leaf and root chlorine (Cl), sodium (Na), and potassium (K) partitioning and shoot growth in three major commercial cultivars of pomegranate (Punica granatum), namely ‘Alak Torsh,’ ‘Malas Torsh,’ and ‘Malas Shirin,’ under climatic conditions of central Iran were investigated. Pomegranate cuttings were rooted and planted in plastic pots containing 1:1 sand:perlite medium and irrigated immediately with complete Hoagland's solution immediately. Four salinity levels of irrigation water (0, 40, 80, and 120 mM NaCl) were used. Final concentrations of NaCl were achieved after three weeks and continued for 80 d. Growth characteristics (i.e., length of the main stem, length and number of internodes, and leaf surface) were measured during the experiment. At harvest, concentrations of Na, K, and Cl in root and apical and basal leaves of the three cultivars were determined separately. In ‘Malas Torsh’ and ‘Alak Torsh’ cultivars, increasing salinity was proportional to NaCl concentration and reduced the length of stem, the length and number of the internodes, and leaf surface. There was an increase in the growth rate of the ‘Malas Shirin’ cultivar with increasing salinity up to 40 mM, but a decline in growth rate occurred at salinity levels higher than 40 mM. With increasing salinity level, the tissue concentration of Na and Cl increased while the K/Na ratio decreased. No significant differences were observed among the three cultivars in Na, Cl, and K concentrations of roots or apical or basal leaves. These results show that ‘Malas Shirin’ grew better under saline conditions compared with the ‘Malas Torsh’ and ‘Alak Torsh’ cultivars.  相似文献   

19.
The effects of silicon (Si) (0, 1, and 2 mM) and sodium chloride (NaCl) salinity (0, 20, and 40 mM) on the yield, photosynthesis, and ion content in strawberry grown in hydroponics were investigated. Salinity caused a reduction in leaf area and plant biomass, regardless of Si supplement. Leaf area in Si1Na20 treatment was 37% higher than that of Si0Na20 treatment. Salinity at 20 mM concentration had a 25% yield reduction in absence of Si, corresponding to no reduction in the yield in the presence of Si compared with the Si treatment without salinity. The highest reduction of photosynthetic rate (Pn) was observed in Si1Na40 treatment; however, in the presence of Si, there was no reduction in the Pn rate at 20 mM NaCl concentration. An obvious positive relationship was found between potassium/sodium (K/Na) and Pn rate. Within each Si concentration, the increased salinity increased Na concentration in the leaf tissue. However, when Si was supplied to the salinity treatments Na concentration was significantly lower than that of the similar treatments without Si. Supplement of Si to the nutrient solution increased the Si concentration in the roots, and old and young leaves. A clear negative relationship (r= 0.71) was found between Si and Na concentration in the leaves. Salinity (NaCl40) increased the proline level 2.5-fold in the absence of Si, corresponding to no changes the proline level in the presence of 1 mM Si concentration compared with the Si treatment without salinity. The salinity (40 mM) increased the electroleakage by 50% compared with 0 mM NaCl treatment in the absence of Si supplement. Findings from this study lead to the conclusion that Si supplement to the nutrient solution ameliorated the deleterious effect of salinity on the strawberry growth; these effects were attributed to an enhanced K/Na ratio and the reduction in Na content and electroleakage ability in the leaf tissue.  相似文献   

20.
□ Growth and nutrient acquisition of tomato (Lycopersicon esculentum L.) cv ‘Amani’ were studied under induced salt stress in Hoagland's solution. The plants were treated for 37 days with salinity induced by incorporating different concentrations [0.0 (control), 50, 100, 150, or 200 mM] of sodium chloride (NaCl) to the nutrient solution. Slight reduction was obtained in growth represented by (shoot length and number, leaf number, and dry weight) when seedlings were directly exposed to NaCl stress from 0.0 to 100 mM. At higher concentrations (150 or 200 mM), growth parameters were adversely affected and seedlings died thereafter. Elevated salinity significantly reduced crude protein and fiber in shoots and roots. Tomato shoot and root contents of potassium (K), iron (Fe), and ash were reduced significantly in response to increased levels of salinity. Tissue contents of sodium (Na) and chloride (Cl) increased with elevated salinity treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号