首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt stress can affect alfalfa growth directly by adversely affecting metabolism, or indirectly by its effect on Rhizobium capacity for symbiotic N2 fixation. Growth and carbohydrate metabolism in leaves, roots and nodules of two alfalfa cultivars (Medicago sativa cv Apica and salt-tolerant cv Halo) in association with two rhizobial strains (A2 and salt-tolerant Rm1521) exposed to different levels of NaCl (0, 20, 40, 80 or 160 mM NaCl) were assessed under controlled conditions. For both cultivars, shoot and root biomasses and shoot to root ratio significantly declined with increasing NaCl concentrations. Under 80 mM NaCl, Halo plants yielded 20% more fresh shoot biomass than Apica while plants inoculated with Rm1521 allocated more biomass to the roots than to the shoots compared to A2. Halo plants maintained a steady shoot water content (about 80%) under the entire range of NaCl concentrations. Shoot water content was more variable in Apica. Apica in association with salt-tolerant strain Rm1521 maintained a better water status than with strain A2, as indicated by the higher shoot water content at 80 mM NaCl. Under salt stress, two major compatible sugars involved in plant osmoregulation, sucrose and pinitol, increased in leaves while a large accumulation of starch was observed in roots. In nodules, pinitol, sucrose and starch increased under salt stress and were much more abundant with strain Rm1521 than with A2. This suggests that there could be an active transport from the shoot to the nodules to help maintain nodule activity under NaCl stress and that strain Rm1521 increases the sink strength toward nodules. Our results show that combining cultivars and rhizobial strains with superior salt tolerance is an effective strategy to improve alfalfa productivity in salinity affected areas.  相似文献   

2.
Abstract

Combined nitrogen [nitrate (NO3‐), ammonium (NH4+), and urea] will inhibit all components of symbiotic nitrogen (N2) fixation if present in sufficient concentrations. It is generally accepted that nitrate is particularly inhibitory to nodule growth and nitrogenase activity, and somewhat less inhibitory to the infection process. This project examined whether providing low (0.1 ‐ 0.5 mM) static concentrations of NO3‐ to pea (Pisum sativum L. cv. Express), seedlings could avoid the period of N hunger experienced prior to the establishment of N2 fixation, without delaying or reducing the symbiotic N2 fixation. All concentrations of NO3 ? tested significantly inhibited all measured components of N2 fixation. The nodulation process as measured by nodule number was inhibited to a similar degree as the other parameters. A concentration dependent response was evident, with 0.1 mM NO3 ? causing less inhibition than the 0.2 or 0.5 mM concentrations. Our results indicate the within the concentrations of 0.1 mM and 0.5 mM NO3 ?, it is not possible to stimulate the growth of pea plants without inhibiting nodulation and N2 fixation.  相似文献   

3.
The exposure of legume nodulated‐roots to 100 mM NaCl resulted in a rapid decrease in plant growth associated with a short‐term inhibition of both nodule growth and nitrogenase activity (C2H2 reduction=ARA). However, these NaCl effects varied among species, common bean being more sensitive than soybean and alfalfa. The higher sensitivity of common bean was associated with a higher accumulation of sodium (Na) and chlorine (Cl) in the nodules and only a small difference between salt‐treated and control plants of common bean in their responses of ARA to raising rhizosphere pO2. By contrast, soybean and alfalfa plants showed a higher stimulation of ARA by pO2 for the salt‐treatment than for the control. It is concluded that the intraspecific variation in short‐term inhibition of ARA by salt may involve the regulation of O2 diffusion and the distribution of ions in nodules.  相似文献   

4.
An investigation was conducted to determine the effect of potassium (K) nutrition on alfalfa (Medicago sativa L.) growth and metabolism of root total nonstructural carbohydrates (TNC) and proteins, and to study whether nitrogen (N) fertilization overcomes N deficiency and low root protein concentrations caused by K deficiency. In Experiment 1, nodulated alfalfa plants were grown in plastic pots containing washed quartz sand and provided minus‐N Hoagland's solution containing 0, 0.6, or 6.0 mM K. Shoot and root K concentrations increased with increasing solution K. Root N concentrations were higher in plants receiving 6.0 mM K than in plants receiving 0.6 or 0 mM K, but shoot N concentrations were similar for all treatments. Plant persistence, shoots per plant, and shoot mass increased as solution K levels increased. Root starch concentration and utilization were positively associated with K nutrition. Total amylase activity was higher, but endoamylase activity was lower in roots of plants receiving 6.0 mM K compared to plants receiving 0.6 or 0 mM K. Root soluble protein concentrations were significantly higher in plants receiving 6.0 mM K than in plants receiving 0 or 0.6 mM K. In Experiment 2, plants were supplied with Hoagland's solution containing 10 mM N as ammonium (NH4 +) or nitrate (NO3) with 0,3, or 6.0 mM K. The addition of N increased root N concentrations only in plants receiving 0 mM K. Plant persistence was reduced by NH4 + application, especially in plants receiving 0 or 3 mM K. Root starch concentrations were markedly reduced in plants receiving NH4 + at all K levels. The addition of NO3 had little effect on alfalfa root carbohydrate and protein metabolism and subsequent shoot growth. Potassium deficiency reduced starch and protein concentrations in roots; factors that were associated with poor persistence and slow shoot regrowth of alfalfa.  相似文献   

5.
Phosphorus (P) is a major nutrient factor influencing nitrogen (N) accumulation and partitioning of photosynthates in plants, especially the symbiotic N2‐fixation in legumes. This study was conducted to investigate how P application (0, 20, 40, and 60 kg P2O5/ha) affects symbiotic N2‐fixation of three cultivars (C 235, Pusa 408, and Pusa 417) of chickpea (Cicer arietinum L.). Application of P in general significantly increased leaf area, shoot dry weight, and the rate of acetylene (C2H2) reduction. Phosphorus concentration of shoots and roots, soluble sugar content of nodules, and shoot N accumulation were also significantly increased, especially by P at the 40 kg P2O5/ha rate. The P concentration in nodules was, however, not affected by different levels of P. The Pusa 417 cultivar responded better than the others to the P treatments. Phosphorus‐deficient plants accumulated sugar in their leaves. The interaction effect was found significant on leaf area, shoot dry weight, nodule number, and shoot N accumulation. Pusa 417 gave greatest response to 40 kg P2O5/ha but Pusa 408 and C 235 interacted best with the 20 kg P2O5/ha rate only. The increased nodulation and symbiotic N2‐fixation on P application seem to be the result of morphologically advanced shoots which are making more photosynthates for transport to nodules and not the direct effect of P on the nodules.  相似文献   

6.
Leguminous plants grown in sewage sludge–amended soils can acquire nitrogen by assimilation of nitrate and ammonium from the soil solution or from atmospheric‐dinitrogen (N2) fixation through association with N2‐fixing bacteria. We proposed that operation of both metabolic processes could contribute to alleviate the impact of drought in sludge‐treated plants. A greenhouse experiment was conducted to evaluate the involvement of nodule metabolism in the use efficiency of water and N in sludge‐treated plants. Treatments comprised (1) plants inoculated with rhizobia and amended with sewage sludge; (2) plants inoculated with rhizobia without any amendment; and (3) noninoculated plants supplied with ammonium nitrate, each under well‐watered and drought conditions. Under drought, sludge‐treated plants had increased plant growth and higher photosynthetic and water‐use efficiencies than untreated plants. Drought stimulated nitrate reductase and GS/GOGAT activities but did not affect the activities of phosphoenolpyruvate carboxylase and malate dehydrogenase or the leghemoglobin concentration. The results suggest that under drought conditions, both N2 fixation and nitrate assimilation in nodules of sludge‐treated plants contributed to improve plant N supply and to increase the drought tolerance of alfalfa.  相似文献   

7.
The influence of different nitrogen (N) forms on salt tolerance of Pisum sativum L. was investigated. Plants of the pea cultivar “Resal” were subjected to 0 (control) or 90 mM NaCl and one of the following nitrogen forms: 5 mM mineral N supplied as either NO , NH , or NH4NO3 or N supplied by biological N2 fixation (inoculated with Rhizobium leguminosarum bv. viciae). Root and shoot biomass were determined 15, 30, 45, and 60 d after emergence, and Na+, K+, and Cl concentrations were determined by capillary electrophoresis. Nitrogen sources induced significant differences in plant growth and in ion accumulation and distribution and in differentially affected salt tolerance. In the absence of salt, the largest biomass accumulation was obtained with NH4NO3. In the presence of NaCl, NO ‐fed plants experienced less salt toxicity than plants supplied with other N sources, as indicated by lower Na+ and Cl and higher K+ concentrations in the shoot. The results also suggest that it is possible to establish an effective symbiosis under saline conditions, provided that a salt‐tolerant Rhizobium isolate with good N2‐fixing ability is used. The use of the appropriate N‐fertilizer source can enhance the growth of Pisum sativum. Hence, NH4NO3 may be preferably used under non‐saline and NO under moderately saline conditions.  相似文献   

8.
ABSTRACT

The specific mechanism by which nitrogen application affects nodulation and nitrogen fixation in legume crops remains uncertain. To further study the effects of nitrogen application on soybean nodulation and nitrogen accumulation, three consecutive tests were performed during the VC-V4, V4-R1 (10 days), and R1-R2 (10 days) growth periods of soybean. In a dual-root soybean system, seedlings on one side were watered with a nutrient solution containing NH4+ or NO3? as the N source (N+ side), and those on the other side were watered with a nitrogen-free nutrient solution (N- side). During the VC-R2 period, on the N+ side, high nitrogen treatment inhibited nodule growth and nitrogenase activity (EC 1.18.6.1), and the inhibition was significantly increased with increasing high nitrogen supply time (10 days, 20 days). When the high nitrogen treatment time reached 20 days, the specific nitrogenase activity (C2H4 μmol?1 g?1 nodule dry mass h?1) was similar to that in the low nitrogen treatment, indicating that the nitrogen fixation capacity per gram of dry mass nodules was almost the same. Therefore, it is assumed that long-term high nitrogen treatment mainly reduces nitrogen fixation by reducing the nodule number. The effect of nitrogen concentration on the roots on the N+ side was greater than that on the N- side. Taken together, these results indicate that nitrogen application affects a contact-dependent local inhibition of root nodule growth, nitrogenase activity, and nitrogen accumulation. The whole plant systematically regulates specific nitrogenase activity, and high nitrogen inhibition is recoverable.  相似文献   

9.
Exposing 12‐day‐old soybean plants to 0.2 ppm nitrogen dioxide (NO2) for four weeks increased the nitrite concentration and acidity, and decreased the Leghemoglobin (LHb) concentration and the nitrogenase activity of root nodules. The supply of 1 mol.m‐3 nitrate to the roots intensified the nitrite accumulation, decreased the acidity of the nodules, and alleviated the inhibition of nitrogenase activity by NO2 fumigation. These results suggested that the inhibition of nitrogen (N2) fixation by N fertilizer supply might relate to the acid‐alkali balance in nodules.  相似文献   

10.
Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentration, nodulation, nodule activity, and rhizodeposition of Lupinus argenteus (Pursh), a legume native to sagebrush steppe. Plants were grown in a replicated, randomized design with three levels of water and four levels of N. Additional water and N increased biomass except at the highest N level. All plants formed nodules regardless of treatment, but plants grown without N had the largest, most active nodules. Organic N was deposited into the rhizosphere of all plants, regardless of treatment, indicating that Lupinus can influence N availability while actively growing, even under water stress. High tissue N concentrations and low C:N ratios indicate that Lupinus also can provide substantial amounts of N through litter decomposition. The ability of Lupinus to affect N availability and cycling indicates that it has the potential to significantly influence N budgets and community composition within the sagebrush steppe.  相似文献   

11.
It may be desirable to minimize dinitrogen (N2) fixation in alfalfa (Medicago saliva L.) when a source of inorganic nitrogen (N), such as manure, is readily available. Our objectives were to determine the N2 fixation response of eight alfalfa germplasms to inorganic N and to characterize plant‐to‐plant variation for this trait. Seed was sown in vermiculite and irrigated with nutrient solution in growth chambers. Herbage was removed at 71 d and treatments of 1, 3, 5, or 10 mM N were applied as 15N‐depleted ammonium nitrate (NH4NO3). After 34 d of regrowth, herbage was removed and analyzed for dry mass, total N concentration, and N isotope ratio. Increased availability of inorganic N resulted in a linear increase in herbage weight, height, shoot number, and N concentration, and consistently decreased N2 fixation for all germplasms. Estimated N2 fixation was greater than zero at the highest rate of inorganic N, which we speculate was due, in part, to remobilized root and crown N, because nodules appeared to be nonfunctional. Across all treatments, N2 fixation correlated best with herbage N concentration, but there was no relationship between these variables within a given N treatment concentration. Significant variation in reliance on N2 fixation in the presence of inorganic N existed in all eight germplasms.  相似文献   

12.
Domesticated and wild-type tepary beans (Phaseolus acutifolius A. Gray) were grown with or without inoculation with rhizobia in pots under bacteriologically controlled conditions in a temperature-controlled glasshouse. Seeds were inoculated with a mixture of seven strains isolated from nodules collected from domesticated field-grown tepary bean in Arizona, USA, or with a commercial inoculant strain for Phaseolus vulgaris (CC511). Different degrees of plant reliance upon N2 fixation for growth were generated by supplying the inoculated plants throughout growth with nutrients containing a range of concentrations of 15N-labeled NO3 (0, 1, 2, 5 or 10 mM). An uninoculated treatment that received 10 mM 15N-labeled NO3 was included to provide data for plants solely dependent upon NO3 for growth. Six weeks after sowing, shoots were harvested for dry matter determination and subsequent 15N analysis, root-bleeding xylem sap was collected, and nodulation assessed. With regard to shoot biomass production, domesticated lines were more responsive to inoculation, but less responsive to applied N than wild types. All inoculated plants were nodulated, but the field isolates from tepary bean were more effective in N2 fixation than strain CC511. It was concluded that tepary bean requires a specific inoculant to benefit from fixation of atmospheric N2. Xylem sap samples were analysed for ureides (allantoin and allantoic acid), amino acid content (α-amino-N), and NO3 concentration. The amount of ureide-N present in xylem sap was expressed as a percentage of total solute N, described as the relative abundance of ureide-N (RUN), for each N treatment and was compared to the proportion of plant N derived from N2 fixation (%Ndfa) calculated using a 15N dilution technique. The RUN values ranged from 8% for saps collected from uninoculated plants provided with 10 mM NO3 in the nutrient solution (%Ndfa=0) to 86-91% for nodulated plants grown in the absence of externally supplied NO3 (%Ndfa=100). These data indicated that ureides were the principal product of N2 fixation exported from the nodules to the shoot in xylem sap. Since RUN values were closely related to %Ndfa, it was proposed that N-solute analysis of xylem sap could provide a valuable analytical tool to monitor the symbiotic performance of tepary bean.  相似文献   

13.
Studies on the effects of salinity and nitrogen (N) fertilization on ionic balance, biomass, and organic N production of annual ryegrass (Lolium multiflorum Lam.) were conducted. Plants grown in sand were irrigated with nutrient solution with an electrical conductivity of 2 or 11.2 dS#lbm‐1, and N in the form of sodium nitrate (NaNO3), ammonium nitrate (NH4NO3), or ammonium sulfate [(NH4)2SO4] ranging from 0.5 to 9.0 mM. Salinity increased the concentration of total inorganic cations (C) in plants and specifically sodium (Na) by more than 3‐fold higher in plants grown at high salinity as compared with plants at low salinity. Sodium (Na) concentration in roots was higher than in shoots irrespective of the salinity level, suggesting a restriction of Na transport from roots to shoots. The concentration of total inorganic anions (A) increased with salinity and when plants were supplied with nitrate (NO3), salinity increased the concentrations of NO3 and chloride (Cl) in plants. Increasing salinity and N concentration in the growth medium increased organic anions concentration in plants, estimated as the difference between C and A. The effect of different N sources on C‐A followed the order: NH4NO3 > NO3 > ammonium (NH4). The base of organic anions and inorganic ions with salinity contributed significantly to the osmotic potential of plants shoots and roots. Changes in C affected N and organic acids metabolism in plants, since C were highly correlated (p=0.0001) with C‐A and organic N (Norg) concentrations regardless of the salinity level or N source in the nutrient solutions. A high and positive linear dependency was found between Norg and C‐A in plants grown at high and low salinity levels and different N sources, pointing out the close relationship between Norg and organic anions on metabolism under these conditions. The amount of biomass produced was correlated positively with organic anion concentration in plants exposed to different salinity levels. Plant biomass increased with N concentration in the nutrient solution regardless of the salinity level applied. Biomass accumulation decreased while Norg concentration increased with salinity. Organic N content remained unaffected in plants exposed to salinity when grown in N less than 9.0 mM.  相似文献   

14.
Nitrate reductase activity (NRA) was determined to investigate the effect of salinity and nitrogen (N) interactions on alfalfa [Medicago sativa (L) cv. Gilboa] during its vegetative growth. Increasing levels of sodium chloride (NaCl) (0, 30, 65, and 100 mM) decreased NRA in both plant parts, i.e., root and leaf, however to a lesser extent in leaves. The inclusion of Neither as nitrate (NO3) or ammonium (NH4) (0, 3, and 6 mM) to the nutrient medium resulted in a substantial enhancement of NR activity in salinized and non‐salinized plants as well.  相似文献   

15.
Barley (Hordeum vulgare L. cv. Martin) plants grown in solution culture, were exposed to increasing cadmium (Cd) concentration (0, 5, 10, 25, 50, and 100 μM) for a duration of 12 days. The sequence of important biochemical steps of nitrate (NO3) assimilation were studied in roots and shoots as a function of external Cd concentration. Cadmium uptake in roots and shoots increased gradually with Cd concentration in the medium. This Cd accumulation lowered substantially root and shoot biomass. The nitrate reductase (NR, EC 1.6.6.1) and nitrite reductase (NiR, EC 1.6.6.4) activities declined under Cd stress. Concurrently, tissue NO3 contents and xylem sap NO3 concentration were also decreased in Cd‐treated plants. These results suggest that Cd could exert an inhibitory effect on the assimilatory NO3 reducing system (NR and NiR) through a restriction of NO3 availability in the tissues. We therefore examined, in short‐term experiments (12 h), the impact of Cd on NO3 uptake and the two reductases in nitrogen (N)‐starved plants that were pretreated or not with Cd. It was found that Cd induced inhibition of both NO3 uptake and activities of NR and NiR, during NO3 induction period. The possible mechanisms of Cd action on NO3 uptake are proposed. Further, in Cd‐grown plants, the glutamine synthetase (GS, EC 6.3.1.2) showed a decreasing activity both in shoots and roots. However, increasing external Cd concentration resulted in a marked enhancement of glutamate dehydrogenase (NADH‐GDH, EC 1.4.1.2) activity, coupled with elevated levels of ammonium (NH4 in tissues. On the other hand, the total protein content in Cd‐treated plants declined with a progressive and substantial increase of protease activity in the tissues. These findings indicate that under Cd stress the usual pathway of NH4 assimilation (glutamine synthetase/glutamate synthase) can switch to an alternative one (glutamate dehydrogenase). The changes in all parameters investigated were concentration‐dependent and more marked in roots than shoots. The regulation of N absorption and assimilation by Cd in relation to growth and adaptation to stress conditions are discussed.  相似文献   

16.
Abstract

The interacting effects between topsoil water supply, nitrogen (N) placement and subsoil aluminum (Al) toxicity on wheat growth were studied in two split‐root pot experiments. The native nitrate‐N (NO3‐N) in the topsoil used in each experiment differed and were designated as high (3706 μM) and low (687 μM) for experiments one and two, respectively. Wheat was grown in pots that enabled the root system to be split so that half of the roots were in topsoil and the other half were in subsoils containing varying concentrations of soluble Al. Treatments were imposed which varied the supply of water to the topsoil (either ‘wet’ or ‘dry'). Placement of applied N in either the topsoil or subsoil had little effect on either shoot or root fresh weight, or on the length of roots produced in the subsoil section of the split pots. When water supply to the topsoil was decreased, both shoot and root growth of wheat declined and the yield decrease increased with subsoil Al. In the high‐N experiment, wheat grown in the low Al subsoil with the high native soluble subsoil (NO3 (3002 μM) was able to exploit the N and subsoil water, hence both shoot and root growth increased considerably in comparison to shoot and root growth of wheat grown in soils containing higher concentrations of subsoil Al. When the native NO3 was lower (i.e. the low‐N experiment) inadequate root proliferation restricted the ability of plants to use subsoil N and water irrespective of subsoil Al. The results from this study suggest that wheat, grown on yellow earths with Al‐toxic subsoils, will suffer yield reductions when the topsoil dries out (e.g. in the spring when winter rainfall ceases) because subsoil reserves of water and nitrogen are under utilised.  相似文献   

17.
Abstract

The effect of P deficiency on nodulation, nodule P content, nodule O2 permeability and N fixation rates in Phaseolus vulgaris–rhizobia symbiosis was studied under glasshouse conditions. Four recombinant inbred lines (L34, L83, L115 and L147) and one variety cultivated in Morocco (Concesa) were inoculated with Rhizobium tropici CIAT 899 in hydroaeroponic culture. Two P levels i.e. 75 (deficient level) and 250 µmol plant?1 week?1 P (sufficient level) were applied and the trial was assessed 42 days after transplanting that coincide with plant flowering stage. Under P-deficiency, decrease of plant growth (18%) and nodule biomass (19%) was detected and significantly pronounced in the sensitive line L147 compared with the remaining genotypes. Additionally, under P-deficiency, the efficiency in use of rhizobial symbiosis, estimated by the slope of the regression model of shoot biomass as a function of nodule biomass, was significantly increased in the four lines. This constraint did not significantly influence nodule P content in Concesa, but it was 24 and 41% lower in the tolerant and in the sensitive lines, respectively. Nodule P content was positively correlated to nodule biomass, r=0.75, and shoot N, r=0.92. These genotypic variations were associated with variability in nodule O2 permeability that was significantly affected by the P level-bean genotype interaction. Under P-deficiency, nodule O2 permeability was significantly reduced in the tested genotypes and accompanied with a decrease in shoot N content, especially in the sensitive lines (35%). Moreover, the ratios plant N fixed: nodule P content and plant N fixed:nodule dry weight were affected under P-deficiency in four lines with an exception observed in Concesa. Depending on the observed data we concluded that N2 fixation efficiency could be influenced by nodulation and level of nodule P requirement which depend on both bean genotypes and P level.  相似文献   

18.
The process of biomass, nitrogen (N), and potassium (K) accumulation over time as affected by N forms is poorly understood. The objective of this study was to identify the effects of N form on growth as well as on N and K nutrition of flue‐cured tobacco plants (Nicotiana tobaccum L.). The plants were grown in a greenhouse with pots of soil for 117 days after 200 days of preculture. Three treatments (calcium nitrate [Ca(NO3)2], ammonium nitrate (NH4NO3), and ammonium nitrate plus straw (NH4NO3 + straw)) were used. The results showed that there were no significant differences in shoot dry mass of tobacco among the three treatments during the entire growth stage except at 30 and 117 days after transplanting. At these two growth stages, shoot biomass with the Ca(NO3)2 treatment was significantly less than that with NH4NO3 with or without straw. The NH4NO3 + straw plants had more mature leaves and greater leaf dry weight than the other two treatments. At an early stage (before 66 days), N concentration of Ca(NO3)2‐fed plants was less than with the other two treatments. The leaf K concentration and shoot K content of NH4NO3 and NH4NO3 + straw plants were more than with the Ca(NO3)2 treatment before maturity. Also, K concentration in mature leaves with these two treatments was greater than with Ca(NO3)2 treatment. All these results indicated that NH4NO3 application had benefits to the maturity and K accumulation in leaves of tobacco.  相似文献   

19.
Six cultivars of sugar beet characterized by different sugar contents were grown in water culture on Reid-York nutrient solution for 30 days. Nitrogen was included in the medium in the form of either NH4NO3, NH4Cl or Ca(NO3)2 at the concentrations 105, 210 and 420 mg N/l. The results obtained reveal that both shoot dry weight and leaf area were dependent upon the type of cultivar and the form and concentration of nitrogen present in the nutrient solution. The least amount of shoot matter and the smallest leaf area were obtained in the presence of ammonium as the sole nitrogen source. The concentration of total nitrate and ammonium nitrogen measured in the shoot was found to be dependent on the cultivar type and on the concentration of nitrogen present in the nutrient solution. The highest oxalic acid concentrations were detected in plants grown on nitrate. No synthesis of oxalic acid was detected upon growth on ammonium as the sole nitrogen source.  相似文献   

20.
Maize plants (Zea mays L. cv. Pioneer 3906) were grown in hydroponics with four different NaCl treatments (control, 50, 100, 150 mM NaCl). Nitrogen (N) was supplied as 2 mM Ca(NO3)2 in the fully concentrated nutrient solution. Plants of half of the pots were treated with additional 1 mM NH4NO3 2 d after start of the NaCl application. After 23 d, the maize plants were harvested and contents and concentrations of nitrate, reduced N as well as chloride were determined in shoots and roots. With increasing NaCl stress net nitrate uptake and net root‐to‐shoot translocation of total N decreased significantly. Under salt stress, decreased nitrate concentrations in shoots probably caused substrate limitation of nitrate reductase. However, the concentrations of reduced N in shoots were not affected by salt stress and no N deficiency was observed. Additional N application to the 100 and 150 mM NaCl treatments did not improve plant growth. A Cl?/NO antagonism was only weakly pronounced, probably because of the Cl? exclusion ability of maize. Thus, although net uptake and net translocation of total N were markedly decreased by NaCl application, the smaller maize plants nevertheless took up enough N to meet their demand pointing to other growth‐limiting factors than N nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号