首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty field experiments on a range of soils in different rainfall zones of South Western Australia were used to examine the effectiveness, relative to freshly applied zinc (Zn) fertilizer of previously applied Zn fertilizer for grain yield of wheat. The soils had been fertilized with Zn at 0.2 to 1.2 kg Zn ha‐1, 9 to 24 years previous. The effect of applied nitrogen (N) fertilizer on grain yield and Zn concentrations in the youngest emerged blade (YEB) was also examined. At all sites, the current application of Zn fertilizer to soils previously treated with Zn did not increase grain yield. The highest level of N fertilizer did not reduce grain yield where Zn had been applied previously or induce Zn deficiency in wheat plants. The lowest level of Zn (0.2 kg Zn ha‐1, Experiment 17) applied 15 years earlier was still fully effective for maximum grain production. The application of currently applied Zn increased the Zn concentration in the YEB for 23 experiments. Application of N decreased Zn concentration in YEB in the 19 experiments, had no effect on the Zn concentration in 11 experiments, and increased Zn concentrations in two experiments. This was so for recent and previously applied Zn. In experiments where N decreased the Zn concentration in YEB, the concentration declined to 10 mg kg‐1 in seven experiments. Zn concentration in the grain was increased by the current application of Zn in 25 experiments. It had no effect in five experiments (Experiments 11–13, 21–22). The application of N fertilizer decreased the Zn concentration of the grain for both previously and currently applied Zn in 20 experiments. Nitrogen decreased the concentration of Zn in the grain to 10 mg Zn kg‐1 in seven experiments. Zinc extracted from the soil by DTPA was correlated with the amount of previously applied Zn fertilizer. DTPA‐extractable Zn for the experimental sites were 0.3 mg kg‐1, except for 2 experiments which were 0.2 mg/kg. The results show that where Zn fertilizer had been applied previously, applications of high levels of N fertilizer to cereal crops did not require further applications of Zn if superphosphate (400–600 mg Zn kg‐1) was used in the cropping and pasture phase. This is because of contaminates of Zn in rock phosphate used to make superphosphate. However, the requirements for Zn for wheat grain need to be reconsidered if diammonium phosphate (DAP) is used for cropping and if superphosphate applications are less than 150 kg ha‐1 during the legume crop or pasture species in rotation with the cereal.  相似文献   

2.
Abstract

Humic acids have many benefits for plant growth and development, and these effects may be maximized if these materials are combined with micronutrient applications. In the present study, pot experiments were conducted to evaluate the effects of zinc (Zn) humate and ZnSO4 on growth of wheat and soybean in a severely Zn‐deficient calcareous soil (DTPA‐Zn: 0.10 mg kg?1 soil). Plants were grown for 24 (wheat) and 28 days (soybean) with 0 or 5 mg kg?1 of Zn as either ZnSO4 or Zn humate. Zinc humate used in the experiments was obtained from Humintech GmbH, Germany, and contained 5% of Zn. When Zn was not supplied, plants rapidly developed visible symptoms of Zn deficiency (e.g., chlorosis and brown patches on young leaves in soybean and necrotic patches on middle‐aged leaves in wheat). Adding Zn humate eliminated Zn‐deficiency symptoms and enhanced dry matter production by 50% in soybean and 120% in wheat. Zinc‐humate and ZnSO4 were similarly effective in increasing dry matter production in wheat; but Zn humate increased soybean dry matter more than ZnSO4. When Zn was not supplied, Zn concentrations were 6 mg kg?1 for wheat and 8 mg kg?1 for soybean. Application of Zn humate and ZnSO4 increased shoot Zn concentration of plants to 36 and 34 mg kg?1 in wheat and to 13 and 18 mg kg?1 in soybean, respectively. The results indicate that soybean and wheat plants can efficiently utilize Zn chelated to humic acid in calcareous soils, and this utilization is comparable to the utilization of Zn from ZnSO4. Under Zn‐deficient soil conditions, plant growth and yield can be maximized by the combined positive effects of Zn and humic acids.  相似文献   

3.
The application of zinc (Zn) fertilizer to lentil is an agronomic strategy that has the potential to improve yield and enhance grain Zn concentration. A pot study was conducted to determine if Zn fertilizer applied to three popular Saskatchewan lentil cultivars could increase yield and concentration of Zn in the grain. The effects of soil and foliar applied Zn forms, including ZnSO4, Zn chelated with EDTA, Zn lignosulphonate, and a control were evaluated. Forms of Zn were not found to significantly increase yield (P = 0.828) or grain Zn concentration (P = 0.708) in any of the lentil cultivars tested. Fertilization with soil applied ZnSO4 resulted in significantly (P < 0.0001) higher amounts of residual available Zn in the soil relative to other Zn treatments. Soil fertilized with ZnSO4 had 1.13 mg kg?1 diethylenetriaminepentaacetic acid (DTPA)-extractable Zn compared to 0.84 mg Zn kg?1 and 0.77 mg Zn kg?1 in the soil and foliar applied chelated Zn, respectively.  相似文献   

4.
The effect of six different zinc (Zn) application methods on grain yield and concentrations of Zn in whole shoots and grain was studied in wheat cultivars (Triticum aestivum, L. cvs. Gerek‐79, Dagdas‐94 and Bezostaja‐1 and Triticum durum, Desf. cv. Kunduru‐1149) grown on severely Zn‐deficient calcareous soils (DTPA‐extractable Zn: 0.12 mg‐kg‐1 soil) of Central Anatolia which is the major wheat growing area of Turkey. Zinc application methods tested were: a) control (no Zn application), b) soil, c) seed, d) leaf, e) soil+leaf, and f) seed+leaf applications. Irrespective of the method, application of Zn significantly increased grain yield in all cultivars. Compared to the control, increases in grain yield were about 260% with soil, soil+leaf, and seed+leaf, 204% with seed and 124% with leaf application of Zn. In a similar manner, biomass production (dry weight of above‐ground parts) was increased by Zn treatments. The highest increase (109%) was obtained with the soil application and the lowest increase (40%) with the leaf application. Significant effects of Zn application methods were also found on the yield components, i.e., spike number.m‐2, grain number‐spike‐1, and thousand kernel weight. Spike number.m‐2 was affected most by Zn applications, particularly by soil and soil+leaf applications. Concentrations of Zn in whole shoots and grain were greatly affected by different Zn treatments. In plants without added Zn, concentrations of Zn were about 10 mg‐kg‐1 both in shoots and grain and increased to 18 mg‐kg‐1 dry weight (DW) by soil application of Zn, but not affected by seed application of Zn. Soil+leaf application of Zn had the highest increase in concentration of Zn in shoot (82 mg‐kg‐1 DW) and grain (38 mg‐kg‐1 DW). Soil application of Zn was economical and had long‐term effects for enhancing grain yield of wheat grown on Zn deficient soils. When high grain yield and high Zn concentration in grains are desired, soil+leaf application of Zn was most effective method of Zn application.  相似文献   

5.
Field experiments were conducted on rice (cv ‘IET 4094’) in an Aeric endoaquept (pH 7.2) to evaluate the various zinc (Zn) extractants in lowland rice soil under the influence of Zn sulfate and chelated Zn. The diethylenetriaminepentaacetic acid (DTPA), 0.1 N hydrochloric acid (HCl), and 0.05 N HCl‐extractable Zn concentrations in soil increased initially up to the Z29 stage of crop growth when Zn was applied as a single basal source, being greater with Zn ethylenediaminetetraacetic acid (Zn‐EDTA) compared to zinc sulfate (ZnSO4) application. Among the various extractants, the performance of 0.1 N HCl in extracting Zn was better than the other two extractants and followed the trend 0.1 N HCl > 0.005 M DTPA > 0.05 N HCl. The greatest increase in grain and straw yield of rice was 37.8 and 20.4%, respectively, over the control in the treatment T7 (1 kg Zn ha?1 as Zn‐EDTA at basal).  相似文献   

6.
Effects of varied irrigation and zinc (Zn) fertilization (0, 7, 14, 21 kg Zn ha‐1 as ZnSO47.H2O) on grain yield and concentration and content of Zn were studied in two bread wheat (Triticum aestivum), two durum wheat (Triticum durum), two barley (Hordeum vulgare), two triticale (xTriticosecale Wittmark), one rye (Secale cereale), and one oat (Avena sativa) cultivars grown in a Zn‐deficient soil (DTPA‐extractable Zn: 0.09 mg kg‐1) under rainfed and irrigated field conditions. Only minor or no yield reduction occurred in rye as a result of Zn deficiency. The highest reduction in plant growth and grain yield due to Zn deficiency was observed in durum wheats, followed by oat, barley, bread wheat and triticale. These decreases in yield due to Zn deficiency became more pronounced under rainfed conditions. Although highly significant differences in grain yield were found between treatments with and without Zn, no significant difference was obtained between the Zn doses applied (7–21 kg ha‐1), indicating that 7 kg Zn ha‐1 would be sufficient to overcome Zn deficiency. Increasing doses of Zn application resulted in significant increases in concentration and content of Zn in shoot and grain. The sensitivity of various cereals to Zn deficiency was different and closely related to Zn content in the shoot but not to Zn amount per unit dry weight. Irrigation was effective in increasing both shoot Zn content and Zn efficiency of cultivars. The results demonstrate the existence of a large genotypic variation in Zn efficiency among and within cereals and suggest that plants become more sensitive to Zn deficiency under rainfed than irrigated conditions.  相似文献   

7.
Abstract

Five soil extractants, namely, 0.005 M diethylene triamine pentaacetic acid (DTPA) (pH 7.3), 0.005 M DTPA+1 M ammonium bicarbonate (pH 7.6), Mehlich 3, 0.01 M ethylene diamine tetraacetic acid (EDTA)+0.05 M ammonium carbonate (pH 8.6), and 1 M magnesium chloride (MgCl2) (pH 6.0), were evaluated to predict the response of wheat to zinc (Zn) application in Mollisols. These extractants could be arranged in the following decreasing order of their Zn extracting power: Mehlich 3>0.005 M DTPA+1 M ammonium bicarbonate>0.01 M EDTA+0.05 M ammonium carbonate>0.005 M DTPA>1 M MgCl2. The critical limits of Zn in soil, below which the yield response to late sown wheat (var. UP‐2338) to Zn application could be expected, were 0.57 mg 0.005 M DTPA (pH 7.3) extractable and 1.72 mg Mehlich 3–extractable Zn kg?1 soil. The critical limit of Zn in whole shoot at 60 days after emergence was found to be 26.1 mg Zn kg?1 plant tissue. The DTPA and Mehlich 3–extractable soil Zn also correlated significantly and positively with Zn concentration in whole shoot at 60 days after emergence and total Zn uptake by wheat at harvest.  相似文献   

8.
A pot experiment was done to study the effect of zinc (Zn) application on the reproductive development and quality of wheat (Triticum aestivum L. cv. SP 343) seeds. The soil was low in diethylenetriaminepentaacetate (DTPA)–extractable Zn and was fortified with a mixture of nitrogen, phosphorus, and potassium (NPK) as basal fertilizers. Four treatments included a control (no Zn), 5 mg Zn, 10 mg Zn, and 10 mg Zn kg?1 soil with urea instead of ammonium nitrate. Zinc addition improved the pollen-producing capacity of anthers, pollen viability, and seed yield with an increase in seed Zn, phytate, and starch contents but decreased the phytate/zinc molar ratio at 5 mg Zn kg?1 and increased it at 10 mg Zn kg?1. Application of urea increased the seed protein content at 10 mg Zn kg?1 but was ineffective in lowering the phytate/Zn ratio, which was still less than the alarming level.  相似文献   

9.
An experiment was conducted to assess the zinc (Zn) availability to wheat in alkaline soils during Rabi 2009–2010. Wheat seedlings in pots having 2 kg alkaline sandy soil per pot were treated with 5, 10 and 15 kg Zn ha?1 as soil and with 0.5 and 1.0% zinc sulfate (ZnSO4) as foliar application. Results showed that Zn increasing levels in soil helped in phosphorus uptake up to boot stage but its conversion to grain portion lacked in Zn treated plants. Potassium (K) uptake also increased up to 6.24% in boot stage with treatment of 10 kg Zn ha?1 + 1.0% ZnSO4 foliar spray. Zinc (Zn) concentration increased in plant tissues with the increasing level of Zn application but this disturbed the phosphorus (P)-Zn interaction and, thus, both of the nutrients were found in lesser quantities in grains compared to the control. Despite of the apparent sufficient Zn level in soil (1.95 mg kg?1), improvement in growth and yield parameters with Zn application indicate that the soil was Zn deplete in terms of plant available Zn. The above findings suggest that the figure Zn sufficiency in alkaline soil (1.0 mg kg?1) should be revised in accordance to the nature and type of soils. Furthermore, foliar application of Zn up to 1.0% progressively increased yield but not significantly; and it was recommended that higher concentrations might be used to confirm foliar application of Zn as a successful strategy for increasing plant zinc levels.  相似文献   

10.
A pot culture experiment was conducted to study the effect of zinc (Zn) on biofortification of 10 wheat (Triticum aestivum L.) varieties in the Zn-deficient soil of Lucknow. Treatments consisted of 0 and 20 mg Zn kg?1 as a basal dose and 20 mg Zn kg?1 basal dose with two foliar sprays of zinc sulfate (ZnSO4) 0.5%. Foliar sprays of Zn were applied twice at the preflowering stage and 7 days after flowering. Results from the present study revealed that poor growth of plants grown in soil without Zn applications (0 mg Zn kg?1) were improved by applications of Zn (20 mg Zn kg?1) more when Zn was applied with two foliar sprays. Application of Zn (20 mg Zn kg?1) with two foliar sprays also proved beneficial for maximizing Zn concentrations of grains and other plant parts. Wheat varieties NW 1076, K 3827, NW 2036, and UP 262 appeared highly responsive to the treatments.  相似文献   

11.
Seventeen Mollisols having pH(1:2) in the range of 6.00 to 8.42 were analyzed with five extractants, and the extractable zinc (Zn) ranges were 0.84 to 2.75 mg Zn kg?1 soil for diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), 0.91 to 2.72 mg Zn kg?1 soil for DTPA + ammonium bicarbonate (pH 7.6), 1.82 to 7.18 mg Zn kg?1 soil for Mehlich 3, 1.22 to 3.83 mg Zn kg?1 soil for ethylenediaminetetraacetic acid (EDTA) + ammonium carbonate, and 0.88 to 1.18 mg Zn kg?1 soil for 1 mol L?1 magnesium chloride (MgCl2) (pH 6.0). Zinc extracted by DTPA (pH 7.3) and Mehlich 3 showed significant positive correlation with sand content, whereas only Mehlich 3 showed negative correlation with soil pH. All extractants showed significant positive correlation with each other except for 1 mol L?1 MgCl2‐extractable Zn, which had significant positive correlation with only Mehlich 3– and EDTA + ammonium carbonate–extractable Zn. A greenhouse experiment showed that Bray's percentage yield of rice was poorly correlated to extractable soil Zn but had a significant and negative linear correlation with soil pH (r = ?0.662, significant at p = 0.01). Total Zn uptake by rice had a significant positive correlation with 1 mol L?1 MgCl2– and Mehlich 3–extractable Zn. A proposed parameter (p extractable Zn + p OH?) involving both soil extractable Zn and pH terms together showed significant and positive correlation with Bray's percentage yield and total Zn uptake of rice. The calculated values of critical limits of soil Zn in terms of the proposed parameter were 14.1699 for DTPA (pH 7.3), 13.9587 for DTPA + ammonium bicarbonate, 13.7016 for Mehlich 3, 13.9402 for EDTA + ammonium carbonate, and 14.1810 for 1 mol L?1 MgCl2 (pH 6.0). The critical limits of Zn in rice grain and straw were 17.32 and 22.95 mg Zn kg?1 plant tissue, respectively.  相似文献   

12.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

13.
Yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) are grown as grain legumes in rotation with spring wheat (Triticum aestivum L.) on acidic sandy soils of south-western Australia. Yellow lupin can accumulate significantly larger cadmium (Cd) concentrations in grain than narrow-leafed lupin. A glasshouse experiment was undertaken to test whether adding increasing zinc (Zn) levels to soil increased Zn uptake by yellow lupin reducing accumulation of Cd in yellow lupin grain. Two cultivars of yellow lupin (cv. ‘Motiv’ and ‘Teo’) and 1 cultivar of narrow-leafed lupin (cv. ‘Gungurru’) were used. The soil was Zn deficient for grain production of both yellow and narrow-leafed lupin, but had low levels of native soil Cd (total Cd <0.05 mg kg?1) so 1.6 mg Cd pot?1, as a solution of cadmium chloride (CdCl2·H2O), was added and mixed through the soil. Eight Zn levels (0–3.2 mg Zn pot?1), as solutions of zinc sulfate (ZnSO4·7H2O), were added and evenly mixed through the soil. Yellow lupin accumulated 0.16 mg Cd kg?1 in grain when no Zn was applied, which decreased as increasing Zn levels were applied to soil, with ~0.06 mg Cd kg?1 in grain when the largest level of Zn (3.2 mg Zn pot?1) was applied. Low Cd concentrations (<0.016 mg Cd kg?1) were measured in narrow-leafed lupin grain regardless of the Zn treatment. When no Zn was applied, yellow lupin produced ~2.3 times more grain than narrow-leafed lupin, indicating yellow lupin was better at acquiring and using indigenous Zn from soil for grain production. Yellow lupin required about half as much applied Zn as narrow-leafed lupin to produce 90% of the maximum grain yield, ~0.8 mg pot?1 Zn compared with ~1.5 mg Zn pot?1. Zn concentration in whole shoots of young plants (eight leaf growth stage) related to 90% of the maximum grain yield (critical prognostic concentration) was (mg Zn kg?1) 25 for both yellow lupin cultivars and 19 for the narrow-leafed lupin cultivar. Critical Zn concentration in grain related to 90% of maximum grain yield was (mg Zn kg?1) 24 for both yellow lupin cultivars compared with 20 for the narrow-leafed lupin cultivar.  相似文献   

14.
Abstract

The available (0.1M HCl‐ and DTPA‐extractable) and total forms of copper (Cu) and zinc (Zn) were determined in soils developed on various groups of basalts, namely, the Newer, Older, Lateritized‐Older, and Biu (undifferentiated) basalts. The HCl‐, DTPA‐extractable, and total Cu in the soils ranged from 0.40 to 5.60, 0.15 to 2.64, and 15 to 65 mg Cu kg‐1, respectively, with corresponding means values of 2.06, 0.89, and 41 mg Cu kg‐1. Similarly, HCl‐, DTPA‐extractable, and total Zn varied from 3.00 to 6.20, 0.14 to 2.15, and 25 to 265 mg Zn kg‐1 with respective mean values of 4.65, 0.52, and 89 mg Zn kg‐1. The soils were high in the total forms of Cu and Zn, generally sufficient in available Cu, but deficient in available Zn. Both the total and available forms of Cu and Zn were little correlated with soil properties in soils of the Lateritized‐Older and Biu basalts, while only the available forms were related mainly to silt, clay, pH, and organic carbon in soils of the Newer and Older basalts. Furthermore, the available forms were correlated with each other, but not with the total forms.  相似文献   

15.
ABSTRACT

Zinc (Zn) deficiency is a global nutritional problem in crops grown in calcareous soils. However, plant analysis criteria, a good tool for interpreting crop Zn requirement, is scarcely reported in literature for onion (Allium cepa L.). In a greenhouse experiment, Zn requirement, critical concentrations in diagnostic parts and genotypic variation were assessed using four onion cultivars (‘Swat-1’, ‘Phulkara,’ ‘Sariab Red,’ and ‘Chilton-89’) grown in a Zn-deficient (AB-DTPA extractable, 0.44 Zn mg kg?1), calcareous soil of Gujranwala series (Typic Hapludalf). Five rates of Zn, ranging from 0 to 16 mg Zn kg?1 soil, were applied as zinc sulphate (ZnSO4·7H2O) along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and boron (B). Four onion seedlings were transplanted in each pot. Whole shoots of two plants and recently matured leaves of other two plants were sampled. Zinc application significantly increased dry bulb yield and maximum yield was produced with 8 mg Zn kg?1. Application of higher rates did not improve yield further. The cultivars differed significantly in Zn efficiency and cv. ‘Swat-1’ was most Zn-efficient. Fertilizer requirement for near-maximum dry bulb yield was 2.5 mg Zn kg?1. Plant tissue critical Zn concentrations were 30 mg kg?1 in young whole shoots, 25 mg kg?1 in matured leaves, 16 mg kg?1 in tops and 14 mg Zn kg?1 in bulb. Zinc content in mature bulb also appeared to be a good indicator of soil Zn availability status.  相似文献   

16.
ABSTRACT

Calcareous soils typically suffer from zinc deficiency and zinc sulfate is incorporated in many cultivated soils. Utilization of ZnSO4 has some kinds of interaction with soil particles and organic matter. In this study, the efficacy of two znic(Zn)-amino acid chelates (Zn-ACs) i.e., Zn-alanine (Zn-Ala) and Zn-glycine (Zn-Gly) on wheat (Triticum aestivum, cv. N91-8) growth characteristics and zinc concentration in wheat was examined under greenhouse conditions and compared to the a commercial ZnSO4. Results showed that Zn-Ala and Zn-Gly significantly increased the dry weight and shoot length of wheat in comparison to ZnSO4 treatment. Soil application of Zn-Amino acid chelates proved to be the most influential source of zinc in increasing wheat growth and yield indices. Number of fertile spikelet and grain yield increased significantly respectively compared to ZnSO4 treatment. Zn concentration and protein content of wheat grain in Zn-ACs treatment was significantly higher than the ZnSO4 treatment. Soil application of Zn-ACs caused a significant decrease in the grain phytic acid (PA) concentration and also phytic acid to zinc molar ratio in comparison with ZnSO4 treatment. According to the results, Zn-ACs could be utilized as a zinc fertilizer source for improving the zinc bioavailability in wheat.  相似文献   

17.
Six fertilizer trials on calcareous soils in Saudi Arabia were conducted for the prediction of Zn deficiency in soybean (Glycine max L., var Merr). Zinc level before planting was tested by using 3 different extractants, i.e. DTPA, AB-DTPA and EDTA. Zinc was applied in the form of ZnSO4 · 7H2O at 0, 5, 10, 15, 20 and 40 kg Zn ha?1. Plant samples were taken at early bloom and tissue was analysed for Zn. Two methods were used to judge the critical deficiency level of Zn: Cate-Nelson and chisquare models. The critical level estimated according to the Cate-Nelson method for DTPA extractable soil Zn was 0.43 mg kg?1 in the growing season 1991. EDTA gave a much higher level (1.80 mg kg?1) and AB-DTPA gave an intermediate level (0.68 mg kg?1). Chi-square statistical procedure gave a very similar critical level of 0.66 mg kg?1 for AB-DTPA but lower for either DTPA (0.38 mg kg?1) or EDTA (1.32 mg kg?1). The critical level based for three growing seasons ranged from 0.25 to 0.68, 0.32 to 0.82 and 1.12 to 3.4 mg Zn kg?1 for DTPA, AB-DTPA and EDTA extractants, respectively. The values obtained by the linear regression equation with soybean leaf concentration were 0.45 and 0.70 mg Zn kg?1 for DTPA and AB-DTPA, respectively. Such values are very close to those determined by using the Cate-Nelson method. On the other hand, the value obtained for EDTA (1.15 mg Zn kg?1) was comparatively lower than that calculated by applying the Cate-Nelson method.  相似文献   

18.
Abstract

A pot experiment was conducted to investigate the effects of three soluble zinc (Zn) fertilizers on cadmium (Cd) concentrations in two genotypes of maize (Zea mays): Jidan 209 and Changdan 374. Zinc fertilizers were added to soil at four levels: 0, 80, 160, and 240 mg kg?1 soil as nitrate [Zn(NO3)2], chloride (ZnCl2), and sulfate (ZnSO4). Cadmium nitrate [Cd(NO3)2] was added to all the treatments at a uniform rate equivalent to 10 mg kg?1 soil. The biomass of maize plants was increased with the application of three zinc fertilizers, of which Zn(NO3)2 yielded more than others. Under ZnCl2 treatment, plant growth was promoted at the lower level and depressed at the higher one. All the three fertilizers decreased Cd concentration in shoots in comparison with treatments without Zn, but there were variations with different forms, especially in plants treated with Zn(NO3)2, which had the minimal value. The orders of average Cd concentration in shoots with different zinc fertilizers were ZnSO4>ZnCl2>Zn(NO3)2 for Jidan 209 and ZnCl2>ZnSO4>Zn(NO3)2 for Changdan 374, respectively (P<0.001). There was no significant difference between ZnSO4 and ZnCl2 treatments. The lowest Cd concentration in shoots was found in the 80‐mg‐kg?1 soil or 160‐mg‐kg?1 soil treatment. Cadmium concentration in roots in the presence of ZnCl2 was the lowest and under ZnSO4 the highest. The mechanism involved needs to be studied to elucidate the characteristics of complexation of Cl? and SO4 2? with Cd in plants and their influence on transfer from roots to shoots.  相似文献   

19.
Although complexation with soil organic matter may improve zinc (Zn) bioavailability to plants, the effect of Zn sorbent surface on the use of complexed Zn by plants remains unknown. The objective of this research was to elucidate how Zn complexation with humic substances (HS) and phytate affects the uptake of Zn by wheat plants depending on the main sorbent surface in growth media, i.e., carbonates and Fe oxides. To this end, two pot experiments were performed, one using Fe oxide-coated siliceous as the siliceous growth medium sand and the other using a mixture of calcareous sand and siliceous sand as the calcareous growth medium. Each experiment involved three Zn sources, Zn-HS complex, Zn phytate, and ZnSO4. All sources were applied with surface irrigation at two Zn rates (0.25 and 2 mg kg-1 growth medium). The Zn-HS complex significantly increased Zn uptake by plants in both media, relative to the other two Zn sources, but no significant difference was observed between Zn phytate and ZnSO4. In the calcareous medium, Zn-HS complex and Zn phytate resulted in significantly higher dry biomass yields of wheat than ZnSO4. In the siliceous medium, spike and shoot dry biomass yields with Zn-HS complex at the low rate and Zn phytate at both rates were not significantly different from those with ZnSO4 at the high rate. After harvest, approximately 50% of the Zn applied as Zn-HS complex remained extractable by diethylenetriaminepentaacetic acid (DTPA), while this proportion was less than 20% for the other Zn sources. Thus, Zn-HS complex and Zn phytate are sources of available Zn for plants, and they are more effective than ZnSO4 in increasing plant growth, particularly when carbonates are the main Zn sorbent surface.  相似文献   

20.
The effect of elemental sulphur (S) and S containing waste applications on soil pH treated with 0–2,000 kg ha‐l elemental S, and 0–100 tons ha‐1 of waste was determined in the field and the pots. Sorghum (Sorghum bicolor L.) was grown in a Lithic Xerorthent soil which was taken from where the field experiment was conducted in pots receiving 5 kg soil. Plants were harvested 20 weeks after planting or 30 weeks after the applications for determination of dry matter yield and phosphorus (P), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) uptake by shoots. EC, NaHCO3‐extractable P, and DTPA‐extractable Fe, Zn, Mn, Cu also were measured in pot soil at the 5th, 10th, and 30th weeks. All treatments led to a decrease in soil pH though pH tended to increase again during course of time in both field and pot experiments. The both elemental S and waste applications in pot experiment caused an increase in dry matter yield and P, Fe, zinc (Zn), Mn and Cu uptake (mg pot‐1) by shoots in sorghum plant. There was also an increase in EC of soil due to both applications of S. The concentration of available P extracted by NaHCO3 in the pot soil, though not significantly different, was slightly higher compared with the control. Waste applications increased DTPA‐extractable Fe content of the soil, DTPA‐extractable Mn and DTPA‐extractable Cu. DTPA‐extractable Zn content, however, was reduced by the same applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号