首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Selenium (Se) deficiency in Scandinavian soils is a common problem, and crops generally contain inadequate amounts to meet human need. This study shows a relationship of the Se concentration in spring wheat (Triticum aestivum L., c.v. ‘Helena’) and leaching water with timing of nitrogen (N) [as ammonium nitrate (NH4NO3)] and Se [as sodium selenate (Na2SeO4)] application. Ammonium-nitrate was applied by two methods (i) whole amount at sowing and (ii) in split application as 75% at sowing and 25% at stem elongation. Selenate was applied at cereal growth stages after sowing, e.g., tillering, stem elongation, head emergence, and milking. Split N application in comparison to one N application increased the grain protein content from 12.1 to 13.7 mg g? 1, and grain Se was increased from 0.8 to 1.1 mg kg? 1 when Se was applied at stem elongation and from 0.6 to 0.9 mg kg? 1 when applied at heading. The highest Se concentration in plant was achieved with the split N application and Se application at stem elongation or heading. Selenium leaching losses increased with increasing selenium concentration in the wheat grains. No differences in Se leaching losses were obtained with split N application. Applying selenate and ammonium-nitrate together after tillering increased the grain Se concentration, but did not affect the potential leaching of Se, and thus could be considered as an appropriate time of application of these elements.  相似文献   

2.
In a greenhouse experiment, wheat cultivars PDW 291, PBW 550, and TL 2908 were grown in alkaline sandy-loam soil treated with sodium selenate at 0, 2, and 4 mg selenium (Se) kg?1 soil. Selenate-treated wheat plants accumulated greater Se in roots, stems, leaves, and grains and showed growth retardation, snow-white chlorosis, decreased shoot length and chlorophyll, and reduced leaf area and produced less number of grains as compared to control plants. Maximum reduction in these parameters was observed in selenate-treated TL 2908 plants and most of the plants died before maturity with almost no grain formation with 4 mg Se kg?1 soil. Selenium accumulation resulted in decreased reducing sugar, starch, and protein contents in grains whereas total free amino acids increased significantly in all the three cultivars. Selenium accumulation in wheat showed metabolic disturbances and its accumulation in grains was beyond toxic levels, thus making it unfit for consumption.  相似文献   

3.
In soil, adsorption of selenium (Se) onto mineral surfaces is accompanied by poorly known retention via organic matter. The effects of these components on the availability of Se were examined in two pot experiments. Spring wheat was grown with increasing amounts of selenate (SeO4 2–) in one sand and three peat soils, and ryegrass with selenate and selenite (SeO3 2–) in sphagnum peat manipulated by iron (Fe) hydroxide. Selenate persisted in soluble form, whereas selenite was fixed in the soil. In wheat, 5–50% of the selenate addition was recovered in the plant, the proportion increasing with increasing Se. In ryegrass, 30–40% of the added selenate but less than 2% of the selenite was found within the leaves. The Fe hydroxide enrichment enhanced the selenite uptake. Phosphate buffer desorbed a minor proportion of the added selenite, except in peat amply enriched with Fe hydroxide. The results suggest that the retention mechanism of selenite was changed due to the hydroxide amendment.  相似文献   

4.
In a greenhouse experiment, Brassica plants were grown in an alkaline sandy loam soil treated with different levels of selenate selenium (Se) or selenite Se ranging from 0 to 4 mg Se kg?1. Plants grown in Se-treated soil were stressed at an early stage of pod setting and produced fewer pods per plant. Selenium accumulation increased by 2- to 35-fold in shoots, 3- to 19-fold in roots, and 2- to 57-fold in grains. Selenium accumulation in grains resulted in significant increases in contents of reducing sugars, starch, glucosinolate, and free and sulfur-containing amino acids and a decrease in lipid content. Selenium accumulation significantly increased the proportions of different lipid classes such as glycolipids, sterols, and free fatty acids whereas triacylglyceride content showed the reverse trend. Oil extracted from Brassica grains grown in the seleniferous region contained Se within safe limits and thus is safe for human consumption.  相似文献   

5.
Selenium (Se) is an essential micronutrient for humans, animals, and certain lower plants, but at higher concentrations Se becomes toxic to organisms. The boundary between the Se beneficial effect and its toxicity is narrow and depends on its chemical form, applied concentration, and other environmentally regulating factors. Due to the potential risk of toxicity in higher concentration, the aim of this study was to estimate the impact of increased concentrations of different forms of Se on the response of the wheat–soil–earthworm system. Soil, earthworms, and wheat grains were exposed to the Se in form of selenite and selenate in concentrations of 0.01, 0.1, and 1 mg kg−1. As an indicator of oxidative stress in wheat, lipid peroxidation levels (LPO) and total H2O2 content were determined, while antioxidative response was determined by catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR) activities. The biomarker responses in earthworms were determined by acetylcholinesterase (AChE), carboxylesterase (CES), and antioxidative enzymes (CAT and glutathione S‐transferase) activities. Selenite and selenate increased Se content in the wheat and earthworms, while selenate application was more efficient, indicating higher bioaccumulation of this Se form. Both Se forms did not cause significant changes in the LPO level and H2O2 content, while GPX activities were elevated in all treatments, suggesting that oxidative stress was not induced in wheat. In earthworms, Se significantly reduced activities of AChE and CAT at some concentrations, while CES activity was increased at all concentrations applied. This study showed significant impact of Se on measured biochemical responses in wheat and earthworms, indicating the disruption of homeostasis. Obtained results can serve as basis for further studies on Se effects and will help in including different aspects necessary for understanding of Se impact on different components of soil ecosystems.  相似文献   

6.
The present investigation reports the effects of different doses of sodium selenate and sodium selenite on its uptake, carbohydrate composition, and sucrose and starch metabolizing enzymes in flag leaf and developing grains of wheat grown under greenhouse conditions. Selenium (Se) concentration increased significantly in leaves and developing grains of Se-treated plants compared to control at different intervals post-anthesis. Total soluble sugars and sucrose concentrations in developing grains increased due to various Se treatments. Different selenite treatments increased sucrose synthase activity from 10 to 20 days post-anthesis and increased starch accumulation compared to control plants. Lower starch accumulation in selenate than control and selenite treatments was observed. The activities of α, β and total amylase, invertase and sucrose synthase increased whereas sucrose phosphate synthase declined. Results indicated that Se accumulation causes disturbances in carbohydrate metabolism that is dependent on Se concentration, form and the development stage of the plant.  相似文献   

7.
Due to selenium (Se) deficiency, Se fortification of food and feed is applied in many countries. Therefore, potential use of Se‐enriched kenaf was investigated based on its Se accumulation, its potential to transform accumulated Se to other Se species, and effect of Se accumulation on its growth. Kenaf was grown with different levels of two Se fertilizers (selenite and selenate) at concentrations ranging from 0 to 4 mg Se (kg soil)–1. Total Se concentrations in the plants grown on selenate‐treated soil amounted to (1019 ± 136) mg Se (kg dry weight)–1 and were much higher compared to plants grown on selenite‐treated soil. Identified Se species were selenite, selenate, Se‐methionine, and Se‐cystine. Biomass yield, net photosynthesis, and chlorophyll index of the plants decreased when plants were grown on soils treated with high doses of selenate.  相似文献   

8.
不同形态硒向水稻籽粒转运途径及品种差异   总被引:3,自引:0,他引:3  
硒是人体必需微量元素,提高水稻籽粒硒含量对改善人体膳食硒营养有重要意义。以富硒水稻品种(Oryza sativa L.)秀水48和非富硒品种S.Andrea为材料,在灌浆期分别供应离体穗亚硒酸盐、硒酸盐、硒代蛋氨酸(SeMet)和硒甲基硒代半胱氨酸(SeMeSeCys),探讨两品种水稻在灌浆期向籽粒转运不同形态硒的品种差异及转运途径。结果表明:水稻体内有机硒主要通过韧皮部转运至籽粒,硒酸钠可能通过木质部和韧皮部共同转运至剑叶,而亚硒酸钠主要通过木质部转运至剑叶。秀水48从茎至籽粒转运硒酸盐和硒代蛋氨酸能力显著强于S.Andrea,并且富硒水稻秀水48从剑叶至籽粒转运有机硒(硒代蛋氨酸)能力显著高于S.Andrea。与非富硒水稻相比较,富硒水稻能通过茎和剑叶向籽粒转运较多的硒,这可能是引起水稻籽粒硒含量差异的直接原因。  相似文献   

9.
ABSTRACT

Biofortification experiments with three winter wheat cultivars treated with sodium selenate through foliar- and soil-fertilisation were conducted at two locations in Croatia and Serbia in two consecutive years to increase the selenium (Se) concentration in bread-making wheat grain. The treatments were: (a) 5?g?ha?1 Se foliar-, (b) 10?g?ha?1 Se foliar- and (c) 10?g?ha?1 Se in soil surface-application and they were compared with (d) control. Both Se foliar- and soil-fertilisation increased the Se concentration in grains from 2.6- to 4.6-fold. The concentration in grain was highest with Se foliar-fertilisation of 10?g?ha?1 and it was increased by 29–32?µg Se kg?1 dry weight for each gram of Se applied per ha. The wheat cultivars differed in grain yield and Se uptake (g?ha?1 Se). However, on average, there were no differences between wheat cultivars with respect to Se grain concentrations. Agronomic use efficiency (by grain) was significantly higher for Se foliar- (19%) than for soil-fertilisation (13%). It can be concluded that agronomic biofortification of winter wheat can be effective in increasing Se grain concentration, where the efficiency depends on the rate of Se applied, application method and local environmental conditions rather than on cultivar differences.  相似文献   

10.
Abstract

The objective of this sand culture experiment was to determine how fertilization methods (i.e., fertigation rates of 0.5, 1, and 2?mg Se·pot?1, foliar rates of 5, 10, and 20?mg Se· L?1) and fertilizer type (i.e., selenate or selenite) affected wheat Se concentrations. The results showed that the fertigation and foliar treatments both increased wheat Se content. In the fertigation and foliar treatment total Se content of wheat was greatest in the selenate treatments. In the fertigation treatment, the Selenite had mainly accumulated in the roots, while the Selenate was majority transported to shoot. In the foliar treatment, we found that most of Se was transported to grain. In addition, the organic Se concentration was the most than other Se fractions. In conclusion, selenate was more effective than selenite in both the fertigated and the foliar application treatments. And the foliar application was better than fertigation.  相似文献   

11.
Brassica oleracea L. are important economic vegetables, and are capable of selenium (Se) enrichment to enhance human nutrition and health. Because Se enrichment may influence the nutrient balance of this crop, a study was done to test the effects of selenate‐Se on plant nutrients. Plants of a rapid‐cycling B. oleracea population were grown in nutrient solutions amended with Na2SeO4at 0.0, 3.0, 6.0, and 9.0 mg L‐1. Leaf tissue was then analyzed for nutrient content. Boron (B) (P=0.01), iron (Fe) (P=0.01), and phosphorus (P) (P=0.01) content decreased, while Se (P=0.01), sulfur (S) (P=0.01), and potassium (K) content (P=0.01) increased with increasing selenate‐Se treatments. Significant quadratic responses were found for magnesium (P=0.01) and molybdenum (P=0.01). No significant differences in leaf fresh or dry weight were detected. Changes in plant nutrient content can be expected when Brassicas are enhanced for delivery of beneficial organic Se.  相似文献   

12.
A pot experiment was conducted with two Prunus genotypes (GF 677 and Mr.S.2/5, commercial rootstocks for peach), which are widely used in Italy and other European countries. Selenium (Se) was added as sodium selenate to 3‐month‐old micropropagated plants at a rate of 0 (control), 1.0, 2.5, and 5.0 mg Se (kg soil)–1. Plant growth, gas exchange, and Se accumulation were studied. Selenium added at a rate of 2.5 and 5.0 mg Se kg–1 appeared to be highly toxic for the two young peach rootstocks. Thirty‐three days after the treatment, the plants showed a high mortality rate. The fast growing rootstock, GF 677, appeared to be more sensitive to Se toxicity, the mortality rate reaching 52%. The higher the Se concentration in the soil, the higher it also was in the plant. In general, both genotypes were able to take up Se and to translocate high amounts from root to leaf. After selenate addition to the soil, both GF 677 and Mr.S.2/5 plants showed reduced plant growth with the highest Se treatments. Furthermore, Se induced a partial stomatal closure, as evidenced by the values of stomatal conductance, resulting in a reduction in net assimilation, and thus a decrease in dry‐matter production. Selenate applied at a low rate (1 mg Se kg–1) stimulated plant growth in GF 677. One year after the Se treatment, a remobilization of Se from the storage organs to the young shoots was detected. This study demonstrates genotypic variation in Se uptake and accumulation in peach rootstocks.  相似文献   

13.
Crops grown in seleniferous soil may accumulate selenium (Se) to levels considered highly toxic for animal and human consumption. Furthermore, higher Se content in plant tissues leads to considerable deterioration in product quality. Application of organic amendments plays an important role in improving soil physical, chemical, and biological conditions and influencing nutrient availability. A field trial was conducted to evaluate the effect of organic amendments, namely poultry manure (PM), sugar cane press mud (SCPM), and farmyard manure (FYM), on Se uptake and grain quality of wheat and oilseed rape grown on a seleniferous soil in Punjab, India. Selenium accumulation by wheat and oilseed rape grains decreased significantly (75%–95%) with the application of PM and SCPM, while FYM application resulted in a significant decrease (23%) only in case of wheat grains. The amount of Se associated with seed proteins varied in proportion to its uptake under different treatments. Quality of wheat grains improved considerably with respect to total soluble sugars, reducing sugars, starch, lipids, and sulfur concentrations only after application of SCPM and PM. Treating a Se‐contaminated soil with organic amendments significantly increased the oil concentration and changed the proportion of various fatty acids in rape grains. It is concluded that applying organic amendments to Se‐contaminated soils can alleviate the deleterious effects of Se and restore the nutritional quality of grains.  相似文献   

14.
Watercress (Nasturtium officinale R. Br.) produces carotenoids and sulfur-containing glucosinolates (GSs) beneficial to human health. Selenium (Se) imparts dietary health properties and substitutes for S in plant biochemical pathways. Experimental objectives were to determine the influence of Se fertilization on 1) biomass, 2) elemental accumulations, 3) carotenoids, and 4) glucosinolates in watercress leaf and shoot tissues. Watercress was greenhouse grown in solution culture with Se treatments of 0, 0.125, 0.25, 0.50, 1.0, 2.0, and 4.0 mg Se L?1, delivered as sodium selenate (Na2SeO4). Fresh and dry biomass were unaffected while shoot tissue Se (P = 0.057) and S (P = 0.003) increased linearly in response to increasing Se treatments. Linear decreases were measured for β-carotene (P = 0.017) and lutein (P = 0.018) in response to increasing Se. Total levels of GS increased, then decreased quadratically (P = 0.003). Results indicate that Se supplementation can increase Se tissue concentrations and GS in watercress; however, carotenoids were negatively affected.  相似文献   

15.
The mineral composition and maintenance of mineral balance are important to growth and development of plants. The selenium (Se) has not been described as an essential element for plants, although there are studies that have demonstrated to interaction between Se with other mineral nutrients. The aim was to evaluate the influence that Se application at different rates and forms exerts on the nutritional state in lettuce plants. The plants were grown under different treatments: 5, 10, 20, 40, 60, 80, 120 μmol L?1 as sodium selenate [Na2SeO4 or Na2SeO3]. All the plants growth under controlled conditions. The results showed changes in some of the essential nutrients inside of plants such as nitrogen (N), phosphorous (P), iron (Fe), copper (Cu), calcium (Ca). The effect of Se depended largely on the Se from was applied to the culture medium. Thus, the selenite application had a stronger effect on the nutritional state of the plant.  相似文献   

16.
Seven agroforestry tree species were grown in a clay loam soil treated with different levels of selenate‐Se, viz. 0, 1.25, 2.5 and 5.0 mg/kg supplied through sodium selenate. After 1 year of growth, a progressive decrease in dry matter of leaves, stem and roots was observed with increasing levels of applied Se. However, a significant decrease in dry matter yield was observed only at or above 2.5 mg Se per kg soil and shisham (Dalbergia sissoo) proved to be highly sensitive to the presence of selenate‐Se in the soil. On average, the largest above‐ground and below‐ground biomass was accumulated by arjun (Terminalia arjuna) and the lowest by the acacia tree (Acacia tortillas). The selenium content of leaves, stem and roots of all the tree species increased significantly with increasing levels of applied Se, although a large variation within species was observed. In the stem portion of different trees, the highest concentration of Se was found in dek (Melia azedarach) (5.1 mg/kg) and the lowest in mulberry (Morus alba) (2.6 mg/kg). The efficiency of selenium removal (including leaves, stem and roots) was the highest in arjun followed by eucalyptus (Eucalyptus hybrid) – Clone 10, mulberry, jambolin (Syzygium cumini), dek, shisham and acacia. Effective removal of Se takes place through the stem portion of different trees where it constitutes 30–50% of total Se. Large variation in Se uptake by different tree species suggests that trees vary in their potential for phytoremediation of seleniferous soils. In one growing season, shisham aged 24 years, poplar (Populus deltoides)– Clone G 48 (10 years old) and eucalyptus – Clone 10 (10 years old) could remove 2385, 1845 and 1407 g Se per hectare respectively. Corresponding reductions in Se capital of the soil varied between 24 and 37, 19 and 29 and 14 and 32%, respectively, in the surface layer (0–15 cm) alone or 7–11, 6–9 and 4–7% for the whole soil profile (0–120 cm). Removal further increased to 4207 g Se per hectare under an agroforestry farming system of poplar–mentha/wheat with Se being reduced from 43 to 65% for the surface layer and from 13 to 20% for the whole profile.  相似文献   

17.
Field studies were conducted at two locations in P.E.I., Canada on cereals and forages on the effect of soil applications of Selcote® Ultra and on a comparison of sodium selenate (laboratory versus commercial grade) on selenium (Se) concentration in plant tissue. Soil at both locations was sandy loam in texture and the soil pH ranged from 5.8 to 6.0. The data showed that 5 g Se ha‐1 added as Selcote® Ultra was adequate to raise the Se level in the first two cuts of forage tissue above the minimum required level of 100 ug kg‐1. For cereals, 10 g Se was necessary to achieve the same level. The residual effect of 10 g Se ha‐1 from Selcote® Ultra added in the first year maintained plant Se at >100 μg kg‐1 in the second year in the first cut of alfalfa at one location and ryegrass at both locations. A comparison of selenate‐Se (laboratory vs commercial grade) showed that both sources at similar levels of Se fertilization were equally effective in enriching barley grain with Se with no significant differences. Addition of 10 g Se ha‐1 rate was necessary to ensure adequate Se (>100 ug kg‐1) concentration in the ensuing graia Increasing rates of Se increased the Se levels in grain. Selenium concentrations were much higher in the barley boot stage vegetative tissue than in the grain. Results of this study showed that only 5 g Se ha‐1, as Selcote® Ultra, is needed to maintain adequate Se in forages. The laboratory and commercially available selenate‐Se sources were equally effective in raising Se in barley.  相似文献   

18.
Aim of this work was to investigate if the variation among tomato genotypes in selenium (Se) uptake and accumulation observed in short term experiments are maintained over longer growth periods and if there is a positive correlation in shoot between sulphur (S) accumulation and Se accumulation across different genotypes or if higher tissue S results in greater feedback inhibition of Se uptake. Two experiments were carried out under greenhouse conditions and different genotypes of Lycopersicon lycopersicum (UC82B and LA2711), Lycopersicon pennellii (LA716) and Lycopersicon peruvianum (LA2157) were grown until fruit ripening. The results obtained in the two experiments confirmed that sulphate in the growth solution reduced selenate uptake by plants and increased the S content of the leaves. Under low sulphate treatment there was a clear correlation (R2=0.82) between leaf S content and shoot Se content across genotypes in both experiments, indicating that the overall activity of the S transport systems also determines Se transport. Selenium was translocated from shoot to fruit, but the edible portion of the plant contained much less total Se than the inedible plant parts. The difference in Se content between the low and the high sulphate treatments was significantly higher in shoot than in root, confirming that the Se translocation from root to shoot is probably more affected by high sulphate supply than Se uptake by root. In the first experiment the genotype LA716 showed ah higher Se, accumulation together with higher S content in leaves, indicating a marked ability of this genotype to absorb ions from substrate. In the second experiment UC82B appeared to be more capable to accumulate Se and S rather than LA2711 and LA2157. In both experiments Lycopersicon peruvianum appeared to be less affected by the high concentration of ions in the growth solution and to be able to reduce ion uptake than Lycopersicon lycopersicum and Lycopersicon pennellii.  相似文献   

19.
Nitrogen fixation in faba bean (Vicia faba cv. Mesay) as affected by sulfur (S) fertilization (30 kg S ha–1) and inoculation under the semi‐arid conditions of Ethiopia was studied using the 15N‐isotope dilution method. The effect of faba bean–fixed nitrogen (N) on yield of the subsequent wheat crop (Triticum aestivum L.) was also assessed. Sulfur fertilization and inoculation significantly (p < 0.05) affected nodulation at late flowering stage for both 2004 and 2005 cropping seasons. The nodule number and nodule fresh weighs were increased by 53% and 95%, relative to the control. Similarly, both treatments (S fertilization and inoculants) significantly improved biomass and grain yield of faba bean on average by 2.2 and 1.2 Mg ha–1. This corresponds to 37% and 50% increases, respectively, relative to the control. Total N and S uptake of grains was significantly higher by 59.6 and 3.3 kg ha–1, which are 76% and 66% increases, respectively. Sulfur and inoculation enhanced the percentage of N derived from the atmosphere in the whole plant of faba bean from 51% to 73%. This corresponds to N2 fixation varying from 49 to 147 kg N ha–1. The percentage of N derived from fertilizer (%Ndff) and soil (%Ndfs) of faba bean varied from 4.3% to 2.8 %, and from 45.1% to 24.0%, corresponding to the average values of 5.1 and 47.9 kg N ha–1. Similarly, the %Ndff and %Ndfs of the reference crop, barley, varied from 8.5 % to 10.8% and from 91.5% to 89.2%, with average N yields of 9.2 and 84.3 kg N ha–1. Soil N balance after faba bean ranged from 13 to 52 kg N ha–1. Beneficial effects of faba bean on yield of a wheat crop grown after faba bean were highly significant, increasing the average grain and N yields of this crop by 1.11 Mg ha–1 and 30 kg ha–1, relative to the yield of wheat grown after the reference crop, barley. Thus, it can be concluded that faba bean can be grown as an alternative crop to fallow, benefiting farmers economically and increasing the soil fertility.  相似文献   

20.
Abstract

According to international nutritional standards, plant selenium (Se) concentrations in Belgium are too low. To correct this situation, adding Se in fertilizers for pastures and grasslands is suggested, similar to activities in Finland. However, there is a lack of data on meadow plant species' ability to absorb Se. Therefore, a pot experiment was initiated using 24 meadow plant species cultivated on a Belgian cambisol receiving standard fertilizer treatment, with or without the addition of 9 g Se ha?1 yr?1 as sodium selenate. Soil Se analysis confirmed the low Se status of the native soil. Mean foliar Se concentration in the control group was 0.05 mg kg?1. Because plant deficiency may occur at levels less than 0.10 mg Se kg?1, data provided further evidence for Se deficiency in Belgium plant production. When grown with Se, plant species showed wide variations for Se concentration, ranging from 0.08 to 0.49 mg Se kg?1. All values were less than 2 mg Se kg?1, the suggested threshold toxicity level for dairy cattle. There were two different types of plants in terms of response to Se fertilization. Most of the tested plants were known as nonaccumulators. There were also two probable secondary accumulators: Sinapis arvensis and Melilotus albus. Finally, one has to question the reliability of plant Se enhancement using this method when floristic composition is poorly controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号