首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors Affecting Prognosis and Conversion in Equine Atrial Fibrillation   总被引:4,自引:0,他引:4  
Sixty-seven horses presented with atrial fibrillation (AF) from January 1, 1980 to August 1, 1986. All horses were evaluated for the type and severity of the underlying cardiac disease and the probable duration of the arrhythmia. Fifty-two (78%) of the horses were treated with quinidine sulfate and/or digoxin. The response to treatment was assessed in each horse. Horses were followed for periods extending from 8 months to 7 years. Standardbreds, young horses, and males predominated in the study group. There were more male horses (stallions and geldings) than mares. Most horses with AF had no evidence of other cardiac disease (56.7%). All performance horses without other cardiac disease were treated, and return to performance was significantly associated with conversion to sinus rhythm. Horses that did not convert with quinidine sulfate therapy, whose arrhythmia recurred, and that had side effects from quinidine sulfate therapy, had a longer history of poor performance. Tachycardia (heart rate greater than 60 beats/min) was significantly associated with the existence of congestive heart failure. The horses with congestive heart failure had a poor prognosis for life (7.7% survived) and a poor conversion to normal sinus rhythm (23.1%). Mitral regurgitation (19 horses) was the most common underlying cardiac disease. Tricuspid regurgitation (15 horses), aortic regurgitation (3 horses), myocardial dysfunction (3 horses), and atrial septal defect (1 horse) also were diagnosed. Congestive heart failure was common in this group of horses with underlying cardiac disease.  相似文献   

2.
Atrial fibrillation is the most common arrhythmia affecting performance in horses. Conversion to sinus rhythm carries a good prognosis if no significant underlying cardiac disease is present and horses commonly return to performance at the previous level or above. The drug most commonly used to convert equine atrial fibrillation is quinidine. However, quinidine has the potential for a number of adverse effects including colic, nasal mucosal edema, dyspnea and laminitis. Quinidine also requires administration through a nasogastric tube, as the drug is very bitter and acidic and may cause oral ulcerations if administered PO. Flecainide is an antiarrhythmic agent of Singh-Vaughan Williams class Ic, whereas quinidine belongs to class Ia. Intravenously administered flecainide has been reported to be a safe and effective drug for treatment of induced atrial fibrillation in the horse, with fewer adverse effects compared to quinidine, but has been less effective when administered to horses with naturally occurring atrial fibrillation. The pharmacokinetics of oral flecainide and the oral dosage required to treat equine atrial fibrillation have been determined. To the authors' knowledge, there are no reports describing treatment of equine atrial fibrillation with oral flecainide. This report describes the successful conversion of naturally occurring atrial fibrillation, by means of oral flecainide, in a horse.  相似文献   

3.
Selected metabolites, hormones and cardiovascular variables were measured in halothane anesthetized horses during 1 hour of dopamine infusion at a rate of 5 μg/kg/min (low) and 10 μg/kg/min (high), and for 1 hour after infusion. Plasma Cortisol increased twofold in the low-infusion group but did not change significantly in the high-infusion group. Plasma nonesterified fatty acids, blood glucose, blood lactate, and plasma insulin increased in the high-infusion group. There was little difference in heart rate, systolic, diastolic, and mean arterial blood pressure between the two groups. The high infusion was associated with arrhythmias in several horses, and one horse showed ventricular fibrillation and died. If metabolic and hormonal changes are used as markers of a "stress response" in anesthetized horses the results must be carefully interpreted if a sympathomimetic agent such as dopamine is administered to maintain cardiovascular stability.  相似文献   

4.
Itraconazole, a third-generation azole, was evaluated for treatment of resistant nasal mycotic infections in horses. Two horses with Aspergillus spp nasal granulomas and 1 horse with Conidiobolus coronatus nasal infection were treated with itraconazole (3 mg/kg PO bid). One of the horses with nasal aspergillosis was also treated by surgical resection of the nasal septum. The treatment time for the horses ranged from 3 to 4.5 months. No adverse effects were noted in any of the horses during the treatment period. Peak and trough serum itraconazole concentrations were < 0.5 μg/mL in all 3 horses. Itraconazole (3 mg/kg PO bid) appears to be effective in the treatment of nasal Aspergillus spp infections in horses because the fungal infection was eliminated in both horses. One horse still had excessive nasal sounds during exercise and was retired from training, whereas the other horse returned to normal. The nasal C. coronatus infection appeared resistant to itraconazole treatment in the affected horse because the granulomas were still present after 4.5 months of treatment.  相似文献   

5.
REASONS FOR PERFORMING STUDY: It has been reported that i.v. flecainide has a high efficacy for the treatment of experimentally-induced acute atrial fibrillation (AF) in horses and that its use is associated with minimal toxic side effects. OBJECTIVES: The objectives were to study the efficacy of i.v. flecainide as a treatment for atrial fibrillation in horses with naturally-occurring AF. METHODS: Ten horses with naturally-occurring AF were treated with 2 mg/kg bwt flecainide i.v. at a rate of 0.2 mg/kg bwt/min. In 3 horses, the infusion was continued at 0.05-0.10 mg/kg bwt/min until a total dose of 3.0 mg/kg bwt had been administered. Heart rate, QRS duration and average interval between fibrillation waves were measured before, during and following flecainide infusion. If conversion to normal sinus rhythm was not achieved, horses were treated with quinidine sulphate per os at a dose of 22 mg/kg bwt given every 2 h. RESULTS: None of the horses with chronic AF (n = 9) converted to sinus rhythm with flecainide i.v. The only horse treated successfully had acute AF of 12 days' duration. The QRS duration and fibrillation cycle length increased significantly (P = 0.006 and 0.002, respectively) during and following flecainide infusion. Heart rate did not increase significantly over time however, 3 horses developed heart rates in excess of 100 beats/min. Two horses developed a potentially dangerous ventricular dysrhythmia during the first 15 mins of treatment. Quinidine sulphate given per os restored sinus rhythm in 8 out of 9 horses, with minimal adverse effects. CONCLUSIONS: Although flecainide might be efficacious in cases of acute AF, it was not possible to restore sinus rhythm in horses with naturally-occurring chronic AF at the dosages used in this study. In 2 horses, 2.0 mg/kg bwt flecainide was associated with potentially dangerous dysrhythmias. POTENTIAL CLINICAL RELEVANCE: Intravenous administration of 2 mg/kg bwt flecainide is unlikely to convert chronic AF in horses and could induce dangerous dysrhythmias.  相似文献   

6.
Pharmacokinetics of oral terbinafine in horses and Greyhound dogs   总被引:1,自引:0,他引:1  
The objective of the study was to assess the pharmacokinetics of terbinafine administered orally to horses and Greyhound dogs. A secondary objective was to assess terbinafine metabolites. Six healthy horses and six healthy Greyhound dogs were included in the pharmacokinetic data. The targeted dose of terbinafine was 20 and 30 mg/kg for horses and dogs, respectively. Blood was collected at predetermined intervals for the quantification of terbinafine concentrations with liquid chromatography and mass spectrometry. The half-life (geometric mean) was 8.1 and 8.6 h for horses and Greyhounds, respectively. The mean maximum plasma concentration was 0.31 and 4.01 μg/mL for horses and Greyhounds, respectively. The area under the curve (to infinity) was 1.793 h·μg/mL for horses and 17.253 h·μg/mL for Greyhounds. Adverse effects observed in one study horse included pawing at the ground, curling lips, head shaking, anxiety and circling, but these resolved spontaneously within 30 min of onset. No adverse effects were noted in the dogs. Ions consistent with carboxyterbinafine, n-desmethylterbinafine, hydroxyterbinafine and desmethylhydroxyterbinafine were identified in horse and Greyhound plasma after terbinafine administration. Further studies are needed assessing the safety and efficacy of terbinafine in horses and dogs.  相似文献   

7.
The objectives of this study were to determine the concentration of itraconazole achieved in corneal tissue and aqueous humour after topical application of a 1% itraconazole ointment; to determine the effect of including dimethyl sulphoxide (DMSO) in the ointment on achievable ocular tissue itraconazole concentrations; and to assess if any gross or histopathologic ocular toxicity results from the topical application of 1% itraconazole with or without the addition of DMSO.
The experimental trial consisted of 6 horses considered to have normal eyes. Each horse had one eye treated with 0.3 mL of 1% ultra-micronized itraconazole ointment and the fellow eye with 0.3 mL of 1% itraconazole/30% DMSO ointment. The ointment was applied every 6 h for a total of 28 treatments. Both ointments were well tolerated and no gross or histopathologic abnormalities developed during the trial.
Corneal tissue and aqueous humour concentrations of itraconazole were determined using high performance liquid chromatography. Corneal tissue concentration averaged 1.1 (± 0.4) μg/g in horses treated with the 1% ultra-micronized itraconazole ointment and 7.9 (± 3.3) μg/g for those treated with the 1% itraconazole/30% DMSO ointment; there was a statistically significant difference between ointments ( P = 0.005) No itraconazole could be detected in the aqueous humour in either treatment group.  相似文献   

8.
Lidocaine is administered as an intravenous infusion to horses for a variety of reasons, but no study has assessed plasma lidocaine concentrations during a 12-h infusion to horses. The purpose of this study was to evaluate the plasma concentrations and pharmacokinetics of lidocaine during a 12-h infusion to postoperative horses. A second purpose of the study was to evaluate the in vitro plasma protein binding of lidocaine in equine plasma. Lidocaine hydrochloride was administered as a loading dose, 1.3 mg/kg over 15 min, then by a constant rate IV infusion, 50 microg/kg/min to six postoperative horses. Lidocaine plasma concentrations were measured by a validated high-pressure liquid chromatography method. One horse experienced tremors and collapsed 5.5 h into the study. The range of plasma concentrations during the infusion was 1.21-3.13 microg/mL. Lidocaine plasma concentrations were significantly increased at 0.5, 4, 6, 8, 10 and 12 h compared with 1, 2 and 3 h. The in vitro protein binding of lidocaine in equine plasma at 2 microg/mL was 53.06+/-10.28% and decreased to 27.33+/-9.72% and 29.52+/-6.44% when in combination with ceftiofur or the combination of ceftiofur and flunixin, respectively. In conclusion, a lower lidocaine infusion rate may need to be administered to horses on long-term lidocaine infusions. The in vitro protein binding of lidocaine is moderate in equine plasma, but highly protein bound drugs may displace lidocaine increasing unbound concentrations and the risk of lidocaine toxicity.  相似文献   

9.
Pyrilamine is an antihistamine used in human and veterinary medicine. As antihistamines produce central nervous system effects in horses, pyrilamine has the potential to affect the performance of racehorses. In the present study, O -desmethylpyrilamine ( O -DMP) was observed to be the predominant equine urinary metabolite of pyrilamine. After intravenous (i.v.) administration of pyrilamine (300 mg/horse), serum pyrilamine concentrations declined from about 280 ng/mL at 5 min postdose to about 2.5 ng/mL at 8 h postdose. After oral administration of pyrilamine (300 mg/horse), serum concentrations peaked at about 33 ng/mL at 30 min, falling to <2 ng/mL at 8 h postdose. Pyrilamine was not detected in serum samples at 24 h postdosing by either route. After i.v. injection of pyrilamine (300 mg/horse) O -DMP was recovered at a level of about 20 μg/mL at 2 h postdose thereafter declining to about 2 ng/mL at 168 h postdose. After oral administration, the O -DMP recovery peaked at about 12 μg/mL at 8 h postdose and declined to <2 ng/mL at 168 h postdose. These results show that pyrilamine is poorly bioavailable orally (18%), and can be detected by sensitive enzyme-linked immunosorbent assay tests in urine for up to 1 week after a single administration. Care should be taken as the data suggest that the withdrawal time for pyrilamine after repeated oral administrations is likely to be at least 1 week or longer.  相似文献   

10.
The purpose of the study was to compare the pharmacokinetics of amikacin administered i.v., to Greyhound and Beagle dogs and determine amikacin pharmacokinetics administered subcutaneously to Greyhounds. Amikacin was administered i.v. at 10 mg/kg to six healthy Greyhounds and six healthy Beagles. The Greyhounds also received amikacin, 10 mg/kg s.c. Plasma was sampled at predetermined time points and amikacin concentrations determined by a fluorescence polarization immunoassay (FPIA).
The volume of distribution was significantly smaller in Greyhounds (mean = 176.5 mL/kg) compared to Beagles (234.0 mL/kg). The C 0 and AUC were significantly larger in Greyhounds (86.03 μg/mL and 79.97 h·μg/mL) compared to Beagles (69.97 μg/mL and 50.04 h·μg/mL). The plasma clearance was significantly lower in Greyhounds (2.08 mL/min/kg) compared to Beagles (3.33 mL/min/kg). The fraction of the dose absorbed after s.c. administration to Greyhounds was 0.91, the mean absorption time was 0.87 h, and the mean maximum plasma concentration was 27.40 μg/mL at 0.64 h.
Significant differences in the pharmacokinetics of amikacin in Greyhounds indicate it should be administered at a lower dose compared to Beagles. The dose in Greyhounds to achieve a C max: AUC  ≥ 8 for bacteria (with an MIC  ≤ 4 μg/mL) is 12 mg/kg q24 h compared to 22 mg/kg q24 in Beagles.  相似文献   

11.
Intravenous administration of quinidine gluconate converted atrial fibrillation (AF) to sinus rhythm in 9 of 12 horses. Twelve horses that were diagnosed by ECG to have AF were administered up to 11 mg of quinidine gluconate/kg of body weight in 1.0- to 1.5-mg/kg bolus injections every 10 to 15 minutes. The total dose of quinidine administered IV ranged from 1.8 to 5.8 g. Increased ventricular rate, apprehension, and mild depression were observed during treatment. Other signs of toxicosis were not observed. One horse was successfully treated with IV administered quinidine gluconate on 3 occasions. Intravenous administration of quinidine is a safe and effective alternative for treatment of AF in some horses.  相似文献   

12.
Objective: To determine (1) if clinically useful concentrations of amikacin sulfate can be obtained in synovial fluid during regional limb perfusion (RLP) performed above the carpus in standing sedated horses and (2) to determine the efficacy of 3 tourniquet types (narrow rubber [NR], wide rubber [WR], pneumatic [PN]). Animals: Horses (n=9). Methods: Bilateral forelimb RLP with amikacin sulfate (2.5 g) were administered through the cephalic vein in standing sedated horses. Limbs were randomly assigned to the 3 tourniquet types (NR, WR, PN) applied above the carpus. Metacarpophalangeal synovial fluid was obtained 0.5 hour after perfusion. Amikacin concentration in the synovial fluid was detected using fluorescence polarization immunoassay. Results: Mean synovial concentrations of amikacin in the PN (mean 236 μg/mL; range 23–913 μg/mL) and WR (mean 64.2 μg/mL; range 7–315 μg/mL) were significantly higher (P=.000 and .032, respectively) than the NR tourniquet (mean 2.1 μg/mL; range 0.9–3.3 μg/mL). Conclusions: The PN tourniquet resulted in the highest synovial fluid amikacin concentrations in all horses, although administration with PN and WR tourniquets achieved adequate amikacin concentrations. NR tourniquet is ineffective and should not be used for RLP above the carpus in the standing horse.  相似文献   

13.
The anti-doping rules of national and international sport federations ban any use of tetrahydrogestrinone (THG) in human as well as in horse sports. Initiated by the THG doping scandals in human sports a method for the detection of 3-keto-4,9,11-triene steroids in horse blood and urine was developed. The method comprises the isolation of the analytes by a combination of solid phase and liquid–liquid extraction after hydrolysis and solvolysis of the steroid conjugates. The concentrations of THG in blood and urine samples were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS).
A THG excretion study on horses was conducted to verify the method capability for the analysis of postadministration urine samples. In addition, blood samples were collected to allow for determination of the pharmacokinetics of THG in horses. Following the administration of a single oral dose of 25 μg THG per kg bodyweight to 10 horses, samples were collected at appropriate intervals. The plasma levels of THG reached maximal concentrations of 1.5–4.8 ng/mL. Twenty-four hours after the administration plasma levels returned to baseline. In urine, THG was detectable for 36 h. Urinary peak concentrations of total THG ranged from 16 to 206 ng/mL. For the 10 horses tested, the mean plasma clearance of THG was 2250 mL/h/kg and the plasma elimination half-life was 1.9 h.  相似文献   

14.
OBJECTIVE: To evaluate the cardiopulmonary and clinicopathologic effects of rapid IV administration of dimethyl sulfoxide (DMSO) in awake and halothane-anesthetized horses. DESIGN: Prospective study. ANIMALS: 6 adult horses. PROCEDURES: Horses received IV infusion of 5 L of a balanced electrolyte solution with and without 1 g/kg (0.45 g/lb) of 10% DMSO solution when they were awake and anesthetized with halothane (4 treatments/horse). Arterial and venous blood samples were collected immediately before and at intervals during or after fluid administration and analyzed for blood gases and hematologic and serum biochemical variables, respectively. Heart rate, respiratory rate, and arterial blood pressure variables were recorded prior to, during, and after fluid administration. RESULTS: After administration of fluid with or without DMSO, changes in measured variables were detected immediately, but most variables returned to baseline values within 4 hours. One awake control horse had signs of anxiety; agitation and tachycardia were detected in 2 awake horses administered DMSO. These clinical signs disappeared when the rate of infusion was reduced. In anesthetized horses, increased concentrations of WBCs and plasma fibrinogen and serum creatine kinase activity persisted for 24 hours, which was related to the stress of anesthesia more than the effects of fluid administration. CONCLUSIONS AND CLINICAL RELEVANCE: Infusion of 5 L of balanced electrolyte solution with or without 10% DMSO induced minimal changes in cardiopulmonary function and clinicopathologic variables in either awake or halothane-anesthetized horses. Stress associated with anesthesia and recovery had a greater influence on measured variables in anesthetized horses than fluid administration.  相似文献   

15.
Nine male dogs (10.3–13.5 kg body weight) were randomly assigned to three groups of three dogs each and administered ceftiofur sodium subcutaneously as a single dose of 0.22, 2.2, or 4.4 mg ceftiofur free acid equivalents/kg body weight. Plasma and urine samples were collected serially for 72 h and assayed for ceftiofur and metabolites (derivatized to desfuroylceftiofur acetamide) using high-performance liquid chromatography. Urine concentrations remained above the MIC 90 for Escherichia coll (4.0 μg/mL) and Proteus mirabilis (1.0 μg/mL) for over 24 h after doses of 2.2 mg/kg (8.1 μg/mL) and 4.4 mg/kg (29.6 μg/mL), the interval between treatments for ceftiofur sodium in dogs, whereas urine concentrations 24 h after dosing at 0.22 mg/kg (0.1 mg/Ib) were below the MIC 90 for E.coli and P. mirabills (0.6 μg/mL). Plasma concentrations were dose-proportional, with peak concentrations of 1.66 ± 0.0990 μg/mL, 8.91 ± 6.42 μg/mL, and 26.7 ± 1.07 μg/mL after doses of 0.22, 2.2, and 4.4 mg/kg, respectively. The area under the plasma concentration versus time curve, when normalized to dose, was similar across all dosage groups.  相似文献   

16.
The purpose of this study was to determine the pharmacokinetics and tissue fluid distribution of cephalexin in the adult horse following oral and i.v. administration. Cephalexin hydrate (10 mg/kg) was administered to horses i.v. and plasma samples were collected. Following a washout period, cephalexin (30 mg/kg) was administered intragastrically. Plasma, interstitial fluid (ISF) aqueous humor, and urine samples were collected. All samples were analyzed by high-pressure liquid chromatography (HPLC). Following i.v. administration, cephalexin had a plasma half-life (t(1/2)) of 2.02 h and volume of distribution [V(d(ss))] of 0.25 L/kg. Following oral administration, the average maximum plasma concentration (C(max)) was 3.47 mug/mL and an apparent half-life (t(1/2)) of 1.64 h. Bioavailability was approximately 5.0%. The AUC(ISF):AUC(plasma) ratio was 80.55% which corresponded to the percentage protein-unbound drug in the plasma (77.07%). The t(1/2) in the ISF was 2.49 h. Cephalexin was not detected in the aqueous humor. The octanol:water partition coefficient was 0.076 +/- 0.025. Cephalexin was concentrated in the urine with an average concentration of 47.59 microg/mL. No adverse events were noted during this study. This study showed that cephalexin at a dose of 30 mg/kg administered orally at 8 h dosage intervals in horses can produce plasma and interstitial fluid drug concentrations that are in a range recommended to treat susceptible gram-positive bacteria (MIC < or = 0.5 microg/mL). Because of the low oral bioavailability of cephalexin in the horse, the effect of chronic dosing on the normal intestinal bacterial flora requires further investigation.  相似文献   

17.
The purpose of this study was to determine the pharmacokinetics and physicochemical characteristics of orbifloxacin in the horse. Six healthy adult horses were administered oral and intravenous orbifloxacin at a dose of 2.5 mg/kg. Plasma samples were collected and analyzed by high-pressure liquid chromatography with ultraviolet detection. Plasma protein binding and lipophilicity were determined in vitro . Following i.v. administration, orbifloxacin had a terminal half-life ( t 1/2) of 5.08 h and a volume of distribution (Vd(ss)) of 1.58 L/kg. Following oral administration, the average maximum plasma concentration ( C max) was 1.25  μ g/mL with a t 1/2 of 3.42 h. Systemic bioavailability was 68.35%. Plasma protein binding was 20.64%. The octanol:water partition coefficient (pH 7.4) was 0.2 ± 0.11. No adverse reactions were noted during this study. Dosage regimens were determined from the pharmacokinetic–pharmacodynamic parameters established for fluoroquinolone antibiotics. For susceptible bacteria, an oral dose of approximately 5 mg/kg once daily will produce plasma concentrations within the suggested range. This dose is suggested for further studies on the clinical efficacy of orbifloxacin for treatment of susceptible bacterial infections in the horse.  相似文献   

18.
The aim of the current study was to investigate whether multiple oral dosing of valacyclovir could result in plasma concentrations exceeding the EC50-value of acyclovir against equine herpesvirus 1 (EHV1) during the majority of the treatment period. Additionally, we wanted to determine the concentration of acyclovir in nasal mucus and cerebrospinal fluid (CSF). Valacyclovir was administered to four horses and two ponies, three times daily, at a dosage of 40 mg/kg, for four consecutive days. Blood was collected prior to each administration and 1 h after dosing. Nasal mucus samples and CSF were collected once during treatment; 1 h after the last administration. This dosage regimen resulted in plasma concentrations that were higher than the EC50-value of 1.7 μg/mL, i.e. EC50 of an isolate highly susceptible to acyclovir, for 80% of the treatment period; and higher than the EC50-value of 3.0 μg/mL, i.e. EC50 of an isolate less susceptible to acyclovir, for 60% of the treatment period. Concentration in nasal mucus samples and CSF was 0.36–1.17 μg/mL and 0.11–0.23 μg/mL, respectively. This study illustrates that multiple dosing of valacyclovir may result in a therapeutic benefit as plasma concentrations could be maintained above the EC50-value of acyclovir against EHV1 for more than 50% of the treatment period. Acyclovir could be detected in both nasal mucus samples and CSF. However, these concentrations were lower than the EC50.  相似文献   

19.
The effect of longeing and glucosamine supplementation on known biological markers of joint disease was studied in yearling quarter horses. Twenty-one yearling quarter horses were randomly assigned to one of 4 treatments: 1) longeing (longeing 20 min daily) supplement control (LN); 2) longeing/glucosamine (LG); 3) walking (mechanical walker for 120 min daily (WN)); and 4) walking/glucosamine (WG). Oral glucosamine was administered at 5.5 g b.i.d. weeks 1-4, 3.5 g b.i.d. during weeks 5-6, and 2.0 g b.i.d. during weeks 7-8. Serum was obtained weekly for 8 wk and analyzed for keratan sulfate and osteocalcin concentrations. Walked horses receiving glucosamine showed slight elevation in serum keratan sulfate compared to controls (P = 0.04). Glucosamine or longeing exercise had no significant effect (6 > or = 0.08) on serum osteocalcin concentrations. Under these conditions, longeing and/or glucosamine supplementation did not significantly alter serum concentrations of keratan sulfate or osteocalcin.  相似文献   

20.
Cimetidine was administered intravenously and by the intragastric route to six mares at a dose of 4.0 mg/kg of body weight (bw). Specific and sensitive high performance liquid chromatographic methods for the determination of cimetidine in horse plasma and urine and cimetidine sulfoxide in urine are described. Plasma cimetidine concentration vs. time data were analysed by non-linear least squares regression analysis to determine pharmacokinetic parameter estimates. The median (range) plasma clearance (Cl) was 8.20 (4.96–10.2) mL/min.kg of body weight, that of the steady-state volume of distribution (Vdss) was 0.771 (0.521–1.15) L/kg bw, and that of the terminal elimination half-life ( t ½β) was 92.4 (70.6–125) minutes. The median (range) renal clearance of cimetidine was 4.08 (2.19–6.23) mL/min.kg bw or 55.4 (36.3–81.8)% of the corresponding plasma clearance. Cimetidine sulfoxide was excreted in urine and its urinary excretion through 8 h accounted for 12.0 (9.8–16.6)% of the plasma clearance of cimetidine. The median (range) extent of intragastric bioavailability was 14.4 (6.82–21.8)% and the maximum plasma concentration after intragastric administration was 0.31 (0.24–0.50) μg/mL.
Intravenous cimetidine had no effect on the disposition of intravenous phenylbutazone or its metabolites except that the maximum plasma concentration of γ-hydroxyphenylbutazone was less after cimetidine treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号