首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green roofs provide a number of different urban ecosystem services (UESS), e.g. regulation of microclimate, support of air quality improvement, or stormwater retention. To estimate the spatial variation of green roof UESS across an urban area, a GIS-based mapping and spatial analysis methodology was established and applied to the city of Braunschweig, Germany. Based on the analysis of available geodata, in a first step, a quantity of 14,138 rooftops in the study area (14% of all buildings) was found to be generally suitable for greening. This resulted in a green roof area of 3 km2. Based on criteria such as roof slope and minimum roof size, nearly two-thirds of these buildings (8596 buildings, 8.6% of total number of buildings) were categorised ‘appropriate’ for greening and subject to green roof UESS analysis.The spatial distribution of green roof UESS was estimated based on the categories thermal urban climate, air quality, stormwater retention and biodiversity. Due to their potential benefits in the four UESS categories an overall assessment resulted in a number of 867 roofs (0.9% of total number of buildings) categorised as ‘high benefit’ from rooftop greening. Another 3550 buildings (3.5%) and 4179 buildings (4.2%) were defined as ‘moderate benefit’ and ‘low benefit’, respectively. The inner city area of Braunschweig appears as a hot-spot of green roof UESS, i.e. higher percentage of ‘high benefit’ green roofs in comparison to residential areas. The proposed method is a simple but straightforward approach to analyse urban green roof UESS and their spatial distribution across a city but it is sensitive to the quality of the available input geodata.  相似文献   

2.
Modern cities are dominated by impervious surfaces that absorb, store and release heat in summer, create large volumes of runoff and provide limited biodiversity habitat and poor air quality can also be a health issue. Future climate change, including more frequent and extreme weather events will likely exacerbate these issues. Green infrastructure such as parks, gardens, street trees and engineered technologies such as green roofs and walls, facades and raingardens can help mitigate these problems. This relies on selecting plants that can persist in urban environments and improve stormwater retention, cooling, biodiversity and air pollution. However, plant selection for green infrastructure is challenging where there is limited information on species tolerance to heat and water variability or how these species can deliver multiple benefits. Therefore, we draw on research to illustrate how plant performance for green infrastructure can be inferred from plant attributes (i.e., traits) or from analysis of their natural distribution. We present a new framework for plant selection for green infrastructure and use a case study to demonstrate how this approach has been used to select trees and shrubs for Australian cities. We have shown through the case study and examples, how plant traits and species’ natural distribution can be used to overcome the lack of information on tolerance to both individual and multiple stressors; and how species contribute to the provision of benefits such as stormwater retention, cooling, biodiversity and air pollution mitigation. We also discuss how planting design and species diversity can contribute to achieving multiple benefits to make the most of contested space in dense cities, and to also reduce the risk of failure in urban greening.  相似文献   

3.
Urban green spaces provide important ecological, environmental, and cultural benefits, including biodiversity conservation and human wellbeing. However, a significant portion of urban green space is currently managed as highly manicured grassy lawns that provide limited ecosystem services. Managing urban green spaces as diverse meadows can have a multitude of ecosystem benefits such as biodiversity conservation, stormwater infiltration, and aesthetics. Relatively little is known about the range of ecosystem services or disservices in managing urban green spaces as lawns versus meadows. In this paper, we separately characterize three major categories of ecosystem services and disservices (provisioning, regulation and maintenance, and cultural) delivered by urban lawns and meadows while highlighting several trade-offs and synergies associated with urban lawn and meadow management strategies. Additionally, we suggest specific research priorities to better evaluate ecosystem services and disservices across these urban green spaces. Understanding ecological, environmental, and cultural trade-offs and synergies of managing different urban green spaces is key to maintaining multiple ecosystem services in urban environments.  相似文献   

4.
Green roofs are promoted as an effective nature-based urban heat island mitigation strategy. Green roof cooling and energy-saving benefits have been simulated for various climatic zones, but mainly at the building scale. Due to a lack of fact-based information on neighborhood cooling benefits, green roof construction lags and has rarely been incorporated into urban planning actions. This study investigated the thermal benefits and energy savings of green roofs for the central area of the Xianlin Campus of Nanjing University at the neighborhood scale. Three scenarios were simulated for a hot summer day using a validated ENVI-met model: a base case (S0), extensive green roofs (EGRs) (S1), and intensive green roofs (IGRs) (S2). The air temperature cooling benefit from green roofs extended downwards to the pedestrian level. The EGR scenario achieved a maximum 0.29 °C air temperature reduction at the pedestrian level and 0.37 °C at the rooftop level. The IGR scenario achieved a maximum 0.35 °C air temperature reduction at the pedestrian level and 0.45 °C at the rooftop level. EGRs and IGRs reduced energy demands for air-conditioning by 0.39 kWh·m−2·d−1 and 0.56 kWh·m−2·d−1 and CO2 emissions by 31,997 kg·d−1 and 45,967 kg·d−1, respectively. These results confirm that green roofs yield substantial cooling and carbon mitigation benefits. Our study provides essential data to establish green roofs as mainstream cooling technology in subtropical cities. The results also imply that urban planners and policymakers may need to embrace the implementation of green roofs in long-term planning and building design practices to improve urban thermal environments, reduce building energy demand, and curb carbon emissions.  相似文献   

5.
Urban green infrastructure is critical for providing a wide range of ecosystem goods and services that benefit the urban population. Past studies have suggested that multifunctionality concerning urban infrastructure services and functions is a prerequisite for targeting effective and impactful urban green infrastructure. Moreover, urban green infrastructure with multiple functions can offer socio-economic and environmental benefits. However, there has been a knowledge gap in the planning literature to elaborate multiple ecosystem functions in urban green infrastructure. In particular, existing methods and approaches are lacking for quantifying and monitoring such ecological services and biodiversity in urban green infrastructures at different spatial scales. Therefore, this research aims to review studies focusing on the multifunctionality concept in urban green infrastructure planning. The study highlights the current status and knowledge gaps through a systematic review. Our analysis revealed that current studies on green infrastructure multifunctionality have focused on five main themes: 1) planning methods for urban green infrastructure, 2) assessment approaches of urban green infrastructure, 3) ecosystem services and their benefits, 4) sustainability and climate adaptation, and 5) urban agriculture. The study found that the five themes are somewhat connected to each other. The study has revealed a knowledge gap regarding incorporating multifunctional green infrastructure in the planning principle. The results suggest at least five critical elements to ensure multiple functions in urban infrastructure. The elements are spatial distribution, optimal distance, integrated network, accessibility, and public participation and engagement. The study further recommends research directions for future analysis on green infrastructure multifunctionality that are critical for urban planning.  相似文献   

6.
Effective urban planning, and urban green space management in particular, require proper data on urban green spaces. The potential of urban green spaces to provide benefits to urban inhabitants (ecosystem services) depends on whether they are managed as a comprehensive system of urban green infrastructure, or as isolated islands falling under the responsibility of different stakeholders. Meanwhile, different urban green space datasets are based on different definitions, data sources, sampling techniques, time periods and scales, which poses important challenges to urban green infrastructure planning, management and research. Using the case study of Lodz, the third largest city in Poland, and an additional analysis of 17 other Polish cities, we compare data from five publicly available sources: 1) public statistics, 2) the national land surveying agency, 3) satellite imagery (Landsat data), 4) the Urban Atlas, 5) the Open Street Map. The results reveal large differences in the total amount of urban green spaces in the cities as depicted in different datasets. In Lodz, the narrowly interpreted public statistics data, which are aspatial, suggest that green spaces account for only 12.8% of city area, while the most comprehensive dataset from the national land surveying agency reveals the figure of 61.2%. The former dataset, which excludes many types of green spaces (such as arable land, private and informal green spaces), is still the most commonly used. The analysis of the 17 other cities confirms the same pattern. This results in broader institutional failures related to urban green infrastructure planning, management, and research, including a lack of awareness of green space quality (e.g. connectivity) and benefits (ecosystem services), and the related political disregard for urban green spaces. Our comparison suggests that a better understanding of green space data sources is necessary in urban planning, and especially when planning urban green infrastructure.  相似文献   

7.
Urban Heat Island (UHI) leads to increased energy consumption, aggravated pollution and threatened health of citizens. Urban green spaces mitigate UHI effects, however, it is still unclear how the green space characteristics and its surrounding environment affects the green space cool island (GCI). In this study, land surface temperature (LST) and land cover types within the outmost ring road of Shanghai, China were obtained from Landsat 8 data and high-resolution Google Earth data. The GCI effects were defined in three aspects: GCI range (GR), amplitude of temperature drop (TA) and temperature gradient (TG). Pearson correlation analysis was processed to get the relationship between the aspects and impact factors. The results indicated that the GCI principle could be explained by the thermal conduct theory. The efficient methods to decrease LST of green spaces include increasing green space area while staying below the threshold, adding complexity of green space shape, decreasing impervious surfaces and enlarging the area of water bodies. For the surrounding environment of the green spaces, increasing vegetation and water body fractions or decreasing impervious surfaces will help to strengthen GCI effects. The findings can help urban planners to understand GCI formation and design cool green spaces to mitigate UHI effects.  相似文献   

8.
Urban areas are particularly vulnerable to climate change due to the Urban Heat Island (UHI) effect, which can be mitigated by urban vegetation through shading and evapotranspiration. Nevertheless, there is still a lack of spatially explicit information on the cooling capacity of green infrastructure for most Latin American cities. In this study, we employed Land Surface Temperature (LST) of the Neotropical Mexican city of Xalapa to (1) analyze its Surface UHI (SUHI) compared to its peri and extra-urban areas, (2) to assess the cooling capacity of urban green spaces larger than 1 ha, and (3) to evaluate the role of green spaces’ size, shape and their surrounding tree cover percentage (Tc) on green spaces cooling range. We evaluated the cooling range of green spaces and their relationships with green spaces metrics and Tc via a linear mixed-effect model and identified threshold values for the variables at 25 m, 50 m, 100 m, and 200 m from the borders of green spaces through Classification and Regression Trees. Xalapa exhibits a SUHI of 1.70 °C compared to its peri-urban area and 4.95 °C to the extra-urban area. Green spaces > 2 ha mitigated heat at ~2 °C and the cooling range was influenced by the size of green spaces ≥ 2.8 ha and Tc > 21% at 50 m and only by Tc surrounding the green spaces at 100 m and 200 m. This shows that the size threshold of urban green spaces should be complemented with the presence of Tc starting at least 50 m to maximize the cooling capacity provided by the green infrastructure. Planning agendas should account for the interaction between the size of green spaces and the cumulative cooling effect of scattered vegetation inside urban areas towards compact green cities to cope with urban warming.  相似文献   

9.
As the impact of green space shrinkage in urban centers becomes obvious, local and regional authorities must adopt environmental planning policies that can help create new green areas to ensure a good quality of life for citizens, along with the rehabilitation of the natural environment. One approach is the promotion of green infrastructure on buildings, including multi-dwelling apartment buildings. In order to effectively promote green infrastructure on buildings, it is essential to comprehend public attitudes toward green infrastructure, so that suitable and effective strategies can be implemented by policy makers. In this study, eight hundred respondents were asked to provide their views on green infrastructure on buildings, on construction that should take place on blocks of apartments in order to accommodate green infrastructure and on the related benefits that may arise from creating green spaces on buildings. A structured questionnaire and stratified sampling were used for the interviews, which were conducted with apartment owners in two regional units of Athens. The results showed that most citizens are willing to proceed with the installation of a green roof, trellis or vertical garden, in order to improve the aesthetics and functionality of the building they live in. Most of the respondents are not familiar with the energy savings that may occur from the installation of a green roof, vertical trellis or garden and wish for a subsidy from the state in order to implement green building solutions. To conclude, the participants in our study are not environmentally aware, since they are not interested in energy conservation but only about the aesthetics of their building; furthermore, they expect to receive financial support from the state in order to make any changes to their home.  相似文献   

10.
Urban heat island (UHI) often cause negative impact and has been linked to heart stroke rate, morality, human comfort, energy consumption and air pollution. Fortunately, urban green spaces have been considered as an effective element to mitigate UHI through their cooling effect. However, further empirical research is necessary in order to efficiently guide the design and planning of urban green space. We observed the impacts of urban park's tree, grass and waterbody on microclimate inside the Olympic park of Beijing during summer days. The results indicated that, on average, the park was 0.48–1.12 °C cooler during the day, as well as increased air humidity 2.39–3.74% and reduced human comfort index 1.02–2.43 to generate more comfortable thermal environment. Urban park's cluster trees with short ground vegetation generated higher cooling effect than single trees, grass and waterbodies; proper irrigation regime enhanced the cooling effect of grasses, even the irrigated grass have similar cooling effect with small waterbody on sunny, windless summer days. Therefore, we advise to increase undergrowth coverage and grass irrigation management in order to take advantage of cooling effect of urban parks.  相似文献   

11.
Green roofs are a promising tool to return nature to cities and mitigate biodiversity loss brought about by urbanization. Yet, we lack basic information on how green roofs contribute to biodiversity and how their placement in the urban landscape affects different taxa and community composition. We studied the effects of local and landscape variables on beetle communities on green roofs. We expected that both local roof characteristics and urban landscape composition shape communities, but that their relative importance depends on species characteristics. Using pitfall traps, we collected beetles during two consecutive years from 17 green roofs in Basel, Switzerland. We evaluated the contribution of six local and six landscape variables to beetle community structure and to the responses of individual species. Communities on the roofs consisted of mobile and open dry-habitat species, with both local and landscape variables playing a role in structuring these communities. At the individual species level, local roof variables were more important than characteristics of the surrounding urban landscape. The most influential factors affecting the abundances of beetle species were vegetation, described as forb and grass cover (mainly positive), and roof age (mainly negative). Therefore, we suggest that the careful planning of green roofs with diverse vegetation is essential to increase their value as habitat for beetles. In addition, while beetle communities on green roofs can be diverse regardless of their placement in the urban landscape, the lack of wingless species indicates the need to increase the connectivity of green roofs to ground level habitats.  相似文献   

12.
Extensive green roofs have the potential to be used as mitigation tools to compensate for urban habitat loss, but there is little information about how closely these systems emulate ground-based habitats. This study investigated the effect of limited substrate depth on plant assemblages in the initial phase of growth in extensive green roof substrates. Five replicate mesocosms (1 m2) for each of three design treatments: (A) 10 cm aggregate depth with green roof drainage and solid floor, (B) 15 cm aggregate depth with green roof drainage and solid floor, and (C) 15 cm aggregate depth on top of bare earth; were positioned at ground level. Each mesocosm had an identical growth substrate and was seeded with the same seed mix. Plant assemblages were analysed using point-quadrat methods. Significant differences in species composition were observed between treatments that seemed to be related to water availability. Even the deep (15 cm) solid floor green roof treatment showed many significant differences in floral assemblage compared to the identical treatment (C) where plants had access to water in the soil profile. Therefore, it is not possible to exactly recreate most ground-based urban habitats on roofs by simply copying the soil characteristics and floral composition found on the ground. Like for mitigation for habitat loss using extensive green roofs requires the careful manipulation of design elements in order to counteract the limited water availability on green roofs.  相似文献   

13.
Green Infrastructure (GI) practices have shown to be promising in mitigating the air pollution in urban areas of several cities across the world. GI practices such as trees, green roofs and green walls are widely used in United States and Europe to mitigate the air pollution. However, there is yet limited knowledge available in identifying the most suitable GI strategy for an urban area in improving the air quality. Furthermore, it is evident that Australia is still lagging behind in adapting GI to mitigate air pollution, compared with US and Europe. Therefore, this study analyzed the air quality improvement through several GI scenarios consisting of trees, green roofs and green walls considering a case study area in Melbourne, Australia by using the i-Tree Eco software. The results were compared with case studies in different cities across the world. The results showed that the i-Tree Eco software can be successfully applied to an Australian case study area to quantify the air quality improvement benefits of GI. The results were further assessed with several environmental, economic and social indicators to identify the most suitable GI scenarios for the study area. These indicators were quantified using different methods, to assess the effectiveness of different GI scenarios. The results showed that, trees provided the highest air pollution removal capability among the different GI considered for the study area. Combination of different GI such as green roofs and green walls with trees did not provide a significant increment of air quality improvement however, has provided more local benefits such as building energy savings. The results obtained from this study were also beneficial in developing policies related to future GI applications in major cities of Australia for the air quality improvement.  相似文献   

14.
To address the inter-connected climate and biodiversity crises, it is crucial to understand how multifunctional urban green infrastructure (UGI) is perceived to contribute to carbon neutrality, biodiversity, human well-being, and justice outcomes in cities. We explore how urban residents, including youth, associate carbon-related meanings with multifunctional UGI and how these meanings relate to co-benefits to biodiversity, well-being, and broader sustainability outcomes. Our findings are based on a survey distributed among urban residents of Helsinki, Finland (n = 487) and reveal how carbon-related meanings of UGI manifest at different levels of abstraction, agency, and scale, and incorporate community values and concerns attributed to the planning, features, functions, and transformational dimensions of UGI. Core carbon-related meanings of UGI emphasize either actions towards sustainability, carbon neutrality, biodiversity, or unfamiliarity towards such meanings. Perceived justice concerns and the socio-demographic contexts of the respondents covaried with carbon-related meanings associated with UGI. The results illustrate community perceptions of how it is not only possible, but rather expected, that multifunctional UGI is harnessed to tackle climate change, human well-being, and biodiversity loss in cities. Challenges for implementing the carbon-related benefits of UGI include navigating the different expectations placed on UGI and including residents with diverse socio-economic backgrounds during the process. Our findings contribute to a holistic understanding of how multifunctional UGI can help bridge policy agendas related to carbon neutrality, biodiversity protection, and human well-being that cities can implement when aiming for sustainable, just, and socially acceptable transitions towards a good Anthropocene.  相似文献   

15.
This paper aims to identify and assess the main decision factors that are relevant for the diffusion of green roof technology in cities of temperate climate in Europe. A mixed design method was applied to identify relevant factors and to structure these along a Strengths, Weaknesses, Opportunities and Threats framework. The factors were subsequently assessed by a sample of green roof experts, using an Analytical Hierarchy Process. The results indicate that prospects for green roofs are in general rather bright, and that dissemination potential is substantial. Green roofs are particularly likely to benefit from climate change and respective counter-strategies, as they are seen as an adaptation and mitigation measure. However, current barriers to adoption need to be carefully considered. Especially the dilemmatic incentive structures, in that building owners bear most of the risks and potential disadvantages, while the public collectively benefits from green roof advantages, could be a major implementation barrier. Without supportive policies, green roofs are thus unlikely to move from niche to regime level in the near future.  相似文献   

16.
Incorporating natural spaces within urban areas has been shown to have multiple benefits. However, despite greening and adaptation strategies at different levels of government, progress remains slow with a lack of easy to use and comprehensive tools identified as key to overcoming this. This paper presents a co-designed tool with academic and local authority partners to demonstrate the ecosystem service benefits of small-scale urban green infrastructure projects. Through the tool, users can readily assess the impact of green infrastructure investments on the delivery of a selection of ecosystem services in the early stages of a project. Furthermore, the tool provides a standardised assessment of cultural ecosystem services’ contributions, as well as offering a method to score spatial designs on the impact on habitat for biodiversity. Use of the tool is demonstrated using a pilot study in Kapelle, the Netherlands. The results set out an overview of the impacts of the spatial design on estimated ecosystem service delivery. They also show the tool’s potential to add value in early project stages and as a planning and design tool, helping to maximise the benefits that can be achieved through green infrastructure design. Complementing these arguments with ball-park estimations on green infrastructure costs, the Nature Smart Cities Business Model aims to offer public sector officers the means to create a business case for green infrastructure measures, facilitating the translation from strategies to actual plans, thus benefitting green infrastructure implementation in the public realm.  相似文献   

17.
Changing an urban environment and replacing vegetated surfaces with low albedo materials is one of the reasons for increasing temperatures in an urban environment and consequently also one of the key causes of urban heat island effects. In this study, an experimental investigation at the micro-scale and also a numerical simulation at the macro-scale of a typical urban environment in Adelaide were conducted to estimate the potential for mitigating the UHI effect. The results showed that existing low albedo materials such as asphalt, metal roofs and brick pavements contribute to the heat island potential. Also, urban development and a lack of natural vegetation contribute to increased temperatures in cities. The ability of two types of extensive and intensive green roofs to reduce the surrounding micro-climate temperature were monitored. The results showed that they have significant cooling effects in summer time and could behave as an insulation layer to keep buildings warmer in the winter. Furthermore, different scenarios of adding green roofs to the Adelaide urban environment were investigated using the Envi–MET model. The scenario modelling of adding green roofs in a typical urban area in Adelaide, Australia, supported the hypothesis that this can lead to reductions in energy consumption in the Adelaide urban environment. Also an increased use of other water sensitive urban design technologies such as green walls and street trees together with the adoption of high albedo materials is recommended for achieving the optimum efficiency in terms of reducing urban temperatures and mitigating urban heat island effects.  相似文献   

18.
Promoting the plant diversity of urban green spaces is crucial to increase ecosystem services in urban areas. While introducing ornamental plants can enhance the biodiversity of green spaces it risks environmental impacts such as increasing emissions of biogenic volatile organic compounds (BVOCs) that are harmful to air quality and human health. The present study, taking Qingdao City as a case study, evaluated the plant diversity and BVOC emissions of urban green spaces and tried to find out a solution to increase biodiversity while reducing BVOC emissions. Results showed that: (1) the species diversity and phylogenetic diversity of trees in urban green spaces were 22% and 16% lower than rural forest of this region; (2) urban areas had higher BVOC emission intensity (2.6 g C m−2 yr−1) than their rural surroundings (2.1 g C m−2 yr−1); (3) introducing the selected 11 tree species will increase 15% and 11% of species diversity and phylogenetic diversity, respectively; and (4) the BVOC emissions from green spaces will more than triple by 2050, but a moderate introduction of the selected low-emitting trees species could reduce 34% of these emissions. The scheme of introducing low-emitting ornamental species leads to a win–win situation and also has implications for the sustainable green space management of other cities.  相似文献   

19.
The creation of green rooftops is an important method for mitigating heat build-up in urban rooftop environments because they lower the sensible heat flux over the rooftop and conductive heat flux into the building. We propose a model for assessing thermal mitigation effects through a hydroponic urban greening system based on heat balance. We conducted an experiment with two different rooftops at two study sites, which were monitored for two months in two different years. Each rooftop was divided into two areas: one bare, the other covered by the hydroponic urban greening system. Parameters measured in both areas were air temperature, surface temperature, and conductive heat flux. The data were analyzed using three thermal mitigation indices. However, it was difficult to show a uniform relationship between the latent heat flux and mitigation indices during the period of analysis. This suggests it would be necessary to include factors such as latent heat flux, conductive heat flux, and water heat storage flux to assess the thermal mitigation effect. Our research indicated that the composition of heat balance terms could estimate thermal mitigation effects in the green roof area independent of the year. The results suggest a principle for assessing the mitigation effects of urban greening on the thermal environment.  相似文献   

20.
Increasing urbanization, impervious space, and the impact of climate change are threatening the future of cities. Nature-based solutions, specifically urban green infrastructures, are seen as a sustainable strategy to increase resilience against extreme weather events, including the escalating occurrence of stormwater runoff flooding. Consequently, urban planners and decision-makers have pushed their efforts toward implementing green infrastructure solutions to reduce the impact of stormwater floods. Among others, green roofs help store water and decrease stormwater runoff impacts on a local scale. This research aims to investigate the effect of surface permeability and green roof implementation on reducing stormwater flooding and subsequently provide urban planners with evidence-based geospatial planning recommendations to improve urban resilience in Helsinki. First, we modeled the current impact of stormwater flooding using the Arc-Malstrom model in Helsinki. The model was used to identify districts under high stormwater flood risk. Then, we zoomed in to a focus area and tested a combination of scenarios representing four levels of green roof implementation, two levels of green roof infiltration rates under 40-, 60-, 80-, 100 mm precipitation events on the available rooftops. We utilized open geographic data and geospatial data science principles implemented in the GIS environment to conduct this study. Our results showed that low-level implementation of green roofs with low retention rates reduces the average flood depth by only 1 %. In contrast, the maximum green roof scenario decreased most of the average flood depth (13 %) and reduced the number of vulnerable sites. The proposed methodology can be used for other cities to develop evidence-based plans for green roof implementations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号