首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The growth factor receptor‐bound protein 14 (Grb14) is a cellular adapter protein belonging to the Grb7 family of proteins. Studies with human and rodent cells have demonstrated that Grb14 acts as a negative regulator of tyrosine kinase receptor signalling through the MAPK and PI3K pathways. In cattle, tyrosine kinase receptors are activated during follicular development but the role of Grb14 in this process has not yet been investigated. Therefore, the aim of the present study was to characterize Grb14 mRNA expression in ovarian somatic cells during follicular growth and deviation in cattle. We found Grb14 mRNA expressed in both granulosa and theca cells derived from follicles at different stages of development (3–5 , 6–8, >8 mm in diameter). The abundance of mRNA for Grb14 was higher in granulosa cells of subordinate compared with those from dominant follicles at days 3 and 4 of the follicular wave (p < 0.05). Further, there was a negative correlation between the abundance of mRNA for Grb14 and P450Arom in granulosa cells (R2 = 0.367; p < 0.05) and between the abundance of mRNA for Grb14 in granulosa cells and concentration of oestradiol in follicular fluid (R2 = 0.545; p < 0.05). In theca cells, the expression of Grb14 mRNA did not differ between dominant and subordinate follicles (p > 0.05). These findings suggest that Grb14 may play a regulatory role in granulosa cells during follicular deviation in cattle.  相似文献   

2.
Natriuretic peptides (NPs) are known to regulate reproductive events in polyovulatory species, but their function and regulation in monovulatory species remain to be fully characterized. Using a well‐established in vivo model, we found that bovine granulosa cells from follicles near the deviation stage express mRNA for the three NP receptors (NPR1, NPR2 and NPR3), but not for NP precursors (NPPA, NPPB and NPPC). The abundance of NPR3 mRNA was higher in dominant compared to subordinate follicles at the expected time of follicular deviation. After deviation, mRNA for all NP receptors was significantly more abundant in the dominant follicle. Intrafollicular inhibition of oestrogen receptors downregulated NPR1 mRNA in dominant follicles. In granulosa cells from preovulatory follicles, NPPC mRNA increased at 3 and 6 h after systemic GnRH treatment, but decreased at 12 and 24 h to similar levels observed in samples collected at 0 h. After GnRH treatment, NPR1 mRNA was upregulated at 24 h, NPR3 mRNA gradually decreased after 3 h, while NPR2 mRNA was not regulated. The mRNA expression of the enzyme FURIN increased at 24 h after GnRH treatment. These findings revealed that the expression of mRNA encoding important components of the NP system is regulated in bovine granulosa cells during follicular deviation and in response to GnRH treatment, which suggests a role of NP system in the modulation of these processes in monovulatory species.  相似文献   

3.
Persistent Müllerian duct syndrome (PMDS) is a sex‐limited disorder in which males develop portions of the female reproductive tract. Important consequences of PMDS are cryptorchidism and its sequelae of infertility and increased risk of testicular cancer. Anti‐Müllerian hormone (AMH) and its receptor (AMHR2) induce the regression of the Müllerian ducts in male embryos. In Miniature Schnauzer dogs, the genetic basis has been identified as an autosomal recessive nonsense mutation in AMHR2, but the allele frequency of the mutation is unknown. Thus, the primary objective of this study was to estimate the prevalence of the AMHR2 mutation in North American Miniature Schnauzers, in order to ascertain the value of genetic testing in this breed. An additional objective was to determine whether mutations in AMH or AMHR2 were responsible for PMDS in a Belgian Malinois; this would aid development of a genetic test for the Belgian Malinois breed. Genomic DNA from 216 Miniature Schnauzers (including one known PMDS case) was genotyped for the AMHR2 mutation, and DNA from a single PMDS‐affected Belgian Malinois was sequenced for all coding exons of AMH and AMHR2. The Miniature Schnauzer cohort had an AMHR2 mutation allele frequency of 0.16 and a carrier genotypic frequency of 0.27. The genetic basis for PMDS in the Belgian Malinois was not determined, as no coding or splicing mutations were identified in either AMH or AMHR2. These findings support a benefit to AMHR2 mutation testing Miniature Schnauzers used for breeding or with cryptorchidism.  相似文献   

4.
In Bos taurus cattle, antimullerian hormone (AMH) has been demonstrated to have a high degree of correlation with ovarian antral follicle count and the number of healthy follicles and oocytes. To document the correlation between the plasma concentration of AMH and follicular number in Bos indicus and Bos taurus heifers, Nelore (Bos indicus, n = 16) and Holstein heifers (Bos taurus, n = 16) had their ovarian follicular waves synchronized. After synchronization, ovarian antral follicular population (AFP) was evaluated three times at 60‐day (d) intervals (T‐120 d, 120 days before plasma AMH determination; T‐60 d, 60 days before; and T0, at the time of plasma AMH determination). The plasma AMH concentration was positively correlated with the number of ovarian follicles on the day of the follicular wave emergence in Bos indicus (Nelore) and Bos taurus (Holstein) heifers at each evaluation time (p < 0.05). The AFP was higher in Bos indicus (Nelore) than in Bos taurus (Holstein) heifers (p < 0.05). Similarly, the AMH concentration was higher in Bos indicus (Nelore) than in Bos taurus (Holstein) heifers (p < 0.0001). When heifers were classified as to present high or low AFP according to the mean of the AFP within each genetic group, high‐AFP heifers presented a greater (p < 0.0001) AMH concentration than low‐AFP heifers, regardless of the genetic group. In conclusion, the AFP is positively correlated with plasma AMH concentration in both Bos indicus (Nelore) and Bos taurus (Holstein) heifers. Furthermore, Bos indicus (Nelore) heifers presented both greater plasma AMH concentrations and AFP than Bos taurus (Holstein) heifers.  相似文献   

5.
Luteinizing hormone LH plays important roles in follicular maturation and ovulation. The effects of LH are mediated by LH receptor (LHR) in the ovary. However, the factors that regulate the expression of LHR in bovine granulosa cells (GCs) are not well known. Insulin‐like growth factor‐1 (IGF‐1) is known to play a key role in the acquisition and maintenance of functional dominance. To better understand the roles of LHR expression and IGF‐1, we conducted three experiments to determine (i) mRNA expression of LHR in the GCs of developing follicles, (ii) the effects of IGF‐1 on LHR mRNA expression in cultured GCs and (iii) the effects of IGF‐1 on estradiol (E2), progesterone (P4) and androstenedione (A4) production by non‐luteinized GCs. In experiment 1, small follicles (<6 mm Ø) expressed lower levels of LHR than mid‐sized follicles (6–8 mm Ø) and large follicles (≥9 mm Ø) expressed the highest levels of LHR mRNA (p < 0.05). In experiment 2, IGF‐1 (1 and 100 ng/ml) increased (p < 0.05) the expression of LHR mRNA in GCs from small and large follicles. In experiment 3, IGF‐1 (0.1–100 ng/ml) increased A4 and E2 in GCs from both small and large follicles but increased P4 only in large follicles. IGF‐1 in combination with LH (0.1 and 1 ng/ml) increased P4 and A4 in large follicles, and increased E2 and A4 in GCs of small follicles. These findings strongly support the concept that IGF‐1 upregulates LHR mRNA expression as well as A4 and E2 production in GCs and that IGF‐1 is required for determining which follicle becomes dominant and acquires ovulatory capacity.  相似文献   

6.
A peptidyl-prolyl isomerase, Pin 1, has been shown to play a role in the regulation of cell cycle progression, both in vitro and in vivo. However, the involvement of Pin 1 during follicular development is not well understood. The aim of this study was first to investigate the expression of Pin 1 mRNA in the granulosa and theca cells of the follicle at different developmental stages of follicles in the bovine ovary, and second, to examine the effects of follicle-stimulating hormone (FSH) and estradiol (E2) on the expression of Pin 1 in the cultured bovine granulosa cells. Follicles were classified into four groups based on the diameter (dominant follicles >8.5mm in diameter, subordinate follicles <8.5mm in diameter) and the relative levels of E2 and progesterone (P4) (E2:P4>1, estrogen active; E2:P4<1, estrogen inactive): i.e. preovulatory dominant follicles (POFs); E2 active dominant follicles (EADs); E2 inactive dominant follicles (EIDs); small follicles (SFs). The expression of the Pin 1 gene was significantly increased in the granulosa cells of EADs as compared with those of other follicles, whereas its expression in theca cells did not differ among follicles at different developmental stages. The concentration of 5 ng/ml FSH alone and the combination of 1 ng/ml E2 and 5 ng/ml FSH stimulated the expression of the Pin 1 gene in bovine granulosa cells. Our data provide the first evidence that Pin 1 expression in the granulosa cells but not the theca cells changes during follicular development, and that FSH stimulate the expression of the Pin 1 gene. These results suggest that Pin 1 regulates the timing of cell proliferation and may act as an intracellular signal responder in the granulosa cells during bovine follicle development.  相似文献   

7.
Increased concentrations of Anti‐Muellerian hormone (AMH) can indicate a granulosa cell tumour as shown in women, mares and cows. To investigate AMH to differentiate canine granulosa cell tumour from other ovarian pathologies, we evaluated the ovaries of 63 bitches. Blood serum samples were collected before surgery for AMH analysis. Ovaries were submitted for histopathological examination. Fourteen bitches showed normal ovaries. These bitches had AMH values between 0.12 and 0.99 ng/ml. In 20 bitches ovarian cysts i.e., follicular cysts (n = 8), corpora lutea cysts (n = 7), subsurface cysts (n = 5) were diagnosed. These dogs had AMH values of 0.11–2.09 ng/ml. Bitches with small luteinized follicular cysts had slightly higher AMH values than those without ovarian alteration. In 29 cases ovarian neoplasms i.e., granulosa cell tumour (n = 9), epithelial tumours (n = 16), dysgerminomas (n = 3) and one sarcoma were identified. Anti‐Muellerian hormone values of bitches with an ovarian neoplasm except granulosa cell tumour ranged from 0.18 to 1.18 ng/ml. The AMH values of bitches with granulosa cell tumour ranged from 1.12 to ≤23 ng/ml and were significantly higher (p < .05) than in all of the other bitches. The cut‐off of 0.99 ng/ml gave a sensitivity of 100% and a specificity of 94.44% to diagnose granulosa cell tumour. In conclusion, markedly elevated AMH concentrations in bitches are indicative for a granulosa cell tumour. However, negative testing does not rule out the existence of small one. Differentiation of GCT from luteinized follicular cysts may especially be difficult.  相似文献   

8.
The aim of this study was to investigate the ovarian follicular development, developmental competence of oocytes, and plasma anti‐Müllerian hormone (AMH) levels of Japanese wild boar crossbred (wild hybrid) gilts, whose litter size is inferior to that of European breeds. Ovary and plasma samples were collected from two different breeds of gilts (wild hybrid and Large White breeds). The ovaries from the wild hybrid gilts had a lower average numbers of secondary follicles and vesicular follicles in ovarian cross‐sections and of good quality oocytes collected from ovarian follicles as compared with those from Large White gilts (< 0.05). The development rate to the blastocyst stage of good quality oocytes after in vitro maturation, fertilization and culture was also lower (< 0.05) in wild hybrid gilts than in Large White gilts. Plasma AMH levels with >0.16 ng/ml were detected in 8.3% of the examined wild hybrid gilts and 33% of the Large White gilts. These results indicate that the low reproductive performance of wild hybrid breed may result in part from low numbers of vesicular follicles and good quality oocytes, and low developmental competence of oocytes. Moreover, plasma AMH levels may support low number of vesicular follicles in ovaries of wild hybrid gilts.  相似文献   

9.
The most significant focal points of the embryo transfer technology are as follows: the selection of donors, the response of the selected donor to the superovulation protocol and the obtained number of the transferable embryos. For this purpose, it is suggested that donor selection can be done by anti‐Müllerian hormone (AMH) levels, and embryo production is evaluated. AMH is secreted by the granulosa cells of primordial, pre‐antral and antral follicles below 4 mm in the ovary, independent of FSH. Therefore, the aim of this study was to investigate the relationship between serum AMH levels and the number of corpus luteum (CL), total embryos and transferable embryos that were shaped after a uniform superovulation protocol. For this reason, 48 Simmental cows, which were located at General Directory of Agricultural Enterprises (region, province, etc. instead of the general directorate), were used as donors for the embryo transfer. Blood samples were taken at random, regardless of the stage of animal's sexual cycle. AMH levels were measured by enzyme‐linked fluorescent assay (ELFA) method of the miniVIDAS® (bioMérieux SA) using AMH Bovine Test Kit. According to the statistical analyses of the obtained data, AMH levels were positively correlated with CL and total embryos (p < .05). No significant correlations between AMH and transferable embryos were approved (p > .05). It was also determined that each 200 pg/ml increase in serum AMH level resulted in one increase in CL number. Overall, considering the positive correlation between AMH level and the obtained number of CL and total embryos after a superovulation treatment, it was concluded that measuring blood AMH level prior to any further costly implementation may be an effective method in donor selection.  相似文献   

10.
The regulation of granulosa cell proliferation is complex, and it is essential for normal follicular development in mammals. The aim of this study was to examine the expression of cyclins and their inhibitors in the granulosa cells of follicles at different developmental stages. Follicles were classified into three groups: oestrogen‐inactive dominant follicles (EIDs), oestrogen‐active dominant follicles (EADs) and pre‐ovulatory follicles (POs). The expression of CCND2 (cyclin D2) mRNA was significantly higher in granulosa cells from EADs and POs than in those from EIDs. The expression of CCND3 (cyclin D3) mRNA was significantly higher in granulosa cells from EADs than in those from other follicles. CCND1 (cyclin D1), CCNE1 (cyclin E1) and CCNE2 (cyclin E2) mRNA expression did not differ among the different follicular stages. The expression of CDKN1A (p21cip1) and CDKN1B (p27kip1) mRNA was significantly higher in granulosa cells from EIDs and POs, respectively, than in those from other follicles. Expression of CDKN2D (p19INK4d) mRNA did not differ among the different follicular stages. Taken together, our study suggested that cyclins and their inhibitors are associated with granulosa cell proliferation at specific follicular developmental stages.  相似文献   

11.
The vascular endothelial growth factor (VEGF) is essential for follicular development by promoting follicular angiogenesis, as well as for the proliferation and survival of granulosa cells. The biological effects of VEGF are regulated by two membrane receptors, VEGFR1 and VEGFR2, and two soluble receptors, sVEGFR1 and sVEGFR2, which play an antagonistic role. Thus, the objective of this study was to identify the mRNA expression pattern of total VEGF, VEGFR1, VEGFR2, sVEGFR1 and sVEGFR2 in bovine preselected follicles (PRF) and post‐selected follicles (POF). The mRNA expression of these five genes in both granulosa cells (GC) and theca cells (TC) was compared between follicles classified as PRF and POF based on their diameter and on their ratio of estradiol/progesterone (E2/P4). Results showed a lower expression of mRNA of sVEGFR1 and sVEGFR2 in POF than in PRF (p < .05). Regarding the mRNA expression of total VEGF, VEGFR1 and VEGFR2, there was no difference between POF and PRF follicles (p > .05). Our results showed that the mRNA expression of VEGFR2 and sVEGFR1 was more abundant than the expression of VEGFR1 and sVEGFR2, while GC was the main source of mRNA for total VEGF. On the other hand, TC was the follicular compartment where the receptors were most expressed. Our results suggest that non‐dominant follicles maintain a greater concentration of the mRNA expression of both membrane and soluble VEGF receptors. On the other hand, follicular dominance is related to a reduction in the mRNA expression of sVEGFR1 and sVEGFR2, which may favour VEGF binding with VEGFR2 and, hence, improve the follicular health and development.  相似文献   

12.
13.
The effects of Morus nigra ethanolic extract, without or with addition of supplements associated or not with FSH, on in vitro culture of ovine secondary follicles were evaluated. In experiment 1, isolated secondary follicles were cultured for 12 days in α‐MEM alone (control) or in different concentrations of M. nigra extract (MN 0.025; 0.05 or 0.1 mg/ml). In experiment 2, culture media were α‐MEM supplemented with BSA, insulin, transferrin, selenium, glutamine, hypoxanthine and ascorbic acid (α‐MEM+) or this medium associated with FSH (α‐MEM+ + FSH), or 0.1 mg/ml M. nigra without supplements (MN 0.1) or supplemented (MN 0.1+) without or with FSH (MN 0.1+ + FSH). In experiment 1, 0.1 mg/ml M. nigra showed the highest percentages (< .05) of normal follicles and fully grown oocytes, besides a higher follicular diameter than α‐MEM and other M. nigra extract concentrations. Moreover, MN 0.1 showed lower (< .05) glutathione (GSH) levels and similar (> .05) mitochondrial activity compared to α‐MEM. In experiment 2, MN 0.1+ + FSH showed similar results (> .05) to α‐MEM+ + FSH for all parameters evaluated, except for the daily growth rate, which was higher (< .05) in MN 0.1+ + FSH. The GSH levels were higher in MEM+ than all treatments. In addition, oocytes from follicles cultured in MN 0.1+ + FSH showed ability to resume meiosis. In conclusion, M. nigra extract (0.1 mg/ml) added by supplements and FSH can be an efficient medium for ovine secondary follicle development.  相似文献   

14.
Steroid hormones and receptors play important roles in female reproduction, and their expression patterns affect follicular growth and development. To examine the expression of dihydrotestosterone (DHT) synthases (5α-reductases (5α-red1 and 5α-red2)) and androgen receptor (AR) during follicular development, and the regulation of DHT signalling by follicle-stimulating hormone (FSH) and luteinizing hormone (LH), we have used enzyme-linked immunosorbent assays, quantitative real-time polymerase chain reaction, immunohistochemical staining and Western blotting to examine DHT synthesis in small (≤2 mm), medium (2–5 mm) and large (≥5 mm) sheep follicles. Expression of 5α-red1, 5α-red2 and AR was observed in ovine ovaries, and with the development of follicles, the expressions of 5α-red1 and 5α-red2 mRNA and protein increased, but the levels of AR mRNA, protein and DHT level decreased. In addition, granulosa cells were treated with FSH (0.01, 0.1 and 1 international unit (IU)/ml), LH (0.01, 0.1 and 1 IU/ml) and testosterone (T, 10–7 M) to evaluate the effects of FSH and LH on DHT and oestradiol (E2) synthesis and 5α-red1, 5α-red2 and AR expression. We found that FSH and LH upregulated 5α-red1 and 5α-red2 in sheep granulosa cells, but downregulated the concentration of DHT and expression of AR. Meanwhile, FSH and LH significantly upregulated the expression of aromatase (P450arom) and secretion of E2. This result indicates that although FSH and LH promote the expression of 5α-red1 and 5α-red2, T is not transformed into DHT, but E2. This study reveals the reason why DHT concentration is downregulated in large follicles and lays a foundation for further exploring the synthesis mechanism of DHT during follicular development.  相似文献   

15.
This study evaluated the effects of follicular phase administration of TAK‐683, an investigational metastin/kisspeptin analog, on follicular growth, ovulation, luteal function and reproductive hormones in goats. After confirmation of ovulation by transrectal ultrasonography (Day 0), PGF2α (2 mg/head of dinoprost) was administered intramuscularly on Day 10 to induce luteal regression. At 12 h after PGF2α administration, intravenous administration of vehicle or 35 nmol (50 μg)/head of TAK‐683 was performed in control (n = 4) and treatment (n = 4) groups, respectively. Blood samples were collected at 6‐h intervals for 96 h and then daily until the detection of subsequent ovulation (second ovulation). After the second ovulation, ultrasound examinations and blood sampling were performed every other day or daily until the subsequent ovulation (third ovulation). Mean concentrations of LH and FSH in the treatment group were significantly higher 6 h after TAK‐683 treatment than those in the control group (12.0 ± 10.7 vs 1.0 ± 0.7 ng/ml for LH, 47.5 ± 28.2 vs 15.1 ± 3.4 ng/ml for FSH, p < 0.05), whereas mean concentrations of oestradiol in the treatment group decreased immediately after treatment (p < 0.05) as compared with the control group. Ovulation tended to be delayed (n = 2) or occurred early (n = 1) in the treatment group as compared with the control group. For the second ovulation, ovulatory follicles in the treatment group were significantly smaller in maximal diameter than in the control group (3.8 ± 0.5 vs 5.4 ± 0.2 mm, p < 0.05, n = 3). Administration of TAK‐683 in the follicular phase stimulates gonadotropin secretion and may have resulted in ovulation of premature follicles in goats.  相似文献   

16.
17.
This study was performed to evaluate plasma concentrations of anti‐Mullerian hormone (AMH) and the ovarian antral follicle population (AFP) in different genetic groups. Cyclic heifers (13 Bubalus bubalis [Murrah]; 15 Bos taurus [Holstein] and 10 Bos indicus [Gyr]) were maintained under the same management and were synchronized with two doses of 150 μg IM d‐cloprostenol administered 14 days apart. After the second d‐cloprostenol treatment, heifers had their ovaries scanned daily by ultrasound to define the day of ovulation. On the same day, the AFP was determined and a plasma sample was collected to measure AMH. Murrah heifers had less AFP (25.6 ± 2.1 follicles; p = 0.01) and plasma AMH concentration (0.18 ± 0.03 ng/ml; p < 0.001) than Gyr (60.0 ± 12.2 follicles and 0.60 ± 0.12 ng/ml of AMH); however, data were similar when compared to Holstein (35.9 ± 6.8 follicles and 0.24 ± 0.06 ng/ml of AMH) heifers. Regardless of genetic background, there was a positive relationship between the AFP and plasmatic AMH concentration (Murrah [r = 0.62; p < 0.01], Holstein [r = 0.66; p < 0.001] and Gyr [r = 0.88; p < 0.001]). Also, when heifers were classified according to high‐ or low‐AMH concentration based on the average within each genetic group, high‐AMH heifers had greater (p < 0.0001) AFP than low‐AMH heifers. In conclusion, both Murrah and Holstein heifers presented lower plasma AMH concentration and AFP when compared to Gyr.  相似文献   

18.
Follicle-stimulating hormone (FSH) plays a critical role in follicular growth and granulosa cell function; however, the mechanism by which the aggressive stimulation of FSH leads to poorer oocyte quality and embryo development potential is unclear. In this study, bovine ovarian granulosa cells (BGCs) were challenged with FSH doses (vehicle, 0.1, 1, 10 and 100 ng/ml) to investigate the effects of FSH on BGCs. The results indicated that the relative viability of BGCs was significantly increased in cells challenged with 1 ng/ml FSH, whereas the viability was significantly decreased with 100 ng/ml FSH treatment. The mRNA abundance of FSHR, CYP19, StAR and BAX was significantly upregulated with 1, 10 and 100 ng/ml of FSH, while the BCL-2 mRNA level was downregulated with higher concentrations of FSH (10 and 100 ng/ml). Furthermore, BGC autophagy was detected in cells treated with 10 and 100 ng/ml FSH by MDC staining, and the mRNA abundance of LC3, BECN1, BNIP3, ATG3 and ATG7 was upregulated with increasing FSH concentration. Meanwhile, the protein expression of LC3 was increased in cells treated with 10 and 100 ng/ml FSH. 1 and 10 ng/ml FSH significantly increased E2 production, whereas 10 and 100 ng/ml FSH significantly increased P4 production. FSH significantly inhibited the phosphorylation of AKT in cells treated with higher concentrations (1, 10 and 100 ng/ml), while activating mTOR phosphorylation at concentrations of 10 and 100 ng/ml of FSH. In summary, we can conclude that higher doses of FSH (10 and 100 ng/ml) induce BGC autophagy via the AKT/mTOR signalling pathway.  相似文献   

19.
Normal metabolic activity in ovarian follicles may result in oxidative stress and damage to oocytes. The aim of this study was to evaluate expression of the natural anti‐oxidants paraoxonase (PON) 1, 2 and 3 in granulosa cells and PON1 activity in follicular fluid (FF) and plasma of dairy cows. For the first experiment, ovaries were collected from cows at slaughter, after which follicles were dissected and classified as oestrogen active (EAF) or atretic (ATF). Expression of PON1, PON2 and PON3 mRNA was evaluated in granulosa cells, and activity of PON1 was measured in FF. PON1 mRNA was undetectable in granulosa cells, PON2 mRNA expression was not different between follicle types, and PON3 mRNA tended to be higher in EAF (p = 0.11). The activity of PON1 in FF was higher (p = 0.01) for EAF (82.6 ± 8.0 kU/L) than ATF (53.9 ± 6.8 kU/L), as were high‐density lipoproteins (HDL), low‐density lipoproteins (LDL) and total cholesterol concentrations. In the second experiment, we aimed to compare plasma and FF PON1 activity in early lactation Holstein cows (n = 15) with pre‐ovulatory EAF. Activity of PON1 was twofold higher (p < 0.0001) in plasma (122.5 ± 11.1 kU/L) than in FF (61.4 ± 5.2 kU/L). Plasma concentrations were also higher (p < 0.0001) for HDL, LDL and total cholesterol when compared to FF. In conclusion, FF concentrations of PON1, HDL, LDL and total cholesterol were higher in healthy oestrogen active bovine follicles than in atretic follicles. PON1 was not expressed by granulosa cells indicating that high PON1 activity in bovine FF is apparently derived by transfer from blood in association with HDL.  相似文献   

20.
Most follicles undergo atresia during the developmental process. Follicular atresia is predominantly regulated by apoptosis of granulosa cells, but the mechanism underlying apoptosis via the mitochondria‐dependent apoptotic pathway is unclear. We aimed to investigate whether the mitochondria‐associated genes peroxisome proliferator‐activated receptor‐gamma, coactivator1‐alpha (PPARGC1A), nuclear respiratory factor‐1 (NRF‐1), B‐cell CLL/lymphoma 2 (BCL‐2) and BCL2‐associated X protein (BAX) played a role in follicular atresia through this pathway. The four mitochondria‐associated proteins (PGC‐1α, which are encoded by the PPARGC1A gene, NRF‐1, BCL‐2 and BAX) mainly expressed in granulosa cells. The mRNA and protein levels of PPARGC1A/PGC‐1α and NRF‐1 in granulosa cells increased with the follicular development. These results showed that these genes may play a role in the regulation of the follicular development. In addition, compared with healthy follicles, the granulosa cell in atretic follicles had a reduced expression of NRF‐1, increased BAX expression and increased ratio of BAX to BCL‐2 expression. These results suggested that changes of the mitochondria‐associated gene expression patterns in granulosa cells may lead to follicular atresia during goat follicle development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号